PHYSICAL REVIEW B

VOLUME 28, NUMBER 1

1 JULY 1983

Sine-Gordon 27-kink dynamics in the presence of small perturbations
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The influence of external driving forces on the 27-kink solution to the sine-Gordon equa-
tion is examined. The analysis is based on the approach that the solution to the problem can
be divided into a 27-kink part and a background or vacuum part. The behavior of the 27
kink depends strongly on the initial state of the vacuum. Excellent agreement between the
analysis and numerical solution of representative initial-value problems is found.

I. INTRODUCTION

Nonlinear solitary waves are currently being used
in a remarkable variety of contexts in almost every
area of physics. In particular, the sine-Gordon 27-
kink solution is ubiquitous in its application as a
model for, e.g., dislocations in crystals, domain
walls in ferromagnets, and propagation of flux
quanta, fluxons, in Josephson transmission lines.

Recently the influence of the presence of external
driving forces on the 27-kink solution has attracted
considerable interest.! In contrast to prevalent re-
sults®3 it was found that the 27 kink does not
behave like a Newtonian particle in a conservative
force field. In Ref. 4 it was shown that the vacuum
“motion,” i.e., the behavior of solutions at x =+ «
affects the motion of the 27 kink. The non-
Newtonian behavior of the 27 kink! is observed
when the vacuum is in an excited state, while a
Newtonian behavior of the 27 kink is observed>® if
the vacuum is in the ground state.

Our method is to divide the solution into two
parts, a homogeneous part ¢*2°(¢), which is the solu-
tion at x =+ 0, and a 27-kink part, which contains
all the k40 parts of the possible radiation.

The k =0 part of the radiation is contained in
¢'%(¢). For the momentum connected to the 27-
kink part P, an equation of motion is derived
without any approximations. For some physical ap-
plications it is sufficient to know the 2m-kink
momentum,’ and then the method yields exact re-
sults even for large perturbations.” Our basic ap-
proximation for determining the 27-kink motion is
to replace the momentum P, by the small perturba-
tion result® 8y(v)v, v being the 27-kink velocity.

The influence on a 27 kink of the initial state of
the vacuum, ¢**°(0) and ¢;°°(0), the external driving
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force, and the dissipation are investigated in detail.
The investigation includes, in addition to the pertur-
bation analysis of the 27 kink, a numerical solution
of corresponding initial-value problems. Good
agreement between the perturbation results and the
numerical results is found also for large ¢ and also
for velocities not fulfilling the condition v << 1. The
initial state of the vacuum influences the velocity
and trajectory of the 27 kink for the ¢ <5, while for
larger times the influence decreases. Furthermore,
we find that for n > 0.5 the behavior of the 27 kink
depends strongly on the initial state of the vacuum.

The main difference between our treatment and
the works referred to lies merely in the initial state
of the vacuum. The method used in Refs. 1 and 2 is
based on the pure sine-Gordon soliton and therefore
is restricted to the case ¢'*°(0)=¢;*°(0)=0 and to
small ¢ and small velocities. On the other hand, this
method enables one to calculate the full radiation
spectrum.! The results of Ref. 3 agree with ours
under the tacit assumption that ¢;*°(¢)=0.

The outline of the paper is as follows: In Sec. II
we obtain an equation for the time dependence of
the momentum of the 27 kink. Expressions for the
acceleration and the velocity are then calculated.

"Furthermore, we examine the influence of a time-

varying force term. In Sec. III we solve the corre-
sponding initial-value problems numerically and il-
lustrate the influence of the initial state of the vacu-
um and the force term. Section IV contains a com-
parison between the numerical results and the per-
turbation theory. Finally, in Sec. V we summarize
and conclude.

II. TIME EVOLUTION OF THE 27 KINK

The equation in question is the perturbed sine-
Gordon equation
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Gxx — Oy —sing=n+ad, , (2.1)

where the right-hand side represents the perturba-
tion, the first term being the constant “force,” and
the second term the dissipation. A single 2#-kink
solution to Eq. (2.1), ¢(x,?), must fulfill the condi-
tion ¢(+ c0,)—@(— o0,t)=27w. Furthermore, the
27 kink is localized. Therefore it is convenient to
divide ¢(x,?) into a pure 2m-kink part ¢*(x,t), where
#*(+ 0,t)=0mod27, and a background (vacuum)
part ¢**°(¢) only depending on time:

B (x,1) = (x,0)+¢*2(1) . 2.2)

The vacuum part alone must satisfy Eq. (2.1), i.e.,
the pendulum equation,

v+ ad;*+4sing**°+n=0. (2.3)

The idea behind the splitting of ¢(x,?) in Eq. (2.2) is
to take out the homogeneous part that would be
there even without the presence of a 27 kink.

