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Enhancement of Auger recombination in semiconductors by electron-hole plasma interactions
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I show that electron-hole plasma interaction has a very important effect on band-to-band Auger
recombination in semiconductors. The effect is an enhancement, by a factor of about 5, of the

Auger recombination rate as compared to the value calculated with the neglect of the electron-hole

plasma interaction. Quantitative agreements between theories and experiments in a number of previ-

ous papers are fortuitous as a result of overestimation of overlap integrals. By careful estimation of
overlap integrals the present theory gives a satisfactory explanation of experiments.

I. INTRODUCTION

The band-to-band Auger recombination (BBAR) of ex-
cess carriers in semiconductors is an intrinsic nonradiative
process which is important under high concentrations of
free carriers. A number of theoretical and experimental
investigations' have been made on the basis of the
pure-collision Auger recombination (PCAR) since a suc-
cessful work by Beatie and Landsberg. This process has
offered, for order-of-magnitude estimation, a satisfactory
explanation of experiments when at least one of the fol-
lowing conditions is satisfied: a narrow direct-gap materi-

al, high temperature, and/or degenerate statistics. To ex-

plain experiments under some other conditions, e.g., espe-

cially under an indirect-gap material, phonon-assisted
Auger recombination (PAAR) has been proposed.
Theories of PCAR (Ref. 5) and PAAR (Refs. 7—10) have
been based on the first-order and the second-order pertur-
bation treatments, respectively.

Recently, I have given a theory" based on the Green's-
function formalism through which the effect of energy-
level broadening due to some scatterings can be taken into
account. The theory is of general use since PCAR is ob-
tained as a special case where the scattering effect is not
considered. On the basis of the theory I have studied
PAAR (Refs. 12 and 13) and the impurity-assisted Auger
recombination' ' (IAAR). I have found that the PAAR
rate is considerably larger than that based on the second-
order perturbation treatment especially at high tempera-
tures as well as the PCAR rate under almost all condi-
tions. This situation is the same for IAAR but the differ-
ence between the IAAR rate and the PCAR rate is small
under some conditions.

The Green's-function formalism of BBAR starts with
the four-particle Green's function. Then the function has
been given approximately as a product of four one-particle
Green's functions, giving a final formula. The approxi-
mation corresponds to neglecting interactions among four
particles which intervene between the initial state and the
final state for the Auger transition. I have shown" that
the effect of the neglected interactions on BBAR is unim-
portant with the exception of the PCAR case. The in-
teractions result in energy shift of the interacting particles
on the one hand and in particle rearrangement due to
electron-hole plasma interaction on the other hand. All

II. BASIC FORMULA

In this section we discuss the effect of carrier-carrier in-
teraction on BBAR. We consider the Auger transition
shown in Fig. 1(a), where a carrier 1 and carriers 2,3,4 be-

long to the valence band (VB) and the conduction band
(CB), respectively, and in Fig. 1(b), where carriers 1,2,3
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FIG. 1. BBAR in (a) the VCCC process and (b) the VVVC

process.

the discussions" of the effect of the interactions have been
based on the first-order perturbation treatment. Actually,
however, the electron-hole plasma interaction should be
treated including all series of the expansion. This is a
weak point of the treatment in Ref. 11.

The purpose of the present paper is to offer improved
treatment of the electron-hole plasma interaction. As a re-
sult the BBAR rate in this paper is by a factor of about 5

larger than that in Ref. 11. It has been stated above that
the PAAR rate in Ref. 11 is considerably larger than the
results of the conventional calculations. In view of this
fact, the conventional calculations are also expected to
yield quite erroneous numerical results. Despite the ex-
pectation these calculations have often been shown to give
a satisfactory explanation of experiments. I show that the
agreements are fortuitous as a result of overestimation of
overlap integrals. I point out that the overlap integrals
should carefully be estimated in order to attain good
agreement between the present theory and experiments.
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and a carrier 4 belong to VB and CB, respectively. Let us
call the processes shown in Fig. 1(a) and in Fig. 1(b) the
VCCC process and the VVVC process, respectively, in nu-
merical order of the labels 1, 2, 3, and 4 in the figure.

