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A formalism to connect photoelastic constants and Raman intensities of a crystal is
developed. The internal coordinates of the crystal are related to the strains and the polari-
zability derivatives are obtained from Raman intensities and expressions are derived for
photoelastic constants of calcite. With Raman intensities taken from the spectra taken by
Kondilenko et al. [Opt. Spectrosc. 40, 402 (1976)], the photoelastic constants are evaluated.
They compare favorably with the experimental values determined by Pockel and recently by
Nelson and his colleagues. The constants thus evaluated form a 9 X9 matrix as the internal
coordinates are related to displacement gradients u;; in accordance with Nelson’s ideas. As
a result of the fact that calcite has only one line in its 4 |, species, the ratio (Py;+P1;)/Py; is
found to be independent of the refractive index or Raman intensities of the crystal; the ratio
evaluated is 1.007, which may be compared with 1.332 obtained from Pockel’s values and
with 1.124 from the work of Nelson and collaborators. The ratio P,3/P3; is dependent en-
tirely on the intensities of A4, line in the yy and 2z spectra: we obtained 2.147, as compared
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with 1.838 of Pockel’s and 2.074 of Nelson and collaborators’ experimental values.

INTRODUCTION

When a crystal is stressed the strains produced
resolve themselves into phonons. Suitable grouping
of Raman phonons according to their symmetry
manifest themselves as photoelastic constants. This
natural connection between Raman intensity and
photoelasticity was recognized by Maradudin' as
early as 1967, who derived an expression for the
photoelastic anisotropy (P} — P}, —Pgs) of diamond
in terms of the intensity of its Raman line. We have

a2 € (P;j—Pi;—Pg)

087 1—(8G /agMv%)
P is the polarizability change with respect to the fre-
quency vg, € is the equilibrium dielectric constant,
ay is the radius of the carbon atom, M is its mass,
and G is an expression involving force constants.
His calculations were confined to cubic crystals and
were not followed up.

Nelson and his colleagues’™> gave a comprehen-
sive theory relating intensities of Brillouin com-
ponents and photoelastic constants. They modified
the earlier ideas in two important respects. (1) The
strains in a crystal are, in general, not irrotational.
This makes the strain tensor unsymmetric. There-
fore, they recommended that in place of the sym-
metric strain tensor elements e;;, one should use the
displacements gradients u;;, making the photoelastic
constant tensor 9 X 9 instead of 6 X 6. They thus dif-
ferentiated between Py, and Py, of calcite and ob-

(1
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tained the two values separately. (2) For piezoelec-
tric crystals, stress creates electric fields which pro-
duce polarizations, and the resulting photoelastic
constants, therefore, need not follow the symmetry
of the crystal. These ideas seem to have received
wide acceptance. Grimsditch and Ramdas,® while
evaluating the photoelastic constants of rutile, have
shown that Py = Pjix.

In the traditional methods stress is applied to a
crystal until its birefringence is measurably changed
and the altered refractive indices determined to
evaluate the photoelastic constants. Cordona and
his colleagues,” while determining these constants
for alkali halides at near about their absorption
edges, have established a connection to their defor-
mation potentials. They have clearly shown a
characteristic difference between the rock-salt- and
ceasium-chloride-type crystals.

It is well known that directional Raman spectra
of crystals show considerable changes on applying
stress leading to change of structure. Inactive
modes can appear and very strong lines lose their in-
tensity. Cardona and his colleagues® connected
these intensity changes to piezobirefringence and
evaluated the piezo-optical constants of silicon.
Briggs and Ramdas® observed splitting of the de-
generate lines of Cds upon applying stress and
evaluated its deformation potentials. Loudon'® has
developed a theory of Raman intensities of crystals
based on deformation potentials and this will be re-
ferred to again later. We now develop a relation be-
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tween Raman intensities and photoelastic constants
of the crystal without applying external stress.