The easiest way to derive the equation of motion
for the 27 kink is to calculate the fotal momentum
P,

P= [ —¢bidx= [ —gigtdx—2m;*(1)
=P, — 2w (¢) , 2.4)

where Py is the 2m-kink contribution to the momen-
tum. Taking the time derivative of P and using the
equation of evolution for ¢, Eq. (2.1), we get

dpP

= _aP 421, 2.5

i aP +2mn (2.5)
the equation of motion for the total momentum P.
Inserting Eq. (2.4) into Eq. (2.5), we finally arrive at

dP,

3 = —aP, +2m(n+ad;* +¢ic (2.6)

= —aP, —2wsin[¢**(1)] , 2.7

which is the equation of motion for the momentum
of the 27 kink. In the last step we have used Eq.
(2.3) on ¢**(¢). It should be emphasized that until
now no approximation has been made and that 7
could vary with time as well.

The equation of motion for the 27 kink is then
found, using the expression for the momentum for a
soliton solution to the unperturbed sine-Gordon
equation:

P =8y(v)v , yv)=(1—p?)~1/2 (2.8)

where v is the velocity of the 27 kink. With this as-
sumption [Eq. (2.8)] Eq. (2.6) becomes the relativis-
tic version of Newton’s second law for a 27 kink
with a friction term, a force term, and terms

representing interaction between the 27 kink and the
background yielding an acceleration a, given by

[¥()Pa = — s sin[¢"()] —ay(v)v . (2.9)

From Eq. (2.9) the importance of the initial state
of vacuum is obvious. If the vacuum is in its
ground state ¢"*°= —sin~!% [the trivial solution to
Eq. (2.3)], the force term becomes 277, yielding an
initial acceleration a;:

ay=~m7 . (2.10)

On the other hand, if the vacuum was started
with ¢"*°(0)=0 and ¢;°(0)=0, Eq. (2.9) yields an
initial acceleration’

a;=~vmt?, (2.11)

which shows that the initial state of the vacuum in
Ref. 1 forces the 27 kink to start up very slowly.
Other initial conditions of the vacuum would give
other initial accelerations [Eq. (2.9)].

Examples

In the following we solve Eq. (2.5) in order to ob-
tain expressions for the velocity of the 27 kink in
two special cases: constant 7 and harmonic time-
varying 7). For constant n the solution of Eq. (2.5)
using Eq. (2.4) yields

Pk=277'—;7—(1—e_“’)+217¢¥a° . (2.12)

vac

Expressions for ¢;*° can easily be found for
$'*(0)= —sin" !y and ¢}*(0)=0, and ¢'*(0)=0
and ¢;°°(0)=0 by solving Eq. (2.3). In the latter
case we assume 77 << 1 such that ¢**°(¢) << 1 in order
to linearize Eq. (2.3) to obtain analytic expressions.
The solution [Eq. (2.12)] can then be written

Pk:—zgl(l-e_“') (2.13a)
or
_ sinh(at /2)
Py=2my a/2
_sin[l—(a/Z)z]mt —at/2
[1—(a/2)2]'2 '
(2.13b)

In (2.13a) ¢**° is in the ground state while in (2.13b)
¢"%¢ is in the excited state ¢*2°(0)=0.

