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The local-density approximation (LDA) for the exchange-correlation potential underestimates the
fundamental energy gaps of insulators by about 40%. When a simplified self-interaction correction
(SSIC) is applied to the band structures of Ne and NaCl, vast improvements over LDA are found in

the gaps, with little change in the valence-band widths or conduction-band structures. Because it is

applied directly to the Bloch orbital representation, SSIC is very easy to incorporate into LDA com-

puter codes. Results are also reported using the Langreth-Mehl (LM) generalized gradient correction
to LDA. The LM potential, which we regard as a close approximation to the exact Kohn-Sham po-
tential, yields band structures very close to those of LDA.

I. INTRODUCTION

Self-consistent-field calculations within the local-
density approximation' (LDA) for the exchange-
correlation potential yield a set of orbital energies e . Un-
fortunately, —e cannot usually be identified with the en-

ergy needed to remove an electron from orbital g ( r ) (as
measured by photoemission, for example. ) One of the
reasons this is so is that the LDA one-electron effective
potential contains a spurious interaction of each electron
with itself. This spurious piece has been subtracted out
and the resulting potential applied with success to self-
consistent calculations for atoms. In particular, the physi-
cal removal energies of the electrons (including even
intra-atomic relaxation effects) ar'e approximated by the
self-interaction —corrected orbital energy eigenvalues.

Direct application of the self-interaction correction
(SIC) to extended systems like crystals poses severe prob-
lems, The energy-minimizing solutions of the SIC one-
electron equations are usually /ocalized orbitals, which of
course maximize that fraction of the exchange energy
which is self-exchange (treated exactly in SIC). No band
structure results.

Nevertheless, there have been several successful at-
tempts to implement SIC in band-structure calculations.
Zunger constructed an SIC periodic potential for the
valence band of solid argon by using a localized valence
orbital density renormalized to the unit cell. Heaton, Har-
rison, and Lin used optimized %annier-type orbitals in
calculations for argon and lithium chloride. By either
method, the -40% efror of the LDA band gap is dramat-
ically reduced, as expected from atomic estimates and
from the pioneering LiF study of Zunger and Freeman.

%e have recently proposed a method of our own for
the implementation of an approximate self-interaction
correction to the LDA orbital energies. Unlike the
methods described above, our simplified self-interaction
correction (SSIC) does not require the construction of lo-

and u is a unit vector in the direction of the gradient of
the total electron density

n(r)= I dip(r, e) . 0)

Fundamentally, an electronic exchange potential is an in-

TABLE I. Xenon atom. Orbital energies —e compared to
measured electron removal energies (hartrees). Energies aver-

aged over magnetic subshells. LDA: local-density approxima-
tion; SIC: original self-interaction correction; SSIC: simplified
self-interaction correction; Expt. : experiment.

1$

2$

2p
3$

3p
3d
4$

4p
4d
5$

5p

LDA

1254.8
195.5
175.7
40.0
33.6
24.0

7,2
5.2
2.19
0.73
0.31

SIC

1271.6
198.4
179.5
41.0
34.7
25.3
7.7
5.6
2.57
0.90
0.45

SSIC

1267.3
198.4
178.4
41.0
34.6
24.9
7.6
5.6
2.51
0.89
0.43

Expt. '

1270.2
200.4
179.7
42.2
35.2
25.0
8.0
5.8
2.51
0.86
0.46

'Reference 7.

calized orbitals. Consequently, it is very easy to incorpo-
rate into existing LDA codes.

In SSIC, we simulate the self-interaction correction to
the LDA potential by addition of a local, energy-
dependent term

U (r e) 0 104 VP('')
p( r, e)

(in hartrees). Here p( r, e) is the local density of states,

p( r, e)=2 + ~ P ( r )
~

'5(e —e ),
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verse length, and the length choosen in Eq. (1) is the local-
ization length for electrons of orbital energy e. [Of
course, more complicated forms may be constructed for
the right-hand side of Eq. (1), to make more limits right. ]

In an atom, the correction (1) is roughly constant over
the radi. al extent of the orbitals of energy e. As a result,
thc corrcctlon may bc applied as 8 first-order pcrturbatlon
upon the LDA orbital energies. The resulting SSIC orbi-
tal energies for both core and valence electrons agree
closely with the original SIC orbital energies and with
measured removal energies, as we showed in Ref. 6.
Table I shows typical results for the xenon atom from that
work (but not published before).