RAMAN INTENSITIES

Raman intensities in molecules are analyzed by
Long!! following the theory of bond polarizabilities
first conceived by Eliashevich and Wolkenstein.'?
The polarizability of a molecule was taken to be the
sum of the polarizabilities of the constituting bonds.
a,; and a,, are polarizabilities along and perpendic-
ular to the nth bond of a molecule. Long then
showed that the tensor element

Oy =0ty | — 0y )AXAY + 0y 2By, (2)

Aix and ny are the direction cosines of the nth bond
and 8, is Kronecker 8 function. As the molecule is
oscillating, the bonds get stretched and the inter-
bond angles change. Polarizability change due to
these two causes is derived by Long. Long’s equa-
tion is conveniently modified by Kumar et al.'3 as

aaxy ’ 1y, ! —1y
lk=8*Q:=lr£L_+l¢1_<¢ﬁ£y.(L LA &)

The intensity is proportional to I ;. The terminolo-
gy which is well known is described by these au-
thors. J, and J 4 are derivatives of a,, with respect
to stretches of the bonds and their direction cosines
and K4 are derivatives of direction cosines with
respect to the displacements of the atoms. p are the
reciprocals of masses of the atoms, s are Wilson’s'* s
vectors, and s’ the transpose of the s matrix. u con-
nects the internal and symmetry coordinates.

Extension of this theory to crystals was initiated
by Kumar et al.'® and theoretical justification was
given by Tubino and Piseri.!> This was followed up
for a number of crystals of different symmetry by
authors from this laboratory and recently by Dom-
ingo and Montero.'®

There is another theory, referred to earlier by
Loudon,'? based on electron-lattice interactions and
deformation potentials. He has obtained formulas
connecting polarizability changes and changes of de-
formation potentials. Although Maradudin' was
aware of these formulas he chose to use the bond-
polarizability model as “the model of electric polari-
zability we choose, must contain as many parame-
ters as there are pieces of experimental information,
no more, no less.” Bond-polarizability theory has
also the advantage of understanding the properties
of the crystal from its molecules and the intensities
and photoelastic constants can be derived in terms
of physically understandable electrooptical parame-
ters as one obtains for molecules.

PHOTOELASTIC CONSTANTS
FROM RAMAN INTENSITIES

Equation (3) can be cast in the matrix form as
I=L'4. 4)

A contains the electrooptical constants and L’ is the
transpose of L which is related to the symmetry
coordinates S=LQ. In solving (4) for electrooptical
constants two points of uncertainty were faced by
the investigators. I can have two signs, positive or
negative. Hence, one can have a number of possible
sets of equations. The elements of L are derived
from force constants which are generally known to
be uncertain. While for molecules one may take ad-
ditional data from Coriolis interaction constants and
rotation distortion constants, for crystals it becomes
a real problem to determine reliable force constants.

Authors from this laboratory avoid these prob-
lems by writing (4) as

I'I=A'LL'A=4'GA . )

This equation at once avoids the sign ambiguity of
I’s and the necessity of determining the elements of
L

Now, any polarizability tensor element varies as

da;; 50 6S
A 0% 8Q S
%= %50 85 sR °R

I' is the transpose of I. Elements of 4 can be ob-
tained from the Raman-intensity analysis.

The elements 8a;; /8Q; have this sign ambiguity.
For any mode, (4) can be written as

Ly=A\L x+ALj+ - =ALy .

The sign of I, is a function of 4 and the sign of the
column vector L ;. L ; is multiplied by the relevant
Ly ! vector of the matrix L1, the result being in-
dependent of its sign. The row of elements of 4 is
the same for all the modes of oscillations of any
species and is not directly related to the sign of the
elements of I ;. We thus get rid of the sign ambi-
guity as well as the uncertainty of evaluating the ele-
ments of L from force constants.

It is shown in the Appendix that the internal
coordinates can be connected to the strains and a
general equation of the matrix form

AR=Rle (7)
can be derived, so that (6) becomes

Aa;j=A'URle=Pjyey . (8)
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From the relation e=1+4n7bNa, € the dielectric
constant, a the polarizability tensor, N the number
of molecules per unit volume, and b a constant de-
pending on the crystal symmetry, P’ are calculated
in the units of 47bN. Thus

Ae;j=Pirey - 9
Photoelastic constants are defined as
Ae~'=Pe, (10)
and from ee~ =1,
Ae'=€ohe€0 (11
from which one obtains
0-

P'=¢oPe

(12)

Here €, the dielectric constant of the crystal in the
equilibrium position, is taken as an approximation.
Multiplication with the matrix € is facilitated if its
principal values are taken along the symmetry axes
of the crystal. Then (12) becomes (writing €o=n2
the refractive index)

’ 4
Py =n4Pyy,

. 4
P33=n,P3; ,

(13)

and
. 2,2
Py =nyn;Py .

For crystals of calcite symmetry, P, =Py, Py
=P,;, etc. Hence, extension of (13) to the other ele-
ments of P can be easily made.

In this paper we demonstrate Raman-intensity
analysis of calcite and show how the elements of 4
of Eq. (8) thus obtained can be used to evaluate the
elements of P.

