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Thernsoelectric power of graphite intercalation compounds
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(Received 4 February 1983)

A model for the temperature variations of the '.hermoelectric power (TEP) of acceptor graphite in-

tercalation compounds (GIC's) is presented. At low temperatures, the TEP in GIC's increases
monotonically with T, then levels off above -200 K in striking contrast to that of pristine graphite.
The diffusion contribution to the TEP is proportional to T and its magnitude is small as compared
with that of the observed data. This observed behavior is attributed to the phonon drag effect. In
the temperature region where the TEP is weakly temperature dependent, phonon relaxation is main-

ly controlled by the Rayleigh scattering due to point defects. The resultant TEP, which is composed
of the phonon drag and diffusion terms, leads to a nearly T-independent value. Since the cross-
sectional diameter of the Fermi surface in GIC s is larger than that of pristine graphite, the relaxa-
tion rate of the Rayleigh scattering, which is given by t/tt(q)= fq, becomes very large at high tem-

peratures (Tp 100 K). At low temperatures, where the boundary scattering plays a dominant role,
the TEP is proportional to T'. Detailed calculations are carried out by solving the phonon-carrier-
coupled Boltzmann equation.

I. INTRODUCTION

Studies of the transport properties of graphite intercala-
tion compounds (GIC's) have attracted a good deal of at-
tention from many investigators. ' Among the various
techniques, the measurements of the thermoelectric po~er
(TEP}provide useful information on the Fermi energy, en-

ergy dependence of the carrier-relaxation time, strength of
the electron-phonon coupling, and the phonon-relaxation

processes. Recently, the thermal conductivity, TEP (a-
axis and c-axis values), and c-axis resistivity of FeC13-
intercalated graphite and a stage-5 potassium GIC have
been measured.

Detailed measurements on the TEP and thermal con-
ductivity of SbC15-intercalated graphite spanning stages
2—10 have been carried out by Elzinga et al. , Figs. 1 and
2 indicate a typical feature of the TEP in the acceptor
compounds. ' These curves indicate that the TEP in
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FIG. 1. Temperature variation of the TEP of the three
FeC13-intercalated graphite compounds compared to that of pris-
tine graphite (Refs. 2 and 3).
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FIG. 2. Temperature dcpcndcncc of thc TEP of SbC15-

intercalated graphite compounds. TI marks the temperature of
the commensurate-incommensurate transition (Rcf. 6).
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GIC's exhibits a different T dependence from that of a
pristine graphite and that it is nearly stage independent ex-

cept for a high-stage compound. '

Highly crystalline graphite exhibits a large negative dip
of the TEP around 35 K, ' ' and this anomaly was as-

cribed to the phonon drag effect. ' In this paper it is
shown that T dependence of the TEP in GIC's is also ex-

plainable in terms of the phonon drag effect. Since the
carrier density in GIC's is 1 or 2 orders of magnitude
larger than that of pristine graphite, ' the cross-sectional
diameter of the Fermi surface of GIC's is much larger.
This affects the phonon drag TEP in the following two
ways: The first effect is that the maximum phonon ener-

gy participating in the phonon drag effect, which is given

by 2fiu, kF (u, is the velocity of sound and kF is the Fermi
momentum), is larger than koT in the temperature range
in which we are interested. Gn the other hand, in pristine
graphite 2%v, kF/ko is at most -40 K. The second effect
is as follows. The q-dependent scattering processes, for in-

stance, the carrier-phonon scattering, Rayleigh scattering,
and phonon-phonon scattering provide large relaxation
rates in the phonon-relaxation processes, Among them
the Rayleigh scattering, due to point defects, is strongly
enhanced as compared with the case of pristine graphite,
since its relaxation rate 1/rl(q) is proportional to q in
two-dimensional phonons and to q in three-dimensional
cases. At temperatures above -100 K, the Rayleigh
scattering plays an important role in the phonon-
relaxation process, and by combining the diffusion term
with the phono drag term, the overall features of the TEP
in the acceptor compounds are qualitatively explained.
Detailed calculations are carried out by solving the cou-
pled Boltzmann equations for carriers and phonons.