Equation (1) is size consistent, and in a crystal it makes
a contribution to the periodic one-electron potential. The
localization length now roughly describes the pileup
around the nuclei of the Bloch orbital densities at energy
E.

For crysta111nc coI'c or Rto1Tl1c electrons, p(r, 6) 1A Eq.
(1) may be replaced by the spherical average of the orbital
density at energy e. But for crystalline valence electrons,
the construction of p( r, e) is tedious, and we choose to re-
place p(r, e) in Eq. (1) by the valence electron density,

p„,i(r)= I dip(r, e), (4)

where eo is the bottom of the valence band. (Note that 8
similar equal-weight average over the valence band occurs
in the construction of a %annier orbital from Bloch orbi-
tals. } For the unoccupied or conduction bands, we take
AU„, (r, E) =0, for reasons discussed in previous work.

Finally, we observe that while Eq. (1) is approximately
constant ovcl space fol Rn atomic oIb1tal, lt IQust vanish
on the surface of the unit cell in a crystal. [Figure 1

shows Eq. (1) evaluated for the 2p valence electrons in
atomic versus crystalline neon. ] For this reason, we report
both perturbative and self-consistent SSIC calculations for
crystals. The latter involve the self-consistent solution of

——,'V +U(r)+ I d r'

[where U(r) is the electron-nuclear potential] along with
Eqs. (1)—(4). We have found that it makes no difference
to the valence and conduction bands whether the core or-
bitals are constructed self-consistently in LDA or SSIC, at
least for systems like Ne where the core orbitals are ener-
getically deep. [We actually use semirelativistic generali-
zations of Eqs. (2) and (5), as described in the next sec-
tion. ]

II. NUMERICAL PROCEDURES

%C use a linear —augmented-plane-wave (LAP%) code
kindly provided by Dale Koelling. All rdativistic effects
other than spin-orbit sphttlng are 1ncludcd, as 1s correla-
tion in the parametrization of von Barth and Hedin. The
self-consistent potential is sphericalized inside each
muffin-tin sphere, but has an unconstrained shape in the
interstitial region (the warped muffin-tin approxima-
tion").

The chosen lattice constants are (in bohrs) 8.435 (Ne)
and 10.658 (NaCl). In Ne, the muffin-tin spheres just
touch. In NaCI, their radii, 2.207 (Na) and 3.068 (Cl),
have been chosen after examination of measured electron
density maps. " (In fact, NaCl has been chosen as our al-
kali halide example because the Na atom is much more
spherical thRA thc L1 atom ln thc lithium halldcs. ) Thc
numbers of plane-wave basis functions at I are 59 (Ne)
and 89 (NaCl), corresponding to KR =8 and 7, respective-
ly, where E is the length of the greatest recipxocal-lattice
vector and 8 is the average muffin-tin radius. The LAP%
"energy parameters" are optimized for valence and con-
duct1on lcvcls scparRtcly.

III. RESULTS

Here we report the results of our calculations for the
fUndRIDcntal cncfgy gRp (conduction-band bottoITl II11AUs

valence-band top} and valence-band width in Ne (Table II)
and NaCl (Table III), plus certain conduction levels in
NaCI (Table IV).

+ UL, "(r}+Du„,(r,e~) P (r)=& Q,(r) (5) For neon, Rossler' reports a band gap of 21.4 eV. Pho-
toelectron energy distributions measured by Schwcntner
el; al. suggest that the band width is about 1.3 eV but
might be as small as 1.0 eV.

For sodium chloride, opical reflectance measurements
by Roessler and Walker' reveal a band gap of 9.0 eV.
Himpsel and Steinmann, ' using angle-resolved photo-
emission have found the bandwidth to be approximately
2.4 eV. These authors' have also measured the
conduction-band structure at I and X.

8. Local-density approximation

0 2 3
DISTANCE FROM NUCLEUS r (a.u. )

FIG. 1. Simplified self-interaction correction [Eq. (1)j to the
one-electron potential seen by the 2p valence electrons in (a)
atomic and (b) crysta11ine neon (rydbergs). The muffin-tin radius
is 2.98 bohr. The horizontal arrows display the radial extent of
the 2p orbital, {r}a({r')—{r)')'r', in the atom

Our LDA results for the band gap and bandwidth agree
reasonably well with earlier LDA exchange-only (Xa= —,)

calculations. ' ' The previous LDA results we quote for
Ne have been scaled to our lattice constant by Trickey,
from the calculations in Ref. 16. The AP%' calculation of
Melvin and Smith' for NaCl is not self-consistent.