RAMAN-INTENSITY ANALYSIS
OF CALCITE

Calcite is of space-group symmetry D, with two
molecules in the unit cell as shown in Fig. 1. The
CO; ions in free state are of Dj, symmetry with
Raman-active modes in 4, E’, and E" species. A,
gives the total symmetric stretching. E’ contains
the asymmetric modes, bending, and translations in
the xy (CO3) plane, while E" gives rotations R, and
R,. In the crystal E' and E” combine into a single
E, species. Then expressions for a;; for these modes
of oscillations are derived in the way explained ear-
lier in one of our papers!’ on LiNO; (which is of
same symmetry). To obtain the expressions for the
whole unit cell a;j; for the other molecule are ob-
tained by the proper symmetry operation and the
two values are added with proper normalization.

The intensity formulas thus obtained and adopted to
CaCO; are as follows:
For the 4, species,

a;x=a;,y=(3/\/3)(a',+a'2)L“ , (14a)
ap=V6ayL; . (14b)
For the E, species,
Qe = —ay, =ay, =[(V3/2)y'Ly;—vLa]
(14c)
=0, =V2yLy; . (144)

a) and aj are the polarizability derivatives of the
C—O bond along and perpendicular to it.
y=(a;—a,) and y' is its derivative.

These formulas include the electro-optical param-
eters (a}, a, 7', and y) of only the C—O bond. The
Ca atom in the unit cell is too far away from the O
atoms, hence the polarizability of this Ca—O bond is
of no significance.

There are two serious defects in these formulas.
(1) Since the COj; ion in the crystal retains the sym-
metry in its free state, E, splits up into two matrices
of orders 33 and 1X 1 corresponding to E’ and E"”
in the free state. As we shall see later, this results in
the nonappearance of P,; and P, which are a result
of interaction of the oscillations in E’ and E"”. (2)
The C—O bond is in the xy plane. But P3, P3;, and
P3; which are functions of the strains along the z
direction cannot be evaluated as they are the func-
tions of 4 1g mode, which in this picture does not in-
volve a movement along the z directions.

To understand the interaction between E’ and E"
the six calcium atoms around each COj; ion and the
corresponding Ca—O bonds as shown in Fig. 2 are
taken as internal coordinates and their polarizabili-

o2
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FIG 1. Unit cell of calcite.
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FIG. 2. Carbonate ion connected to Ca ions of the sur-
rounding unit cells. There are three Ca ions above the
CO; plane and three below. O: carbon atom, ®: oxygen
atoms, and ©: Ca atoms.

ties are considered in deriving the intensity formu-
las. The first step in this direction is to write down
the symmetry coordinates combining these Ca-O
and C-O distances. Symmetry coordinates are given
in Table 1.

Wilson’s s vectors'* are calculated and the matrix
G given by

G=uspus'u' (15)

is shown in Table II. Now, the matrix G for E, is
4x 4. Thus E' and E" vibrations are connected into
one species. This is possible if we take the Ca—O
bonds outside the unit cell as in Fig. 2. Ca—O

bonds inside the unit cell, if taken, again appear
separated in E’ and E" species.

Ko and pc are reciprocals of the masses of the ox-
ygen and the carbon atoms. pc, does not come into
this picture as the Ca atoms are in the centers of
symmetry and hence do not move in the Raman-
active modes. r in this table are in angstroms but in
deriving the intensity formulas this unit cancels off.
Hence, its unit (10~%) is not shown in the table.

Equation (3) contains two quantities J ,u’'L and
J oK gus'u’ (L™'). It may be noted that in Long’s
original formulation, two approximations were
made, the polarizability of any bond is independent
of the length changes of the other bonds, and also
the changes in the bond angles. This is called the
zeroth-order approximation. But in deriving J ,u’'L
here we do take these factors into consideration and
follow what is called the first-order approximation.
In the following equations [(17a) and (17b)] o?
means the polarizability perpendicular to bond 1 and
aj is of bond 2. In the zeroth-order approximation
only 8a?/8r, exists. 8a3/8r, is the first-order term.
This is explained in detail in one of our recent pa-
pers.'® In the second term (L) elements are con-
verted into L elements using (L~!)=G~'L. G~!
elements are obtained by inverting the G elements of
Table II. Then the two terms are combined into a
single term 4, as in Eq. (4).

Then the expressions for aj; with the use of the
formulas (3) are derived and the revised intensity

TABLE I. Symmetry coordinates.