II. ELECTRON-PHONON INTERACTION

A. Diffusion contribution to TEP

e(mkT) d
3 I, , dE; dE;

7TI~ l dEl
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The band structure of the stage-2 acceptor compound is
shown in Fig. 3, and the two hole bands 1 and 2 (v& and v2

are abbreviated by 1 and 2) are given by"

Ei(k}= z [ri —(ri+9ri'P'k')'"]
(7)

E2(k}= z [.
—}'i—(xi+91ob'k')'"1

where k =k„+k„and b denote the nearest C-C distance
(1.42 A). Since 3yobkF »yi, "' Eq. (7) leads to

u;=-(W/e)2, dk;/dE;=1/'a, W=——,}y. (g)

Accordingly, Eq. (6}becomes

g [(d/dE; )(E~r; }]g
m koT

l l

Sd-—
Q (E;v;)E

= —e $$ u~r;(E;(k) E—F }Bfo/BE;,

o = —e'g gu'r;Bfo/BE;,

where v;„denotes the velocity component along the x axis
of the ith band and ~; is the relaxation time. g~ and o
may be rewritten in the form,

The TEP is composed of the two contributions: The
diffusion term Sd and the phonon drag term S&,
S=S~ + S&. We will first evaluate S~. To be more defin-
ite, let us consider the stage-2 acceptor compound, which
can be treated on the basis of the band model of Blinowksi
et aI"

In the presence of an electric field F and a temperature

gradient V T, the current density j and heat-current den-

sity w are expressed as follows:

j =oF PV T, w =IF. —gV T . —

Between the transport coefficients o, p, I, and g there ex-
ists Qnsager*s relations,

o J(H)=oJ., ( H), —

TP;, (H) =Xp( —H),

g;J (H) =gj, ( H) . — (2c)

In the absence of a magnetic field H, the TEP is given by

(3)

Theoretically, it is easier to calculate X~ than p~, ' so
that in the following we may set V T=0. g and o„„are
given by

Assuming r;(E;}~Ef,we get

Sd-=(n /3e)(koT/EF)(1+P),

FIG. 3. Band structure of the stage-2 acceptor compounds
(Ref. 11).
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8. Scattering due to the in-plane vibration

Electron-phonon interaction is assumed to be in the fol-
lowing form:

H, ph= g Vq(bqe'q bqe'—q")

Vq = iD(h—/2dQcoq)I~ q

{12}

(0 is thc vohllllc of crystal alld d Is tllc dcIlsity), whcIcth'c
in-plane vibration interacts most strongly with carriers
and the dispersion relation is approximately given by

2= 2@=~st's 0 =Cr+gy (13)

where p depends on the scattering mechanism. If E~——0.7
eV is inserted into Eq. (10), we obtain

Sg~3.50(1+P)X 10 T,
measured in pV/K, which is in good agreement with the
observed value of 3.0X10 IT{@V/K) for the stage-2
Shel&-intercalated graphite. Equation (11) yields too
small a value of S~ to explain the observed TEP at high
temperatures. However, it should not be neglected.

(U, =2.1 X 10 cm/sec}. We disregard the potential exerted
on the carriers in the graphite layers by the ionized inter-
calated layers. Recently, Giergiel et a/. revealed that low-
frequency phonon modes with a large density of states ex-
ist in stage-2 graphite rubidium. ' These modes are as-
cribed to the vibrations of the intercalated layers. These
modes might be related to the anomalous behavior of the
TEP in a stage-5 graphite-potassium compound. (See Fig.
4, lower panel. } In this paper we do not go deeply into the
calculation for the TEP in donor compounds. Equations
(12) and (13) are essentially equivalent to the case of gra-
phite. '4

The coupling constant D has three components associat-
ed with the three transitions 1~1',2~2', and 1~2. Here
we assume that

In general, D&&+D22, however, if 2E+ is larger than y~,
D» is approximately equal to D22. As is shown in the
Appendix, the intraband transition term D is much larger
than the interband contribution D'. Therefore, in the fol-
lowing, D' is neglected. Froin Eq. (12) the relaxation rate
v& ~

is represented as follows:

fo{E&(k)+iricoq } pq„g qNq 5(Ei (k +q) EI (k) fi—coq )—
Vx fo(EI (k) —Iricoq )

5(E, (k q) Ei (—k)+—lcuq) (15)

For simplicity, we assume that

fo{EI (k)+coq ) )Ss„koT

fo{EI(k) )
' q'

ficoq

5(Ei (@+el)—Ei (k) Tirici)q )=-5(E)(@+el)—E i(k) ) .

