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Sine-Gordon 2m-kink dynamics in the presence of small perturbations
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The influence of external driving forces on the 2~-kink solution to the sine-Gordon equa-
tion is examined. The analysis is based on the approach that the solution to the problem can
be divided into a 2m.-kink part and a background or vacuum part. The behavior of the 2~
kink depends strongly on the initial state of the vacuum. Excellent agreement between the
analysis and numerical solution of representative initial-value problems is found.

I. INTRODUCTION

Nonlinear solitary waves are currently being used
in a remarkable variety of contexts in almost every
area of physics. In particular, the sine-Gordon 2~-
kink solution is ubiquitous in its application as a
model for, e.g. , dislocations in crystals, domain
walls in ferromagnets, and propagation of flux
quanta, fluxons, in Josephson transmission lines.

Recently the influence of the presence of external
driving forces on the 2~-kink solution has attracted
considerable interest. ' In contrast to prevalent re-
sults ' it was found that the 2' kink does not
behave like a Newtonian particle in a conservative
force field. In Ref. 4 it was shown that the vacuum
"motion, " i.e., the behavior of solutions at x =+ oo

affects the motion of the 2~ kink. The non-
Newtonian behavior of the 2~ kink' is observed
when the vacuum is in an excited state, while a
Newtonian behavior of the 2~ kink is observed ' if
the vacuum is in the ground state.

Our method is to divide the solution into two
parts, a homogeneous part P""(t), which is the solu-
tion at x =+ oo, and a 2sr-kink part, which contains
all the k&0 parts of the possible radiation.

The k =0 part of the radiation is contained in
P'"(t). For the momentum connected to the 2m.-

kink part Pt, an equation of motion is derived
without any approximations. For some physical ap-
plications it is sufficient to know the 2'-kink
momentum, and then the method yields exact re-
sults even for large perturbations. Our basic ap-
proximation for determining the 2m-kink motion is
to replace the momentum Pt, by the small perturba-
tion result Sy(u)u, u being the 2~-kink velocity.

The influence on a 2nkink of the in.itial state of
the vacuum, tb""(0) and P,""(0),the external driving

force, and the dissipation are investigated in detail.
The investigation includes, in addition to the pertur-
bation analysis of the 2' kink, a numerical solution
of corresponding initial-value problems. Good
agreement between the perturbation results and the
numerical results is found also for large t and also
for velocities not fulfilling the condition u «1. The
initial state of the vacuum influences the velocity
and trajectory of the 2~ kink for the t & 5, while for
larger times the influence decreases. Furthermore,
we find that for g )0.5 the behavior of the 2~ kink
depends strongly on the initial state of the vacuum.

The main difference between our treatment and
the works referred to lies merely in the initial state
of the vacuum. The method used in Refs. 1 and 2 is
based on the pure sine-Gordon soliton and therefore
is restricted to the case P""(0)=$,""(0)=0 and to
small t and small velocities. On the other hand, this
method enables one to calculate the full radiation
spectrum. ' The results of Ref. 3 agree with ours
under the tacit assumption that P","(t)=0.

The outline of the paper is as follows: In Sec. II
we obtain an equation for the time dependence of
the momentum of the 2a kink. Expressions for the
acceleration and the velocity are then calculated.
Furthermore, we examine the influence of a time-
varying force term. In Sec. III we solve the corre-
sponding initial-value problems numerically and il-
lustrate the influence of the initial state of the vacu-
um and the force term. Section IV contains a com-
parison between the numerical results and the per-
turbation theory. Finally, in Sec. V we summarize
and conclude.

II. TIME EVOLUTION OF THE 2m. KINK

The equation in question is the perturbed sine-
Gordon equation
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(2.1)

where the right-hand side represents the perturba-
tion, the first term being the constant "force," and
the second teriii the dissipation. A single 2m-kink
solution to Eq. (2.1), P(x, t), must fulfill the condi-
tion P(+ oo, t) —P( —oo, t) =2m F. urthermore, the
2m kink is localized. Therefore it is convenient to
divide P(x, t) into a pure 2~-kink part P (x, t), where
P"(+ oo, t)=0mod2m. , and a background (vacuum)
part P"'(t) only depending on time:

(2.2)