ST =(1/V ) —(1/V3Nr 41 +r)+(1/VI[R, +R)+(RS +RY)+(R5 +R )]}

SE=(1VI(/VE)2r —r,—r3)—(1/VE[2AR, +R{)— (R +R})—(Ry +R])

S =(1/V6)[(26,—0,—6,)]

E

S&=—(1/2V3)[2(R} +R])—(R5 +R3})—(R +R})]

S<E=(1/1.504){R, —(1.123/2)[(R) —R})— (R} —R{)]}

SHE=(1/VH[(1/V2)rs—r)—(1/VD(RY +R{)—(Rs +R ]}

SiE=(1/V2)(6;—6,)

SeE=(—1/2V3[2R, +R})~(R) +RJ)—(R} +R)]

SsE=(1/1.504){R, —(1.123/2)[2(R} =R {)—(R} —R{)—(Rs —R)]}

S1a=(1/V3I{=(1/V3)r +r14+r)—(1/VI[(R] +R{)+(R5 +R;)+(R5 + R3]} =0°

®This is a redundant coordinate. Similar redundant coordinates for S, and S5 can be written
down. In the above expressions the normalization factors are obtained from redundant coordi-
nates. a and b refer to the two degenerate types.
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TABLE II. G matrix in units of 10%.

G =($)po=0.05

G =(3 o+ (1c/2)=0.075
Gu=(3/r)uo+(9/2r)uc=0.208
Ga=p0/2=0.019
Gss=(2.05)0=0.077

Gy =(3/2r)c=0.059
Gay=(V2/V'3)u0=0.031
G3s=(1.116/r )juo=0.033

equations involving the polarizability of the Ca—O
bonds also are given below.
For the 4, species,

Ay, =0y =1 Kn,=A,Ly, , (16a)
ap=I,Kn,=A\L,, . (16b)
For the E; species,
— =y, =1, Kn,= ALy +A3Ly;+A4Ly;
+AsLs; , (16¢)
Ay =a), =I,K (nyn,)"*=A¢Ly+A7Ly,;
+AgLyi+AgLs;
(16d)

where i =2,3,4,5 denotes the frequency. The ex-
pressions for 4, A}, A5, etc. are the following:

6 1 &
Ay o1 (a3+2ay) 2 or, (y1+272)
+(0.2684)yca_o > (17a)
, Lo}
A} =—5‘(012*'20‘22)—(0-4619)7’Ca—0 )
1
(17b)
4, =120 (0 5828 (17c)
=505 . Yca—0 >
Ay=— Y‘C/‘; +(0.2489)yc,_o » (17d)
A4=(0-0944)7Ca—0 ’ (17e)
As=(—0.311TYcs—o0 » (176)
Ag=(0.8001)yc,_o—(0.8295)7c_o , (17g)

A;=—(0.3415)yca_o0+(0.3541)yc_o, (17h)
Ag=—(0.7661)yca—0+(1.3545)yc_o » (171)
Ag=(0.1077)yc,_0—(0.7442)yc_o . (17))

TABLE III. Intensities of the Raman lines of calcite.

Frequency Area

Spectrum  Species v; (cm™!) A; I}

zz Ay 1088 270 388.6

W Ay 1088 1000 14392

E, 1432° 25 51.5

714 88 73.1

283 38 8.6

156 17 1.4

2 E, 714 26 216
283 390 87.9

156 140 11.9

“Extrapolated from Fong et al. [J. Chem. Phys. 541, 579
(1971)].

In these expressions four digits are given against
each value for the sake of computational consisten-
cy. The values are accurate only up to two digits.
In deriving these formulas, we have omitted the po-
larizability derivative of the Ca—O bond as it is
mostly of ionic nature.

In deriving Eq. (16) both the molecules are taken
into consideration in the way explained earlier.!” It
simply involves multiplying the right-hand side of
Eq. (16) by V2, the normalization factor. The fre-
quencies are taken from the data published by Kon-
dilenko et al.'® I,; are calculated from the areas
under each of these lines as obtained by these au-
thors. The value of the elements of I are calculated
using the formula given by Bernstein,°

- KA"V,-(l—e_,w"/kT)n2
(I 2= . (18)

(Vo—V,' )4

K is a constant of proportionality, v; is the frequen-
cy of the line, v, is the frequency of the exciting
line, and hcv;/kT is the usual Botlzmann factor.
The frequencies, areas 4°, and the corresponding I,
excluding n (refractive index) are given in Table III,
for ready reference.