Equation (16) is a high-temperature approximation. In
the temperature region of interest (T-300 K), the above
approximation is not valid since 2RU, kF & ko T. From Eqs.
(15) and {16},we get

ko

2IrI, dhv, '

0

X I dqdgqq[5(EI(k+q) —EI(k))

+5(Ei(k —q) —E,(k))],
44@

where I, denotes the period of the crystal along the c axis.
By using Eq. (7), we obtain

D'koT{ IEI I+ I rI)
dffUgA I~

Similarly, I/r2I( E) becomes

I I

0 IOO 200 X)0
Temperature ( K}

FIG. 4. Temperature variation of the c-axis TEP S, of stage-
2 FeC13-intercalated graphite and stage-5 potassium-intercalated
graphite compounds. For comparison, the in-plane TEP S, are
also represented (Ref. 5).



KO SUGIHARA

D'kpT( IEz I
—z)'»

&22( E) de,2A'I,

To get an order-of-magnitude estimate of the carrier-
relaxation time, we insert the following set of parameters
into Eqs. (18) and (19):

measured in eV (Ref. 14),

where yo is measured in eV, U, is measured in cm/sec (Ref.
14), and I, is measured in A, ' then at 300 K, ~» and ~22

become

v» ——2.3/10 ', v22 ——3.6g10

measured in sec. These values for the carrier-relaxation
times give rise to the mobility values

Pl ——3000, P2 ——4780

measured in cm /Vsec. Apart from numerical factors,
Eq. (22) gives the correct order of the observed mobilities. '

V=16 eV is the value in pristine graphite. ' As already
mentioned, Eqs. (18) and (19) are derived by using the
high-temperature approximation 2', kz/ko T g 1, which
is not valid for T g300 K. Therefore it is necessary to
calculate the conductivity on the basis of a variational
principle and determine the magnitude of the coupling
constant D in comparison with the observed data.

III. PHONON DRAG CONTRIBUTION
TQ THE TEP

The distribution function for carriers and phonons is
governed by the following Boltzmann equation:

T

Bf;
e(F v;)

BE-

carrier

"df;
(e)0), i=1,2

, coll

Xq —Xqo =0,

(24)

where ~, indicates the carrier-relaxation time including all
scattering processes except the scattering due to the in-

plane phonons. Let us assume f, and Nq have the follow-

ing forms:

B;0 BXqof f p [Vi(E)hk] Nq Nqp [U(coq)q]
BE Bcoq

where (dNqldt)„, is written . as follows'

where for convenience the hole bands 1 and 2 are inverted,

f; is the distribution function for the ith band,
(c)Nq/c)t)„„denotes the change of the phonon distribu-
tion function due to collision with carriers, and t,
represents the phonon-relaxation time resulting from all
scattering processes except the phonon-carrier scattering.
(c)f;/c)t)„u is coinposed of the two terms

df df f fip—
coll Bt phonon

BXq
(Nq Nqp)t, —'+—(q /Q qc)o2X2pN qp

carrier

i k, k'

X5(E(k') E(k) fico )5—k k fk—(1 fk ) (p=l/k —T)

2
1X kk g ( i( ') —i(k) —~q)~k'k+qfkp(1 —

, fk'p)= p-
c q qp+ k k, k' i tii

Equation (27) is calculated as follows:

a;;AqkFi
a( g

mI, A

where kR is the Fermi momentum of the ith band. (BN&/Bt)„~er is rewritten as

, carrier

V.
(N, N,.)t —+PN—„(N„+1)g

t;;(q)
'

where we employ the approximation of V;( E)= Vi( EF):Vi. —

In the case of a;J.&0 for i+j, Eq. (29) should be replaced by

(Nq NqP)t, +PNqP—(NqP+—1)g

where a; =mD;;/d=mD /d, and the relaxation time t, due to the collision with carriers takes the form

(28)

(30)
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where

tgj

q

a,JRq(kF; kF/)'~

mI, A'

higher-stage compounds, because Eqs. (33) and (36) are
general expressions which are not limited to the two-
carrier system.