The vacuum part alone must satisfy Eq. (2.1), i.e.,
the pendulum equation,

[y(U)] a = ——,m sin[/"'(t)] —ay(U)U . (2.9)

From Eq. (2.9) the importance of the initial state
of vacuum is obvious. If the vacuum is in its
ground state P"'= —sin 'ri [the trivial solution to
Eq. (2.3)], the force term becomes 2m', yielding an
initial acceleration a;:

1a;= 4m'. (2.10)

On the other hand, if the vacuum was started
with P'"(0)=0 and g"(0)=0, Eq. (2.9) yields an
initial acceleration'

representing interaction between the 2n. kink and the
background yielding an acceleration a, given by

P«"+aP","+sing""+ ri =0 . (2.3) a; = —,~gt 2 (2.11)

P= —~ g
x= —„g x —277 g" t

=Pk —2m p', "(t), (2.4)

where Pk is the 2' kink contri-bution to the momen-
tum. Taking the time derivative of P and using the
equation of evolution for P, Eq. (2.1), we get

P = —aP +2m', (2.5)

the equation of motion for the total momentum P.
Inserting Eq. (2.4) into Eq. (2.5), we finally arrive at

dPk
aPk +2'(rl+—ap,""+p,",") (2.6)

The idea behind the splitting of P(x, t) in Eq. (2.2) is
to take out the homogeneous part that would be
there even without the presence of a 2m kink.

The easiest way to derive the equation of motion
for the 2' kink is to calculate the tota/ momentum
P, Examples

In the following we solve Eq. (2.5) in order to ob-
tain expressions for the velocity of the 2' kink in
two special cases: constant ri and harmonic time-
varying ri. For constant ri the solution of Eq. (2.5)
using Eq. (2.4) yields

Pk ——2m (1—e ')+2m/", " .a (2.12)

Expressions for P'," can easily be found for
P""(0)= —sin 'ri and P,""(0)=0, and P""(0)=0
and P,""(0)=0 by solving Eq. (2.3). In the latter
case we assume ri « 1 such that P""(t)« 1 in order
to linearize Eq. (2.3) to obtain analytic expressions.
The solution [Eq. (2.12)] can then be written

which shows that the initial state of the vacuum in
Ref. 1 forces the 2m kink to start up very slowly.
Other initial conditions of the vacuum would give
other initial accelerations [Eq. (2.9)].

= —aPk —2m sin[/""(t)], (2.7) P l (1 —at)
a (2.13a)

Pk =8@(v)U, y(U) =(1—U ) (2.8)

where U is the velocity of the 2' kink. With this as-
sumption [Eq. (2.8)] Eq. (2.6) becomes the relativis-
tic version of Newton's second law for a 2~ kink
with a friction term, a force term, and terms

which is the equation of motion for the momentum
of the 2m. kink. In the last step we have used Eq.
(2.3) on P""(t). It should be emphasized that until
now no approximation has been made and that ri
could vary with time as well.

The equation of motion for the 2m kink is then
found, using the expression for the momentum for a
soliton solution to the unperturbed sine-Gordon
equation:

or

sinh(at /2)
'7TY/

a/2

sin[1 —(a/2) ]' t

[1—(a/2) ]' e
—at/2

(2.13b)

In (2.13a) P"" is in the ground state while in (2.13b)
P"" is in the excited state P""(0)=0.

Solving Eq. (2.8) with respect to U yields

(64+P„')'" (2.14)

This equation represents an ordinary differential
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equation deterinining the trajectory of the 2~ kink
(v =dx/dt) T. his equation can be solved analytical-
ly for Pk given by Eq. (2.13a).6

Finally, we stress that the analysis also is valid for
g =g(t) . As simple examples we choose (a)

g =gp sin(cot), P""(0)=P,""(0)=0, and a=0 and (b)
71 = 'gp cos(Alt) P (0)=P","(0)=0, and a =0. For
g «1 or co~~l we get from Eq. (2.6) (assuming

~

rp &1) for case (a):

ground states. These expressions then give first-
order differential equations that can be solved exact-
ly in the latter case and approximately in the former
case. In this section we show results of numerical
solution of some representative initial-value prob-
lems.