Spectra of calcite were taken by Porto et al.?! in
1966 and recently by Kondilenko et al.!® The spec-
tra taken by the latter authors show almost the same
areas for xx, xy, and yy showing that they were tak-
en under identical conditions. Hence, we have taken
the constant of proportionality to be the same for all
these spectra and also for yz.

The intensity of a Raman line is proportional to
its area. Hence, a sharp line of high peak value can
have a lower intensity than a diffuse band. In fact,
a diffuse band of low peak value can merge into the
background and escape notice. Also, Eq. (18) shows
that line of high intensity but of low frequency can
have a low I? value compared to one of low intensi-
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TABLEIV. 4’ and U R /e matrices. One obtains for Eg(b) similar expressions as for Eg(a).

A Ag Eg(a) Eg(a) Eg(a) Eg(a) URle
A

xx A, 4, A, A, As ST (1.218)(ey +eyy)+(2.420)e,,
E

yy A] —AZ ~—A3 —A4 —A5 Szag (0893)(eu——eyy)—(1733)ey,
E

2z A} S38 (1.499)(exx —eyy)
E

yz Ae Asq Ay Ag 545 (0310)(9,“—6”;)—(2122)@)7

E
S8 (1.355)(ex —ey, ) +(2.042)e,, +(0.705)w,

ty and high frequency. For example, Table III
shows that 156 of yz having an area of 140 has
I*=11.9 while 714 of area 26 has I?=21.6. This
feature is shown clearly in Loudon’s'® formulas also.
The band of frequency 1432 of E, species does not
seem to appear in the spectra taken by Kondilenko
et al.?! while Porto et al.* just mention it and do
not show it in their spectra. We have, therefore,
compared the intensity of this band with 714 in the
spectra published by Fong et al.?*> and comparing
the ratio of their areas in their spectra, computed its
value in the yy spectrum here, and used it in our cal-
culations.

PHOTOELASTIC CONSTANTS

In the Appendix we have derived expressions for
the internal coordinates R in terms of u;;, the dis-
placement gradients. Then taking the u matrix from
Table I, URle is obtained. It may be mentioned that
the u elements are multiplied by V'2 to take both the
molecules in the unit cell into account, U=V"2u;
then, taking the A’ matrix from Eq. (16), A’ and
URle are written separately in Table IV.

It is interesting to see that the matrix URle has
the same symmetry as the symmetry of the Raman-
active tensor elements. The product of A’ with this
gives P’e, as explained earlier. P’ has the symmetry
of the photoelastic constant matrix as expected. The
expressions for P’ involve the electrooptical con-

stants contained in the elements of 4 of Eq. (17).

The signs against A,, A3, A4, and A5 in P}, and
P, are opposite, so that P}, + P, is a function of
only 4,, while P}, — P, is a function of 4,, 43, A4,
and As. It is easily verified that P{; — P}, =2Pg. It
is also evident that P}, =P5, and P}, =P5,.

Similarly, Pi; (and P)3) are functions of only 4,
while Pj; and Pj; are functions of only 4. Thus all
these major photoelastic constants can be obtained
directly from A; and A4, which are the functions of
the total symmetric 1088-cm~! line of this crystal.

PY;, P53, and P3; are functions of e; and the
direction cosines of the Ca—QO bonds outside the
unit cell (values of these direction cosines and of the
lengths r and R are calculated from the crystal
parametersi3 in the usual way, r=1.28 A and
R =2.357 A).

From Table IV it is seen that P}, 4P}, =24,
(1.22). Taking Pj; and P}, from the experimental
data and 4, from (16a), K, the constant of propor-
tionality, is determined. Then K?=5.3x10% if
Nelson’s’ values are taken and 10.8X107¢ if
Pockel’s values (as corrected by Nelson) are taken.
They can be used to calculate P}3, P33, and P3,. The
values thus calculated along with the experimental
values are shown in Table V. While P}; and P}
compare well with the experimental values, Pj; is
too small.

It can also be seen that (P}, +P),)/P}; is in-
dependent of the refractive index or Raman intensi-

TABLE V. Photoelastic constants.

Calculated with the use of some values of Experimental

Pockel Nelson Pockel Nelson
Py 0.295 0.208 0.223 0.186
Py —0.012 —0.011 —0.012 —0.011
Py —0.005 —0.004
Py, 0.107 0.075 0.310 0.241
Ps; 0.213 0.149 0.188 0.139
Py —0.019 —0.016 0.0007 —0.036
Py —0.069 —0.058 —0.069 —0.058
Puga) —0.017 —0.011 0.047
P —0.028 —0.020 —0.0425 —0.0425




2178 G. SWARNA KUMARI AND N. RAJESWARA RAO 28

TABLE VI. Some ratios of photelastic constants.