Solving the simultaneous equations on Vi and V2, we
obtain (N~ P'2 are the carrier concentrations)

o~=e gN;it;

Inserting Eqs. (25) and (30) into (23), we get

U(ruq)= gR;;(q)V;, R;;(q)= &1,t(q)
t;;(q}

1 1———+-
t t~ tg

Similarly, Eq. (24) is written as

(33)

V'= [V i[i —1(2 2)]+I zl (1»}]«
p2 [02[1—~(1 I)]+Vi~(»1}]/~
6= [1—I(1,1)][1—I(2,2)]—I'(1,2}l (2, 1) .

Now we are ready to calculate the phonon drag TEP. The
heat-current density associated with the phonon system is
given by

Bf;

coll

—(f —f 0) df
+

Tg g

1 1 1 1 1+
'Tg Vgg q gp ~gp gg

(34)

~,p is the relaxation time of ith band carriers associated
with in-plane phonon scattering. Since we disregard inter-

band transitions, r~ is nearly equal to r;; and (Bf;/Bt)d„s
is represented by

dq q'[U(coq )k]

= gfuuqV (q /q)(Nq Nqo)

Nq Nq0 [U(coq )q]( BNqo/Btuq )

(39)

Referring to Eq. (33), m„becomes

P(eu, ) f dqq Nqo(Nqo+1) gR (q)V . -(40)
4mI,

Inserting Eq. (38) into (40), we obtain

P(flu, )2

dq q Nq0(Nq o+ I ) g p; R;; .
4mI,

Therefore the phonon drag TEP takes the form

has p(gu )2
S = f dqq N 0(N o+1)

In deriving Eq. (35), we assume that the carrier system
a three-dimensional band represented by E=fi k f2m.

From Eqs. (35), (33},and (23) the coupled equations for
V; are obtained,

V; [1—I (i, i)]—g I'(i,j ) VJ p;F, —— (36)
g+J

g eN~p,'X gp;'R;; (42)

In expression (42), the temperature dependence of p'; in
the denominator and numerator cancel each other, Ac-
cordingly, the behavior of Sp is determined by the T and q
dependence of 8;;(q)=t(q)ft;;(q). An explicit expression
for t;;(q) has already been given by Eq. (28); however, the
information on t (q) is needed to evaluate Eq. (42).

where

p. 2k~,
I (i J)= 4 f dqq R&&(q), r;—= &1.

4k~; 'Tgp

IV. TEMPERATURE DEPENDENCE
OF THE PHONON DRAG TEP

The total phonon relaxation rate 1ft is represented by

1 1 1 1 1—=—+—+—+-
tb

(43)

where (i) 1/tb is due to boundary scattering,
1/tb =u, /I. =b, where I. is the sample dimension; (ii) 1/t,
is due to the carrier-phonon scattering process given by
Eq. (28), namely I/t, =aq; (iii) I/tz is due to Rayleigh
scattering associated with point defects. For two-
dimensional phonons, I/tt(q) =fq'; (iv) I/t& is due to the
phonon-phonon scattering process, which for two-
dimensional phonons has the functional form
1ftp =BqT . In the following, I (i,j) is neglected.

According to (i)—(iv), the temperature range is divided
into the following regions.