Solving Eq. (2.8) with respect to v yields
P (2.14)
V=—sr . .
(64+P]%)1/2

This equation represents an ordinary differential
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equation determining the trajectory of the 27 kink
(v =dx /dt). This equation can be solved analytical-
ly for P, given by Eq. (2.13a).%

Finally, we stress that the analysis also is valid for
n=mn(t). As simple examples we choose (a)
1N ="1psin(wt), $**(0)=¢;*°(0)=0, and a=0 and (b)
n=1npcos(wt), $***(0)=¢;*°(0)=0, and a=0. For
N<<1l or w>>1 we get from Eq. (2.6) (assuming
| @ | £1) for case (a):

Mo  TNo 1

4 cos(wt)
40 4 a)2 —1

w

— cost

)

(2.15)

which gives an approximate expression for the velo-
city v(z). For v << 1, integration of (2.15) yields the
trajectory of the 27 kink:

1o Mo 1

sin(wt)
= t
X =Xqo+ P —+ 2 (02_1

(02

—w sint

(2.16)

Here xy=x(0) is the initial location of the 27 kink.
In case (b) we get

™o 1
4 o’—1

sin(wt)

Y =— —sint

>

(2.17)

which for v << 1 can be integrated to give the trajec-
tory of the 27 kink:

o 7o 1
X =Xo 4a)2+ 4 p*—1

wZ

cos(wt) ‘
—cost | .

(2.18)

Similar results can be obtained for a=+0. We note
the different behavior of the 27 kink in cases (a) and
(b). Although the 27 kink oscillates in both cases, it
travels to the right in case a.

In the next section we solve some representative
initial-value problems numerically that illustrate the
behavior of the 27 kink in various situations.

III. NUMERICAL INVESTIGATION
OF INFLUENCE OF FORCE
AND LOSS TERMS

In the preceding section we used a perturbation
approach to derive the time evolution of the
momentum. Application of the expression for the
momentum of the exact 2m-kink solution to the un-
perturbed sine-Gordon equation [Eq. (2.1) with
a=mn=0] then yields expressions for the velocities
when the vacuum is initially in the excited and

ground states. These expressions then give first-
order differential equations that can be solved exact-
ly in the latter case and approximately in the former
case. In this section we show results of numerical
solution of some representative initial-value prob-
lems.

We solve the initial-value problem equation (2.1)
with

$(x,0)=4tan™"[exp(x —xo)]+(n —D)sin~'n,
$:(x,0)=0, (3.0
¢x(0yt)=¢x(l,t)=() .

Here the first term in ¢(x,0) represents a static 27
kink initially placed at x,, while the second term for
n =1 and n =0 gives the vacuum in the excited and
ground states, respectively. The boundary condi-
tions at x =0 and x =/ represent lossless termina-
tions.

FIG. 1. Propagation of a 27 kink under the influence
of a force term and various values of the loss coefficient.
The parameter values are #=0.6, n =1, and a=0 (a),
a=0.1 (b). The results are displayed in terms of ¢, for
0<x <30and 0<t <21. The vacuum is initially in an ex-
cited state (n =1). In (a) the initially static 27 kink is ac-
celerated towards a Heaviside step function of velocity
unity. In (b) the 27 kink enters a motion with a stationary
velocity determined by the balance between the external
force and the loss.
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FIG. 2. Parameter values as in Fig. 1 except n =0.
Thus the vacuum is in the ground state for t =0. Com-
pared to Fig. 1 only minor differences in the time evolu-
tion of the 27 kink are observed. However, for small
values of ¢ differences in acceleration, velocity and posi-
tion of the 27 kinks are found in accordance with the per-
turbation theory.

The numerical results are obtained by means of a
computer program based on the method of charac-
teristics and are displayed in terms of the derivative
¢,(x,t). Note that the maximum value of ¢, for
t =0 is always equal to 2.

A. Influence of a constant-force term

In this section we present numerical solutions of
the initial-value problem (2.1) with (3.1), n being
constant. Throughout this section x,=7.5.

In Fig. 1 we show how an initially static 27 kink
is influenced by a force term and various loss terms
represented by different values of the loss parameter
a. The parameter values in Eq. (3.1) are 0<t <21,
=30, n=0.6, n =1, and a=0 [Fig. 1(a)], a=0.1
[Fig. 1(b)], i.e., the vacuum is initially in an excited
state. In Fig. 1(a) the 27 kink is accelerated towards
a Heaviside step function (with a step of 277) with a
velocity approaching unity. The 27 kink starts up
slowly, but accelerates suddenly. At the same time a

X
t
(a)

|

@

——

X
t
(c)