Experimental
Calculated Pockel Nelson
PutPu _ 201.219) _, o 1332 1.124
P (2.420)
’ I lg
Po_Ly'w 47 1.838 2.074

’ A
Py 8,

ty. It is purely a function of the crystal parameters.
P} /P’ can be directly obtained from the intensities
I, and I, and is independent of the electrooptical
constants. These ratios are given in Table VI.
These peculiarities are entirely due to the 4, species
containing only one line. These ratios are functions
of 4, lines only.

To evaluate the other constants, however, it is
necessary to use the intensity formulas. But, as we
have already stated earlier, there are two defects in
the formulas (16). I, can have a positive or nega-
tive sign and the L elements cannot be evaluated
with any certainty. Therefore, we take zilyzy and

|

3.1 and use the value of K determined earlier.

A very interesting feature of the equations for
312, and 3 I is that we observe them to be identi-
cal whether we take the symmetry coordinate (Ss,)
to be simply R, or R, combined with R’s. This is
understandable as these expressions contain only
constants relating to the crystal.

Then expressions for Py, Pg, P4, P4y, and also
P44y and Pjp (in Nelson’s terminology) are ob-
tained from Table III and the Eq. (17). Py is
Py, and Pyp4) is Pxx, . These equations are as fol-

lows:

312K =n2(67.33)K*=7¢_0(0.0094) + 12 _o(0.1035) + 12, _0(0.0205) — ¥c_o¥e—_o(0.0294)
i

—Yc-0Yca—0(0.0186) —¥c_oYca—0(0.0098) , (19a)

S 1. K*=n,n,(60.73)K>=v%_0(0.0341) +7¢,_0(0.0120) — yc _o¥ca—0(0.0099) , (19b)
i

Ply=A,(—1.7334)+ A4(—2.1228) + A5(2.0424) = —(0.6129)yc_o+(0.1731)ycao » (19¢)
Pi141=A5(0.7053)= —(0.2199)yc,_o , (19d)
P4y =A4(0.8935)+A47(1.4997)+ A4(0.3104) +A44(1.3539)=(0.1107)yc_o—(0.7973)¥ca_o » (19¢)
Piy=Ag(—1.7334)+ Ag( —2.1228)+A44(2.0424) =(0.4595)yc_0—(2.9572)¥ca—o0 » (19)
P4y =44(0.7053)= —(0.5249)yc_o+(0.0759)Ycs_o » (19g)

Pis=A,(0.8935)+A43(1.4997) +4,(0.3104) +45(1.3539) =(0.3159)yc_o—(1.0606)yc_o—(0.5402)yc, o -

These equations contain three constants to be
evaluated Yc_o, Yc—o0s> and Yca_o- But there are
only two intensity equations [(19a) and (19b)].

TABLE VII. Electro-optical constants calculated with
the use of values of Pockel and Nelson. The values given
below are accurate up to two digits.

Ye—olyz) 0.2177 0.1497
Yc-o 0.1975 0.1758
Yca-0 0.1755 0.1423
Ye—olyy) 0.1675 0.1224

(19h)

Therefore it is necessary to take one of the experi-
mental photoelastic constants to determine the three
unknowns. We have chosen P, as Pockel and Nel-
son obtained nearly the same values.

There is another important point. In deriving the
intensity formulas, Long assumed that the bonds are
of cylindrical symmetry with respect to polarization.
But as the present authors have shown earlier for
the NO; ion** (and CO; which is of the same sym-
metry), the N—O bond does not have cylindrical
symmetry. Polarization perpendicular to the plane
of CO;, a3, is different from «, in the plane. The
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s
w,4 Ty

1 Ry o hz 2

FIG. 3. Stretching between two atoms 1 and 2. u' and
u® are displacements that produce the stretching and s'
and s2, Wilson’s s vectors. O is the origin of the coordi-
nate system.

present authors have shown that for xx-type vibra-
tions, which are in the plane of the CO; ion, yc_g is
really a;—a,, and while considering yz oscillations
involving the rotations, the C— O bonds move in the
z direction and yc_g in this case is a;—as.

So, from 31, and Py, Yc_o=(a;—ay) and
Yca—o are calculated. With the use of this value of
Yca—o in Py and szy, Yc—0s Yc—-ola;—a,), and
Py are obtained. We see that yc_ola;—a,) and
Yc-ola;—aj) are different. The electro-optical
constants thus obtained are given in Table VII and
the photoelastic constants in Table V. P,4; and
P4 (in Nelson’s terminology) are also given in this
table.