In comparison with experiment, our LDA results exhib-
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TABLE II. Neon crystal. Band gap and valence-band width (eV). LM: Langreth-Mehl gradient approximation; HF: Hartree-

Fock; HFC: Hartree-Fock plus correlation corrections. Pert. denotes perturbative and SC denotes self-consistent calculations.

Gap I j
—E')g

%idth I „—L,
'Reference 16.
Reference 23.

'Reference 12.
Reference 13.

Expt.

21.4'
1-1 3

Previous'

11.2
0.7

LDA
Present

1 1.5
0.70

Pert.

19.6
0.58

SSIC

20.2
0.59

LM

12.7
0.62

HFb

25.1

0.4

HFC'

22.2
04

it the expected ' trends: The band gap is about 40% too
small, and the valence band is somewhat too narrow.
Furthermore, the conduction bands, measured from the
conduction-band bottom, are much too compressed.

parison with the LDA conduction band. This stretching
goes in the right direction, but not nearly far enough, to
agree with experiment.

C. Simplified self-interaction correction

As a first test of SSIC for neon, we compare self-
consistent SSIC with Zunger's cellular SIC method.
Since there are less than 0.04 electrons in the interstitial
region, the SSIC and SIC contributions from the intersti-
tial region are neglected. The resulting SSIC gap, 19.83
eV, is extremely close to the cellular SIC value, 19.73 eV.
The corresponding bandwidths, 0.57 and 0.54 eV, are also
close.

The SSIC results reported in Tables II—IV include the
interstitial correction. Note that while there is not much
difference between perturbative (pert. ) and self-consistent
(SC) SSIC, the self-consistent results are always slightly
better in comparison with experiment.

Compared to the LDA values, the SSIC band gaps are
much wider (and stand in very good agreement with ex-
periment), while the SSIC valence bands are slightly nar-
rower. Heaton, Harrison, and Lin have found very simi-
lar corrections to LDA in Ar and LiCl, using their
Wannier-orbital SIC method.

The narrowing of the valence band which occurs under
SSIC is not hard to understand: The I » state at the top
of the valence band is more localized, and hence sees
larger gradients, than the I.z state at the bottom of the
band.

Finally, we consider the NaCl conduction levels. Recall
that the conduction states see no direct SSIC correction to
the LDA potential. Nevertheless, they see an indirect ef-
fect due to changes in the valence electron density. As a
result, the SSIC conduction band, measured from the
conduction-band bottom, is slightly stretched out in com-

D. Langreth-Mehl generalized gradient correction

The Langreth-Mehl' ' (LM) correction to the LDA
potential reduces to the bare gradient correction for slowly

varying densities n(r), but purges certain spurious contri-
butions ' which arise for realistic density variations and
which have in the past given gradient expansions a bad
reputation. There is now ample evidence from atomic
studies that the LM correction significantly reduces the
small errors of the LDA electron density and total energy.

Because of numerical problems with higher-order gra-
dients of the very low interstitial density, we have included
the Ne calculation. The LM interstitial correction has,
however, been included for NaCl. Note that, like SSIC,
however been included for NaC1. Note that, like SSIC,
LM slightly narrows the valence band (because LM pro-
vides a higher potential barrier around each atom). There
is also an increase over LDA in the band gap, but the in-
crease due to LM correction is only slight. %'e suspect
that the serious underestimation of the band gap which
occurs in LDA and LM is a feature of the unknown exact
Kohn-Sham' potential (that local, energy-independent po-
tential which regenerates the exact density when applied to
a system of noninteracting electrons).

The LM inhomogeneity correction does increase the
neon band gap slightly, by 1.2 eV above the LDA value.
It may be noted that when this correction is added to the
SSIC band gap of 20.2 eV, the result is 21.4 eV, in agree-
ment with the measured value. For a study of the effects
of LM correction on the band structure and Fermi surface
of a metal, see Ref. 22.

TABLE III. Sodium chloride crystal. Band gap and valence-band width (eV).

Gap I )
—I )5

%'idth I )5 —Xq
I is —L2

'Reference 17.
Reference 24.

'Reference 14.
"Reference 15.

Expt.

9.0'
2.4%0.24

Previous'

5.1

1.6

LDA
Present

5.6
1.77
2.03

Pert.

9.3
1.78
1.88

SSIC

9.2
1.80
1.93

LM

6.0
1.75
1.98

15.9
3.4
2.7

HFC

10.0
3.0
2.4
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TABLE IV. Sodium chloride crystal. Conduction levels,

measured from the conduction-band bottom (eV).