I (i,j) is called the "mutual drag coefficient" which was
first introduced by Gurevich and Korenblit' in their
study of thermoelectric and thermomagnetic effects. p;
denotes the mobility of the ith carrier in the case of
Xq Xq 0. Since r; and Rjj are both smaller than unity,
then we have I (i,j) &1. I (i,j) is usual neglected in treat-
ing thermoelectric and thermomagnetic effects,
though sometimes it plays an important role. The mobili-

ty p~ of highly oriented pryolytic graphite defined by
lim(H~O)C(hp/poof )'~ is proportional to T ' be-
tween 40 and 80K, and to T ' above 80 K. The T
dependence was observed by Soule' and it is in good
agreement with our theory. ' The change from a T
dependence to a T ' dependence is caused by the mutu-
al drag effect. ' A similar temperature dependence of p
was also observed by Kreps and %'oollam. '

%e will not enter into the detailed consideration on
I'(ij) Equation. s (33) and (36) are the basic equations
describing the thermoelectric effect in the presence of a
deviation of the phonon distribution from equilibri-
um. ' Now we can easily extend these equations to the



KO SUGIHARA

(I) Very lou) temperatures: 2Pfiu, kr »1. In this region,
the boundary scattering is the predominant process. Then
we have 8 =t—hit, ~ q. From Eq. (42), we get Sz oc T and

this temperature variation was confirmed in SbC1&-

intercalated graphite compounds up to 20 K. An esti-

mate for 1/t, can be obtained from Eq. {28). Since the

carrier densities in GIC are 1 or 2 orders of magnitude

larger than that of pristine graphite, the screening effect
on the electron-phonon interaction due to carriers is more

important in GIC. Therefore it is expected that
D(GIC)&D(graphite}. Tentatively, let us assume that
D =10 eV.

Substituting the values yo ——3 eV, kf ——2&107 cm
d =2, and q= 10 cm '

( i', q/ko ——16 K) into Eq. (28), we

get 1/t;; =2.95)&10 sec '. If we take a value L=10
cm, 1/tb becomes U, /L=2. 1)& 10' sec '. Then the rela-

tion of tb gg t, is satisfied at very low temperatures.

(2) I.o)v temperatures: 2I)))ivk r»1. In this case the
phonon-relaxation rate is approximately given by

{44)

Therefore 8 ~qp where 0&@&1 and then Sp~T +p.

However, it should be noted that in this case the mutual

drag coefficients I'(i,j) cannot be neglected (since they are
not small compared with unity) and the situation will be-

come complicated.
(3) Intermediate temperatures: exp(2pilv, kh.)» i. In

this region 1/t is represented by

1 1 1 1—=—+—+-
tr t~ tp

(45)

and we assume that the inequality 1/tI gg1/t„1/tp is sa-
tisfied. Dreyfus and Maynard' analyzed the thermal con-
ductivity measurement in graphite and obtained

=fq, f=8.—63)& 10
1

tI

measured in sec ' cm,

2.41&10, i=j=h
5.16&10, i=j=e

measured in sec '. Substituting q=2)(10 cm ' and
T=200 K into Eq. (46), we get

—=Sy, 10
1

tl

—=4.24' 10,1 8

tp

measured in sec '. These values are much smaller than

Eq. (48}. Therefore it is very necessary to consider the
phonon-carrier scattering process in analyzing the thermal
conductivity data in pristine graphite. On the other hand,
Kdly obtained

—=6.18y, 10', (50)

measured in sec ' at T=200 K. This value is very much

larger than the one obtained by Dreyfus and Maynard. '

In the recent measurements on the thermal conduction in

FeC13- and K-intercalated graphite, Issi et aI. '
employed

the same parameters for 1/tr and 1/tp as those of gra-

phite. "
In the case of GIC, there are many reasons why the

Rayleigh scattering is important. By introducing inter-

calant layers into pristine graphite, it is expected that

many point defects are formed. Owing to the functional

dependence of 1/tI(q) ~q, the Rayleigh scattering be-

comes the predominant process at high temperatures in

GIC with a large cross-sectional diameter of the Fermi
surface (kz - 10 cm ').