FIG. 3. Propagation of a 27 kink under the influence
of a force term above the critical value (n,~0.72461)
and various values of the loss coefficient. The parameter
values in (2.1) and (3.1) are =0.8, n =1, and a=0 (a),
a=0.1 (b), a=0.3 (c). The results are displayed in terms
of the derivative ¢, for 0<x <30 and 0<t<21. The
vacuum is initially in an excited state (n =1). In (a) the
initially static 27 kink is accelerated to the right; the velo-
city approaches unity. Note that when the velocity equals
unity, the Lorentz contraction stops. In this case the
phase decreases monotonously. In (b) the same qualitative
behavior is found even in the presence of loss. In (c) the
loss coefficient has been enlarged compared to (b), and as
a consequence the phase does not decrease monotonously
and the 27 kink enters a motion with a stationary veloci-
ty. Note the change in scale between part (a) and parts (b)
and (c).
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wake is seen to develop. Figure 1(b) shows the influ-
ence of a loss term. In accordance with the pertur-
bation theory (and our physical intuition) the 27
kink enters a motion with a stationary velocity
determined by a balance between the force (energy
input) and the loss (energy dissipation). The pres-
ence of the loss term prevents the wake to develop.
In Fig. 2 we show the time evolution of a 27 kink
that initially is static and when the vacuum is in the
ground state [i.e., n =0 in Eq. (3.1)]. Except for n,
the parameter values are the same as those in Fig. 1.
Compared to Fig. 1, only minor differences are ob-
served for large values of time (¢#>5), while for
small times differences in acceleration, velocity, and
position of the 27 kink are found in accordance with
the perturbation theory in the preceding section.
For smaller values of a and 7 the same qualitative
behavior is found. In the next section we perform a
detailed comparison between velocities obtained nu-
merically and from the perturbation theory for the

FIG. 4. Parameter values as in Fig. 3 except n =0.
Thus the vacuum is in the ground state for t =0. In (a)
[@=0in (2.1)] the radiation emitted from the 27 kink dis-
sociates into a 27 kink (traveling to the right) and a 27
antikink (traveling to the left). After the dissociation the
phase to the left of the leading 27 kink starts decreasing,
each ripple corresponding to a 27 kink. This effect disap-
pears in (b) (¢=0.1), and the 27 kink enters a stationary
motion.

vacuum in the excited and the ground states, respec-
tively.

The influence of an external force larger than the
critical value (n,=0.72461...) given by Inoue and
Chung® is shown in Figs. 3 and 4. For values of 7
larger than 7, they found that ¢ starts decreasing
monotonously [corresponding to rotating pendu-
lums, Eq. (2.3)]. This occurs for ¢**°(0)=0 and
a=0.

In Fig. 3 the parameter values in (2.1) and (3.1)
are 0<t <21, 1 =30, n=0.8, n =1, and a=0 [Fig.
3(a)], «=0.1 [Fig. 3(b)], «=0.3 [Fig. 3(c)]. Thus
the 27 kink is initially static and the vacuum in an
excited state. The 27 kink is accelerated to the
right, while the phase ¢ starts decreasing almost
proportionally to —¢? [#(0,0)=0, and ¢(0,7) be-
comes — 100 for t =18.5]. After emission of radia-
tion the 27 kink enters a stationary motion at a
velocity equal to unity. The Lorentz contraction
stops when the stationary velocity is reached.
Furthermore, the maximum value of the derivative
¢, oscillates with a period that is proportional to
¢t ~2. This cannot be seen in Fig. 3(a) because of the
scale. Thus the effect of an external force larger
than 7, is that the phase starts decreasing, the 27
kink approaches a velocity equal to unity, and the
Lorentz contraction only takes place while the 27
kink accelerates, i.e., there is no coupling between
the Lorentz factor [as indicated in (2.8)] and the
velocity. In Figs. 3(b) and 3(c) the influence of
damping is shown [note the change in scale between
Fig. 3(a) and Figs. 3(b) and 3(c)]. In Fig. 3(b) the
same qualitative behavior is found even in the pres-
ence of loss (¢=0.1); the phase decreases and the
coupling between the Lorentz factor and the velocity
does not occur. In Fig. 3(b), however, the loss
(a=0.3) prevents the phase to decrease, and the 27

FIG. 5. Propagation of a 27 kink under the influence
of a time-dependent force, n=m¢sin(w?). Parameter
values in (2.1) and (3.1) are 790=0.1, ©®=0.5, n =1, and
a=0. Although the 27 kink oscillates it travels to the
right.
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FIG. 6. Propagation of a 27 kink under the influence
of a time-dependent force, n=mocos(wt). Parameter
values as in Fig. 5. As a result of the force, the 27 kink
oscillates.

kink enters a stationary motion where the relation
(2.8) between the Lorentz factor and the velocity
holds.