Expt. ' LDA LM HPb HFC'

0
8.2+0.2
2.4+0.5

3.0+0.S
8.0+0.5

'Reference 15.
'Reference 25.
Reference 24.

0
5.1

1.8
1.9
5.6

0
S.3
2.0
2.2
5,7

0
4.9
1.7
1.9
5.5

0
8.0
3.0
3.3
7,7

0
7.3
2.6
3.1
8.7

E. Hartree-Pock and extensions

IV. CONCI. USIONS

Bcfoic stating our coIlclusions, wc would like to rcvicw
some exact theorems on electron removal energies from
the ground state of any system with fixed nuclei. The
LDA effective one-electron potential Ugr ( r ) is, of
course, only an approximation, valid for slowly varying
densities n(r), to the exact Kohn-Sham' potential U,rr(r).
The latter potential is a functional derivative with the fol-
lowing property: When the derivative is evaluated for in-

finitesimal density variations 5n ( r') such that

f d r 5n ( r ) & 0, the resulting potential has a greatest oc-
cupied orbital energy e,„such that —e,„ is the removal
energy of the least-bound electron. The other Kohn-
Sham orbital energies have no exact physical meaning, as

Hartree-Fock (HF) calculations have been performed
for Ne by Kunz and Mickish and for NaC1 by Kunz. 2

These authors have also included certain correlation
corrections (HFC), c.g., via thc clcctronic polaron model.
For completeness, we have also included their results in
Tables II—IV.

As is well known, the HF gaps are too large, but the
correlation corrections bring them into good agreement
with experiment. In Ne, the HF and HFC valence-band
widths are far narrower than thc experimental or even the
LDA widths, while in NaCl the HF and HFC valence
bands are somewhat too wide. In the valence band of
NaCl, the lowest state is at point X in Kunz's HP and
HFC calculations, while it is at point I. in our LDA and
SSIC calculations.

For the conduction levels in NaCl, measured from the
bottom of the the conduction band, the HF (Ref. 25) and
HFC (Ref. 24) results agree well with experiment, in con-
trast to the LDA and SSIC bands which are too
compressed. Apparently a truly nonlocal potential is
needed to get the correct conduction-state energies.

wc have shown in Ref. 6. The other electron removal en-
ergies have to be found from the complex, nonlocal, and
energy-dependent self-energy X(r, r ',e).

Real systems, built up from atoms, do not have slowly
varying electron densities. As a result, in LDA one finds
the —e,„ is not (except in metals) a good approximation
to the removal energy of the least-bound electron. This
discrepancy is strongly reduced by SIC. As a bonus, onc
finds that the resulting SIC potential (which is local but
orbital dependent) seems to be a good approximation to
the real part of the self-energy in atoms. Although SIC
has been criticized for its use of an orbital- or energy-
dependent potential, it is precisely this feature which
makes it possible for the SIC orbital energies to approxi-
mate all of the electron removal energies in an atom.

We suspect, in fact, that the unknown exact Kohn-
Sham' potential udr(r) would yield an insulator band
structure with errors similar to those of the local density
or Langreth-Mehl' ' approximations: a band gap that is
much too narrow, a valence bandwidth that is also too
narrow, and conduction bands, measured from the
conduction-band bottom, that are much too compressed.
For the valence-band width at least, the close agreement
between LDA and exact Kohn-Sham values follows from
our earlier conclusion that LDA orbital energy differ
enees between occupied orbitals agree closely with the cor-
responding exact Kohn-Sham values.

In order to do SIC band-structure calculations entirely
within the Bloch orbital representation, we have proposed
the simplified self-interaction correction (SSIC) of Eq. (1).
We have found that it faithfully mimics SIC corrections
to the energies of the atomic orbitals, and we have applied
it here to the band structures of Ne and NaCl. Our results
are in accord with those found for Ar and LiC1 by
Heaton, Harrison, and Lin using a completely different
implementation of SIC: Vast improvements over LDA
are found for thc band gaps, but not for the valence-band
widths. There is also little improvement over LDA in the
conduction-band structure, measured from the
conduction-band bottom. We suspect that a fully nonlocal
potential (in the sense that Hartree-Fock is nonlocal) is
needed to account for the valence-band width and
conduction-band structure. However, we believe that
SSIC may still serve as a useful spectroscopic potential for
atoms and insulators, and possibly for other systems as
well.
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