Now let us return to the estimation of the TEP. From
Eq. (42}, the T dependence of the phonon drag TEP is

given by

Sp~T 2 f dqq Nq (Nq +1)R

acT ~ f dqqNq (Nq +1)

where q,„=2k~ and the lower limit qo is estimated by
the condition

—=BqT', 8=2.65X10-',I

tp

1 1 1———+-
t~

(52)

Namely, we havemeasured in cm/sec K .
However, they did not take into consideration the relax-

ation process due to the electron-phonon interaction. By
introducing a simple two-ellipsoid model, the phonon-
relaxation rate related to the carrier scattering is obtained
as follows

qo
—(a /f +BT /f) '—

13%v,qo=xo=(Av, /ko)(a/fT +BT/f)'/' ~ 1,
D&@ m',"m',"

t j md g4
(47) and since

If the condition of 1/tI Q) 1/t~, l/tp for i6vgq ko T is sa-
tisfied, we get

where m'j' denotes the effective mass in the basal plane of
the ith band (electron or hole) and

(m(e)/m)e) ))/2 (
)h)/ (h) )i/2

Inserting D= 16 CV, Nl g =0.057EBo, pal y =0.039Nlo, arid
q=2&10 cm ' into Eq. (47), we get

Eq. (51) is approximated by

g cc f dxx = —lnxo+ fXo (ex 1 )2 +X

= —lnxo+0. 46 .



28 THERMOELECTRIC POWER OF GRAPHITE INTERCALATION. . . 2163

In the case of alfT &BT/f, Sz slowly increases with

T, while in the region of alfT &BT/f, Sz slightly de
creases with T. By adding to SP the diffusion term S~,
which is a few pVK ' at T&100 K, the resultant
S=Sd + SP exhibits a weak temperature dependence. This
behavior is in qualitative agreement with the observed re-

sults shown in Figs. 1 and 2.

V. DISCUSSION

(C~R ) = f dx x R(x),
2mI, (e"—1)

(59)

N= 2X2 2~y k2= 1 yk2
(2m ) c, ' mIc

Then we get

(60)

where Av, qT ——kpT and x =2v, kF/kpT. The carrier den-
sity N is given by

2
qT x e

RpJ4, J4 —— dx „=-26.
kF 0 (e"—1)

kp
POn the basis of the above calculations, we can under-

stand that the reason why the TEP of GIC and graphite
behave differently is due to differences in their Fermi sur-
faces. The diameter of the Fermi-surface cross section in

graphite is at most —10 cm ', while the corresponding
value in GIC is -10 cm '. ' Thus in GIC the Rayleigh
scattering becomes very important in the phonon-
relaxation processes, while in graphite this process plays a
minor role. The many point defects introduced in the in-
tercalation process further enhance the importance of the
Rayleigh scattering.

Figures 1 and 2 show that the observed TEP values are
weakly dependent on stage except for stage-10 SbC15-
intercalated graphite, which is a weakly degenerate sys-
tem. This feature can be qualitatively explained by the
basis of Eq. (42), For simplicity, we assume p'; =pa, then

Eq. (42) becomes

p(fiv, )

c

(61)
Here we consider the low-temperature region where the
phonon relaxation is mainly controlled by the boundary
scattering.

Then

tb
R (q) =—=atbqTx =

tc

qr
x Rox

qp
(62)

where aqo=tb Wit. h the use of Eq. (10), S~/Sd is given
by

SP J4 qT TF
2 RO ~ kpTF=EF ~

Sd 2a kF T
(63)

Inserting kF—-2X10 cm ', TF ——8120 K (EF——0.7 eV),

(55)
T=30 K, and Eq. (28) with D=10 eV into Eq. (63), we

where SP/Sd =0.88

t(q) t(q)
t;;(q) t, (q)

then

SP-Sg .

(64)

and N=g N;

The repeat distance I, is related to co (interlayer gra-
phite distance) by'

I, =d, +(n —1)cp (56)

SP ——

where CP denotes the heat capacity of the phonon system
participating in the phonon drag effect. In the present
problem (CzR ) takes the form

2~(CzR)= — f dqq 2 Nq (Nq +1)R(q) .
I, (2 ) k„T

Rewriting Eq. (58), we get

(n is the stage index), where d, is in most cases essentially
independent of stage for n )2.' Since the carrier density
is roughly inversely proportional to stage-index n, I, is
nearly constant. ti and t, are expected to increase with n,
so that R = t (q) It, (q) is considered to be insensitive to
stage in the intermediate-temperature range. Therefore SP
is roughly stage independent.