Since the Raman spectra are of a nonresonance
type it is not possible to differentiate between Py,
and P,,,, and similar expressions for P,, and P,,, as
we cannot differentiate between a,, and a,,, etc.
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APPENDIX: INTERNAL COORDINATES
AND STRAINS

It is always instructive and advantageous to
understand the properties of a crystal from its con-
stituent molecules. The properties of a molecule are
generally related to the chemical bonds and the
internal coordinates describing the changes in the
bond lengths, bond angles, rotations, etc. Therefore
it becomes necessary to relate the strains (and
stresses in terms of which the properties of the crys-
tal are understood) to internal coordinates.

Taking the crystal to be a continuous medium the
change in the distance between any two points apart
is given in books on theory of elasticity®® as

AR =1_((exx12+eyym2+ez._.n2+eyzmn
+exnl+eylm)
=Rle (AD

(in matrix form). I, m, and n are the direction
cosines along the x, y, and z directions. This formu-

Y

FIG. 4. Change in the angle between two bonds 13 and
23. r, and r, are lengths of the bonds, e, and e,, are unit
vectors along 31 and 32, and s!, s3(/), s% and s3(2) are
Wilson’s s vectors. a and b are points about which rota-
tions of the bonds take place.

la was used for a bond length by early workers®® to
obtain a relationship between force constants and
elastic constants. One can find a similar formula
for change in angle between two lines also in stand-
ard books.”> But we are not aware of the general
formulas for rotation, out-of-plane oscillation, etc.
We now attempt at such a derivation that can be
generally used for every type of internal coordinate.
We start with?’

u,«k=u,-jrjk . (AZ)
Repetition of j indicates summation. [ is the dis-

placement of the kth atom in the ith (x,p,z) direc-
tion. u;; =38u;/dr; are related to strains and rk is the

position vector of atom k. In general u;juj;, but
u;=e; (A3)
and
Ujtuj=e; . (A4)

e;; are the strain parameters.

The internal oscillations in a molecule (or crystal)
are generated by the displacements of the atoms ac-
cording to the scheme

AR =S uksk . (AS)
k

AR is any internal coordinate and not necessarily
stretching, u* is the displacement of the kth atom,
and s* is, in general, a unit vector along this dis-
placement. s* are Wilson’s s vectors'* explained in
detail in books on molecular physics.
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FIG. 5. Rotation of CO; about the x axis. O, moves
along the +z direction and Oj in the opposite direction.

If AR is the stretching between two atoms 1 and 2
of a bond, displacements u' and u? should be along
s' and s? unit vectors, so that s'=—s? (Fig. 3).
Taking 0 midway between the atoms as origin, posi-
tion vectors r!=r2 rj1 in (A2) is equal to r'lj, 1j
being the direction cosine of r!. Since s' and s* are
in the same direction, 1; are the direction cosines of
s! also. Similarly, 2j are the direction cosines of r?
and s2.

Now expanding (A2),

h ]

?

Of o—

k2

o2

®

FIG. 6. Rotation of CO; about the y axis. O, and O3
move along the +z direction and O, in the opposite direc-
tion.

uxl=(uxxll Fugymy +uyn wl,
u},1=(uy,‘l,+uyym1—+—uyzn1)r1 , (A6)
1

1
U, =(ugly+ugpmy+ugnr

With similar equations for u,f, u)?, and uzz,

AR =u's'+u2?=(u]l, +uy1m1+u,’n1 )+ (ully +ulmy+uln,)

=R (e, [} +eyym% +e,n? +ey,ming+exnily+egylimy) . (A7)

Here, we have set r'=r% I,=I,, m;=m,, and
ny=n,; R=2r. l;,m,n, are direction cosines of
the first bond and /,m,n, of the second bond.
Equation (A7), found in Ref. 25, is derived in a dif-
ferent way.