We solve the initial-value problem equation (2.1)
with

P(x, O)=4tan '[exp(x —xp)]+(n —1) sin
&'gp W'gp

y(u)u = +
co' —1

cos(rut) —co cost (3.1)

(2.1S)

&'gp W'gp
x =xp+ /+-

co 4
sin(cot) —co sint

Cc)

which gives an approximate expression for the velo-
city u(t). For v «1, integration of (2.15) yields the
trajectory of the 2n kink:

Here the first term in P(x, O) represents a static 2~
kink initially placed at xp, while the second term for
n =1 and n =0 gives the vacuum in the excited and
ground states, respectively. The boundary condi-
tions at x =0 and x =I represent lossless termina-
tions.

(2.16)

Here xp ——x (0) is the initial location of the 2m kink.
In case (b) we get

W'g p
y(v)v =—

N —1

sin(cot) —sint
CO

(2.17)

which for u « 1 can be integrated to give the trajec-
tory of the 2m kink:

&'gp &X/p
x =xo+ +4' co —1

cos(cot) —cost
M

(2.18)

Similar results can be obtained for a&0. We note
the different behavior of the 2m kink in cases (a) and
(b). Although the 2n kink oscillates in both cases, it
travels to the right in case a.

In the next section we solve some representative
initial-value problems numerically that illustrate the
behavior of the 2n kink in various situations.

III. NUMERICAL INVESTIGATIQN
QF INFLUENCE QF FORCE

AND LQSS TERMS

In the preceding section we used a perturbation
approach to derive the time evolution of the
momentum. Application of the expression for the
momentum of the exact 2'-kink solution to the un-
perturbed sine-Cxordon equation [Eq. (2.1) with
a=g=0] then yields expressions for the velocities
when the vacuum is initially in the excited and

FIG. 1. Propagation of a 2m kink under the influence
of a force term and various values of the loss coefficient.
The parameter values are g=0.6, n =1, and a=0 (a),
a=0. 1 (b). The results are displayed in terms of P„ for
0 & x & 30 and 0 & t & 21. The vacuum is initially in an ex-
cited state (n = 1). In (a) the initially static 2~ kink is ac-
celerated towards a Heaviside step function of velocity
unity. In (b) the 2~ kink enters a motion with a stationary
velocity determined by the balance between the external
force and the loss.
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FIG. 2. Parameter values as in Fig. 1 except n =0.
Thus the vacuum is in the ground state for t =0. Com-
pared to Fig. 1 only minor differences in the time evolu-
tion of the 2m kink are observed. However, for small
values of t differences in acceleration, velocity and posi-
tion of the 2m kinks are found in accordance with the per-
turbation theory.

The numerical results are obtained by means of a
computer program based on the method of charac-
teristics and are displayed in terms of the derivative
P„(x,t) Note th. at the maximum value of (t„ for
t =0 is always equal to 2.

A. Influence of a constant-force term

In this section we present numerical solutions of
the initial-value problem (2.1) with (3.1), g being
constant. Throughout this section xo ——7.5.

In Fig. 1 we show how an initially static 2' kink
is influenced by a force ternI and various loss terms
represented by different values of the loss parameter
a. The parameter values in Eq. (3.1) are 0& t &21,
1=30, q=0. 6, n =1, and a=0 [Fig. 1(a)], a=0. 1

[Fig. 1(b)], i.e., the vacuum is initially in an excited
state. In Fig. 1(a) the 2~ kink is accelerated towards
a Heaviside step function (with a step of 2m) with a
velocity approaching unity. The 2m kink starts up
slowly, but accelerates suddenly. At the same time a

FIG. 3. Propagation of a 2m kink under the influence
of a force term above the critical value (g, -0.72461)
and various values of the loss coefficient. The parameter
values in (2.1) and (3.1) are g=0. 8, n =1, and a=0 (a),
a=0. 1 (b), a=0.3 (c). The results are displayed in terms
of the derivative P„ for 0&x &30 and 0&t &21. The
vacuum is initially in an excited state (n =1). In (a) the
initially static 2m. kink is accelerated to the right; the velo-

city approaches unity. Note that when the velocity equals
unity, the Lorentz contraction stops. In this case the
phase decreases monotonously. In (b) the same qualitative
behavior is found even in the presence of loss. In (c) the
loss coefficient has been enlarged compared to (b), and as
a consequence the phase does not decrease monotonously
and the 2m kink enters a motion with a stationary veloci-
ty. Note the change in scale between part (a) and parts (b)
and (c).
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to the left), which after reflection at x =0 starts a
train of 2m kinks. After the dissociation the phase
to the left of the leading 2a kink starts decreasing
monotonously, each ripple corresponding to a 2n.
kink. This effect has also been observed for n =1,
a=O, and g=0.7. In Fig. 4(b) (a=0.1) the effect
disappears because of the loss term.