In Fig. 4 we show the time evolution of a 27 kink
that initially is static and in the ground state [# =0
in Eq. (3.1)]. The parameter values are the same as
those in Fig. 3. In Fig. 4(a) (¢ =0) the radiation em-
itted from the 27 kink dissociates into a 27 kink
(traveling to the right) and a 27 antikink (traveling

0.5
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FIG. 7. Comparison between results obtained from the
perturbation analysis and numerical experiments for
7=0.2 and a=0.3. In (a) the vacuum is in the ground
state, while in (b) the vacuum is in an excited state. Solid
curves are given by Eq. (2.14) with (2.13). The numerical-
ly determined velocities are given by the dashed curves.
Good agreement between analysis and numerical results is
found.

to the left), which after reflection at x =0 starts a
train of 27 kinks. After the dissociation the phase
to the left of the leading 27 kink starts decreasing
monotonously, each ripple corresponding to a 27
kink. This effect has also been observed for n =1,
a=0, and n=0.7. In Fig. 4(b) (a=0.1) the effect
disappears because of the loss term.

B. Influence of a time-dependent force

In this section we examine the two examples of
time-dependent forces proposed in Sec. II. Thus we
solve the initial-value problem (2.1) and (3.1) with
0<t<42, 1=30, n=1, a=0, mn=nysin(wi),
N9=0.1, and ©w=0.5. In Fig. 5 the results are
displayed in terms of ¢,. In agreement with the
analysis in Sec. II the 27 kink travels to the right
while it oscillates.

In Fig. 6 we have shown the results when the
time-dependent force is chosen as case (b) in Sec. IL.
The parameter values in (2.1) and (3.1) are 0 <t <42,
[=30, n=1, a=0, n=npcos(wt), 7y=0.1, and
@©=0.5. In this case the 27 kink oscillates in accor-
dance with the analysis in Sec. II. In the next sec-
tion a comparison is made between the numerical re-
sults and the analysis.

IV. COMPARISONS BETWEEN NUMERICAL
RESULTS AND ANALYSIS

In this section we present some comparisons be-
tween numerical results and the theory. The numer-
ically determined velocity is calculated from the for-
mula

¢t,max - ¢;'aC( t)

¢x, max

v(t)=— , 4.1)
where ¢, nax and ¢, .. are the values of ¢, and ¢,
at the time ¢ at the point where the derivative ¢, of
the 27 kink has the maximum. The second term in
the numerator eliminates the vacuum part of ¢ [Eq.
(2.2)]. The advantage of using Eq. (4.1) instead of
measuring the velocity of the center of mass of the
27 kink! is that the radiation that is created as a re-
sult of the acceleration influences the center-of-mass
calculation of the 27 kink and thus introduces an er-
ror in the estimate of the velocity. We find a differ-
ence of less than 109% between the velocities deter-
mined by the two methods for ¢ <3 while for larger
times large differences occur.

A. Constant-force and loss terms

In Fig. 7 we have shown the velocity v () as a
function of time ¢ in the case where the vacuum is
initially in the ground state [Fig. 7(a)] and in the
case where the vacuum is initially in an excited state
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(a)
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(b)
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FIG. 8. Comparison between velocities obtained from
the analysis and from numerical computations in the case
of a time-dependent force. In (a) %(t)=mngsin(wt),
0=0.5, and 7=0.1 (lower curves), 179=0.2 (upper
curves). Solid curves are found from the perturbation
theory; dashed curves are numerically determined. In (b)
n(t)=mnocos(wt), ©=0.5, and 79=0.1 (lower curves),
70=0.2 (upper curves).

(a)

-005

0 5 10 t 15
FIG. 9. In (a) n(t)=ngsin(wt), 79=0.2, and w=2,
while in (b) n(¢)=mn¢cos(wt), 7o=0.2, and w=2. Solid
curves represent the analysis; dashed curves are numeri-
cally determined.