Bond angle

Figure 4 shows a molecule 123 in the xy plane.
Angle 6 increases if the bonds 13 and 23 rotate
about their centers @ and b. The vectors s' and s?
are given (Ref. 14) as

eicosf—e, e,cosf—e;

s! : , st=—
r sind r sinf

ey and e, are unit vectors along 31 and 32, s*(1) and
s3(2) relate to atom 3, s3(1)= —s!, and s3(2)= —s2.
Their direction cosines are obtained by multiplying

them by e, and e, unit vectors along x and y. Set
ry=r, (for simplicity). Then, for bond 13,

11 l,cos6—1,
Seiy =gl +uxyml)r——r;le—

mcos@—m,

r sin@ ’ (AS)
l,—1,cosb

1,1
syty =y by +uy,my)r

b

3,3 _ _
Syt =ty (—1))Fug,(—my)]r »<in0

3 3 m, —m cosf
Syuy =[uyx(——ll)+uyy(—-m1)]rm—

We have similar equations for bond 23. Then
AG=u's'+u’s¥ (1) +uls?+u’s32) . (A9)
Upon simplifying, we get
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sinf A6 = Zen(l%cose—i—l%cosG—lelz)+2eyy(m%cos(9+m§cos9—2m,m2)

+2e,,(Iym cosO+1,m,ycos60—11ymy—1hmy) . (A10)

If the molecule is in a general plane, this equation becomes

sinf A9=2exx(l%cos9+1§cos9—21112)+2eyy(mfcose+m%cose—2mImz)+2en(n%c056+n§cos9—2n1n2)

+2e,,(Iym cosO+1,m,ycos0—11my —1,my ) +2ey,(mnycos@+myn,cos0 —mny —myny)

+2e,_x(n111c089+n2120039—n112—nzll) .

Rotation of CO; about the x axis (R,)

Rotation of CO; about the x axis makes O, move
up and O; move down, indicated by + and — in
Fig. 5 along the z axis. The s vectors for rotation
are described in an earlier paper.!” s?=e,sin(60°)/r
and s°= —e,sin(60°)/r. Since the atoms move only
along the z direction, s vectors are functions of e,,
the unit vector along the z direction. Then
s2=sin(60°)/r and s)= —sin(60°)/r. Since r;=r,
=r3=r,

sful=(upl, +uzmy)rsin(60°)/r ,

s}ufz(ule3+uzym3)r —[sin(60°)/r] . (A2
Therefore
R, =s22u,2+sz3uz3= %u,y
=%(“zy+“yz+“zy”“yz)
= ey ) - (A13)

Wy =Wz, — Uy, is the rotation about the x axis.

ot

FIG. 7. Rotation of CO; about the z axis. ri=r,=r;
are bond lengths, and e, e,, and e; are unit vectors along
the bonds. u', u?% and u® are displacements necessary to
produce the rotations and s', 5%, and s> are Wilson’s s vec-
tors.

(A11)

Rotation of COj; about the y axis (R,)

Rotation about the y axis is shown in Fig. 6. O,
and O; have to move up while O; moves down. The
s vectors for this rotation, also described in an ear-
lier paper!’ are s'=—e,/r, s’=e,cos(60°)/r, and
s3=e,cos(60°)/r and then by a similar procedure,

we obtain
R,=3(eu+0,) . (A14)

Rotation about the z axis is not Raman active. A
similar procedure (Fig. 7) shows that

s'=(e;cosO—e,)/rsinf ,

s?=(e,cos0—e;)/r sinf ,

and

s*=(e;cos@—e;)/rsinf .

Then

sy’uylz(uyxll +uy,my)r(mycos@—m,)/rsiné ,

stul=(uyl, +uy,m;)r(lycos60—13)/rsind ,

5y
sous = (uyls +ux,m3)r(lycos6—1,)/rsind ,

3
Sy

uyzz(uyxlz+uyym2)r(m2cos£9——m3)/r sinf ,

uj;7’=(uyxl3 +uy,m3)r(mycos@—my)/rsing .
Therefore

R,=s'u'+s™u’+s’u’

|

3

3
=S (U —Uy)=7w, .

~|

TABLE VIII. Direction cosines.

l m n
R} —0.515 0.610 0.603
RY —0.515 —0.610 —0.603
R; —0.271 —0.751 0.603
R 0.786 —0.141 —0.603
R} 0.786 0.141 0.603
Ry —0.271 0.751 —0.603
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It is interesting to see that corresponding to R,,
ey is zero and we have only w,. This is understand-
able because R, occurs under the species 4,, which
is Raman inactive. There is a close one-to-one
correspondence between the symmetry of the strains
and the polarizability tensors that produce Raman
activity, as both of them are second-order tensors.

The infrared modes do not produce any strains in
this crystal. Hence it is not piezoelectric.

The direction cosines of R’s can be determined
from crystal parameters in the usual way. They are
shown in Table VIII. The Rle matrix is formulated
similar to (A1) for every one of the internal coordi-
nates and uRle obtained by taking u from Table L.
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