In the following we will derive the ratio SP/Sd from
simple considerations. As is well known, the phonon drag
TEP can be represented by the following simple formula:

(C,R)
(57)3'

This is in qualitative agreement with the observed value
in Fig. 2 for stage-2 SbC15-intercalated graphite. At high
temperatures we can also show that SP )Sd.

In Fig. 4 the temperature variation of the TEP in
stage-5 potassium GIC is shown. This behavior is dif-
ferent from those in the acceptor compounds. It may be
related to the phonon drag effect associated with the low-

frequency phonon modes with a large density of states in
the donor compounds. ' These modes are ascribed to the
vibrations of the intercalated layers. '

Elzinga et al. measured the magnetothermoelectric
power of SbC15-intercalated graphite samples up to 6 T
and ascertained that the effect of a magnetic field is very
weak. Investigation of the magnetothermoelectric power
and Nernst-Ettingshausen effect over a wide range of tem-
peratures and field strengths will provide useful informa-
tion, then it is highly desirable to study the thermomag-
netic effects.
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APPENDIX

To get an expression of the electron-phonon interaction,
the rigid-ion approximation is employed (see Ref. 14, Sug-
ihara and Sato).
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The perturbing potential is

H'= g g [V( r —Rja —g ja) —V(r —Rj }]

Xgkia VVjar
j a

where V(r —Rj ) is the potential energy of an electron due

to the ion (jtt), gj denotes the displacement of the lattice

point Rj~ from the equilibrium position, j represents the
jth unit cell, and a is the nonequivalent carbon atoms in a
unit cell.

Introducing normal coordinates for gz, we have to
evaluate integrals of the type

f qt,
' (k') gee " "eej, V V, qt, (k)dr,

{A2)

where t and t ' are suffixes specifying the electron states
and e&~ is the polarization vector of a phonon belonging to
the A,th mode.

In the case of the stage-2 acceptor compounds, we diag-
onalize the two-layer Hamiltonian in the subspace spanned
b 11

Uk{r}=N 'j ge "f,(r R„), i =A—, B,A', B',

where the summation is carried out over one type of the

X( E) Ugk+yo'g*Ugk+Ei Ug k+yogUg. k ),
=[(2E )' (y +9y b k )' ]

X ( E2 Ugk + Ypg Ujtk E2 U—g k l p—gUtt k ),
where g = , bk e—x—p( i e),—t an9= ks/ k„.

Similarly, the electron wave functions are easily written
down. " If the potential in one unit cell is mainly due to
the ion in the cell, Eq. (A2) becomes

g f eej„VV(.r —R )exp[+iq. (r —R )]

X u,
*(k ')u, ( k )drp, (A5}

where a=A, B,A', B', 4, =X ' exp(ik r )u, (k), t=1 or
2, and d~o is the integral over a unit cell. In deriving Eq.
(A5), conservation of the wave vectors k —k'+q=O is

employed. Assuming tb, (r —R) and V{r —R} are well lo-

calized around the lattice point R, we can ust. . the approxi-
mation

equivalent carbon atom sites. Namely, the summation
over n is equivalent to the summation over j in Eq. (Al)
for a fixed a. A and B are located in the first layer, while
A' and 8' lie in the second layer. The nearest A-A' dis-
tance is equaI to Co/2=3. 354 A. In the tight-binding
approximation, l{, represents the 2P, orbital. Wave func-
tions corresponding to the two hole bands ui and U2 are"

0'i ——[(2Et)' (y+9y b k )' ]

f U k (r)VV(r —R )Uk(r)drp &( f U'k'(r)VV(r — R) U(kr)d Tp'
for a&i' or i or i'&i Theref. ore, by inspection of Eq. (A4), we get the relation

(A6)

gee ' f %~VV qt, dr=-gee ' f qt2VV qt2dr&&gee ' f qt;VV qt2dr. (A7)
J CE j a J C

The condition approximately equal to Eq. (A7) is realized under the conditions of EF» —,yl. Equation (A7) corresponds
to Di i -=Dp2 »Di2 ——D2[ in Eq. (14).
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