B. Influence of a time-dependent force

FIG. 6. Propagation of a 2n kink under the influence
of a time-dependent force, q=gocos(cot). Parameter
values as in Fig. 5. As a result of the force, the 2~ kink
oscillates.

0.5
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0

0 10 t 15

FICx. 7. Comparison between results obtained from the
perturbation analysis and numerical experiments for
g=0.2 and a=0.3. In (a) the vacuum is in the ground
state, while in (b) the vacuum is in an excited state. Solid
curves are given by Eq. (2.14) with (2.13). The numerical-
ly determined velocities are given by the dashed curves.
Cfood agreement between analysis and numerical results is
found.

kink enters a stationary motion where the relation
(2.8) between the Lorentz factor and the velocity
holds.

In Fig. 4 we show the time evolution of a 2nkink.
that initially is static and in the ground state [n =0
in Eq. (3.1)]. The parameter values are the same as
those in Fig. 3. In Fig. 4(a) (a =0) the radiation em-
itted from the 2' kink dissociates into a 2a kink
(traveling to the right) and a 2rr antikink (traveling

In this section we examine the two examples of
time-dependent forces proposed in Sec. II. Thus we
solve the initial-value problem (2.1) and (3.1) with
0(t &42, I =30, n =1, a=O, g=gosin(cot),
rio ——0. 1, and co =0.5. In Fig. S the results are
displayed in terms of P„. In agreement with the
analysis in Sec. II the 2~ kink travels to the right
while it oscillates.

In Fig. 6 we have shown the results when the
time-dependent force is chosen as case (b) in Sec. II.
The parameter values in (2.1) and (3.1) are 0 ( t (42,
l =30, n =1, a=O, g=gocos(rot), go ——0 1, and
co =0.5. In this case the 2m kink oscillates in accor-
dance with the analysis in Sec. II. In the next sec-
tion a comparison is made between the numerical re-
sults and the analysis.

IV. COMPARISONS BETWEEN NUMERICAL
RESULTS AND ANALYSIS

In this section we present some comparisons be-
tween numerical results and the theory. The numer-
ically determined velocity is calculated from the for-
mula

Nt, max 0t"
4

x, max

where P, ,„and P„,„are the values of P, and P„
at the time t at the point where the derivative P„of
the 2~ kink has the maximum. The second term in
the numerator eliminates the vacuum part of P [Eq.
(2.2)]. The advantage of using Eq. (4.1) instead of
measuring the velocity of the center of mass of the
2m kink is that the radiation that is created as a re-
sult of the acceleration influences the center-of-mass
calculation of the 2m kink and thus introduces an er-
ror in the estimate of the velocity. We find a differ-
ence of less than 10% between the velocities deter-
mined by the two methods for t (3 while for larger
times large differences occur.

A. Constant-force and loss terms

In Fig. 7 we have shown the velocity U(t) as a
function of time t in the case where the vacuum is
initially in the ground state [Fig. 7(a)] and in the
case where the vacuum is initially in an excited state
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parameters one must solve the pendulum equation
numerically). However, for small times we find a
remarkably good agreement even for larger q and a.
This can be understood from Eq. (2.7), which shows
that as long as Pk and P"" are small the perturba-
tion is small.

Finally we note that the analysis in this paper

does not explicitly take the k&0 part of the possible
radiation into account; we only consider the cou-
pling between the 2' kink and the vacuum, which
contains the k =0 part of the radiation. The k&0
part of the radiation is very difficult to calculate;
this has only been done in Ref. 1 and elsewhere re-
cently for P""(0)=a «2m, P,""(0)=0.
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