[Fig. 7(b)]. The parameter values in (2.1) are in both
cases 7=0.2 and ¢=0.3 while in (3.1) n =0 [Fig.
7(a)] and n =1 [Fig. 7(b)]. In Fig. 7(a) the velocity
is seen initially to increase proportional to time, i.e.,
it exhibits a Newtonian behavior. For z— o« the
velocity is seen to approach the stationary velocity
v, (which represents a balance between energy input
and energy dissipation). The stationary velocity can
be found from Eq. (2.5) by inserting P =8v ,y(v, ).
The solid curve in Fig. 7(a) is given by Eq. (2.14)
with Eq. (2.13a) inserted. The dashed curve shows
the velocity obtained numerically. Good agreement
between analysis and numerical results is observed.
For smaller values of the parameters a and 7 a simi-
lar agreement is found. Figure 7(b) shows the com-
parison for the vacuum initially in an excited state.
The solid curve is given by Eq. (2.14) with Eq.
(2.13b), and the dashed curve shows the velocity ob-
tained numerically. Initially, the velocity of the 27
kink starts up proportional to #3. For t— oo the
velocity tends towards v,,. Again, good agreement
is found between the analysis and the numerical re-
sults.

B. Time-varying force

In this section we show comparisons between the
velocity determined from the analysis and from nu-
merical solutions in the case of time-dependent
forces, 1(t)=mngsin(wt) or 1(t)=mngcos(wt). In Fig.
8 the frequency o is smaller than unity. The solid
curves are given by (2.15) [Fig. 8(a)] and (2.17) [Fig.
8(b)], respectively. The dashed curves are obtained
numerically. Good agreement is observed between
the results obtained analytically and numerically.

Figure 9 shows the velocity as a function of time
in the case of w>1. In Fig. 9(a) np=mnysin(wt),
10=0.2, and w =2, while in Fig. 9(b) 7=m,cos(wt),
N70=0.2, and w=2. The agreement between the
analysis is good for v=£0 but fails in the vicinity of
v=0.

V. CONCLUSION

In this paper we have examined the influence of
external force and dissipation on a 2m-kink solution
to a perturbed sine-Gordon equation. The behavior
of the 27 kink depends strongly on the initial state
of the vacuum. This is explained by a simple
analysis based on the approach that the solution to
the problem can be divided into a vacuum part and
a 27-kink part. Approximate expressions for the
velocity of the 27 kink are given in the cases of con-
stant and time-varying forces and compared with
the velocity obtained by numerical solution of some
representative initial-value problems. Good agree-
ment is found for 1,a << 1 (for large values of these
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parameters one must solve the pendulum equation
numerically). However, for small times we find a
remarkably good agreement even for larger n and a.
This can be understood from Eq. (2.7), which shows
that as long as P; and ¢"?° are small the perturba-
tion is small.

Finally we note that the analysis in this paper

does not explicitly take the k=40 part of the possible
radiation into account; we only consider the cou-
pling between the 27 kink and the vacuum, which
contains the k =0 part of the radiation. The k=40
part of the radiation is very difficult to calculate;
this has only been done in Ref. 1 and elsewhere re-
cently’ for ¢"2°(0) =a << 27, ¢;*(0)=0.

13. C. Fernandez, M. J. Gambaudo, S. Gauthier, and G.
Reinisch, Phys. Rev. Lett. 46, 753 (1981); G. Reinisch
and J. C. Fernandez, Phys. Rev. B 24, 835 (1981).

2M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A.
Krumhansl, Phys. Rev. Lett. 36, 1411 (1976); 37, 314
(1976); M. B. Fogel, S. E. Trullinger, A. R. Bishop, and
J. A. Krumbhansl, Phys. Rev. B 15, 1578 (1977).

3D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18,
1652 (1978).

40. H. Olsen and M. R. Samuelsen, Phys. Rev. Lett. 48,
1569 (1982).

50. H. Olsen and M. R. Samuelsen, Phys. Scr. 23, 1033
(1981). N

60. H. Olsen and M. R. Samuelsen, Phys. Rev. B 25, 3181
(1982).

7E. Joergensen, V. P. Koshelets, R. Monaco, J. Mygind,
M. R. Samuelsen, and M. Salerno, Phys. Rev. Lett. 49,
1093 (1982).

8M. Inoue and S. G. Chung, J. Phys. Soc. Jpn. 46, 1594
(1979).

9G. Reinisch and J. C. Fernandez, Phys. Rev. B 25, 7352
(1982).