Let us start with quite a general expression for the
excess-carrier lifetime ~ of BBAR, which is given in Ref.
11 as

1 1 I'(1234)I (5678)6,$34 ImG4 (pa) .
8~cV i, g, 3,4,

5,6,7, 8

(2.1)

Here A is the Planck constant divided by 2m. , nc the
excess-carrier concentration in CB, and V the crystal
volume. The number m (=1,2, . . .,8} in the summand is

the abbreviation of m =I k o for a state with the band

index l~, the wave vector k, and the spin cr: It should
be noted that at present the number m {=1,2,3,4) does not
necessarily correspond to the label m in Fig. 1, represent-
ing all possible states. We write

where p~ =k cr

G4 (r0) =$4(ai+i5)

under 5~0 . Ã4(i() is the Fourier component of 4}'4(r),

(2.7)

i.e.,

b, (p —p„)=A(k —k„)h(o —ir„),
and F „=(I,k i l„,k„) is the overlap integral between
the modulating parts of the Block functions

i l,k~ ) and
i l„,k„). Use of I {1234}is the convention to give the

Hamiltonian in a convenient symmetric form.
In Eq. {2.1}G4 (pa} is obtained from G4 (r0), where ro is

an energy variable. 64 (p~) is the four-particle retarded
Green's function, which can be related to the four-particle
temperature Green's function $4(i () .Hereafter let
gl(rrT) and rl/(rrT), where T is the thermal energy, be an
even integer and an odd integer, respectively, when ( and
g are used in a temperature Green's function of any kind;
thus g and rl, with suffixes attached to or not, take
discrete values. A relation we use is

6i234 —h(li —lc )+6(12—lc }

—6{13 ic)—6(14—lc),

1/T
$4{if) = f dr exp{i fr}$4(r),

(2.2) where we define

(2.8)

Pz = (P c Pv )~ i2i4 .— (2.3)

I'{1234) is related to the Fourier component of the
electron-electron screened Coulomb interaction U(k)/V,
which is given for the bare potential P (k )/V, i.e.,

4 2

P (k)=
k

(2.4)

where lc denotes CB: With x as a scalar or a vector we

define h(x) = 1 if x =0 and LL(x) =0 otherwise. Assuming
that the CB system and the VB system can be described by
quasi-Fermi-levels pc and p v, respectively, we define

$4(r) = —( T,{ai (r)a 2(r)a3(r)a4{r)

Xa 5(0)a 6(0)ai(0)as(0)) ) . (2.9)

po
——exp (2.11)

In the equation T, is the Wick chronological operator,

a {r}=exp(rHO)a~ exp( rH0), —
(2.10)

a (r) =exp(rHO)a exp( rHO), —

with Ho as the Hamiltonian described below, and (P )
=Tr(p~), where

U(k) =
e(k)

(2.5)

under the definition of a constant Q through Trpo ——1.
We define Ho as

—U(ki —k3)b(o i
—cri)Fi3FQ4]

&~(p1+p2 p3 p4) (2.6)

In Eqs. (2.4) and (2.5) e is the electronic charge and e(k )

represents the dielectric screening due to host lattice and
free carriers, which is given later. Thus we define

1I (1234)=—[U( k i
—k4)h(o i cr4)Fi4F23—

V

Ho =Ho —pcNc —P, vNv, (2.12)

where Ho is the Hamiltonian consisting of the unper-
turbed Hamiltonian for electrons and the perturbations,
i.e., the electron-electron interaction and some other
scatterings such as the electron-phonon interaction and the
electron-impurity interaction: Nc and Nv are the number
operators for the CB system and for the VB system,
respectively.

Now our task is to find $4(r) from Eq. (2.9). Follow-
ing the procedure in Ref. 11,we use an approximation

&4(r)= 4&(7,1r)&(8,2r—)9'(3r, 5)9 (4r, 6) 49(7, 1r)g(3r, 5—)g~ (4, 8 2 6 r}

+4(7, 1&)&(4w, 5) ~ (3,8;2,6:w) —48(7,2v) S(4&,5)8~ (3,8; 1,6:w)

+48 (7,2r)9(3r, 5)9'pg (4,8; 1,6:r)+49 (7, lr) 9'(8,2r) 9'2s(3,4;5,6;r)

+49 (3g, 5)9'(4w, 6)S2~(7,8; 1,2:—r), (2.13)
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9'(mr, n )= —{T,(a (r)a„(0))),
9(m, nr)= —{T,(a (0)a„(r))},
9'~ (],2;3,4r) = ( T,(a 3(r)a i (r)a 4(0)a2(0) }),

9'2ii(1,2;3,4:r)= ( T,(a i (r)a2(r)a i(0}a4(0)) ) .

(2.15)

(2.16)

(2.17)

Here 9'2(r) represents $~(1,2;3,4:r) or 9'2+(1,2; 3,4:r).
6"(m,n;co) and Gt (co} are the one-particle retarded
Green's function and the two-particle retarded Green's
function, respectively, which are obtained from

6"(m,n;co) = 9'(m, n;co+i 5),
and 62 (ai)=$2(ai+i5); 9'(m, n:iri) and 92(ig) are the
Fourier components of 9(mr, n) [9'(m, nr)] and 9'2(r),
respectively, which are given from Eq. (2.8) by replacing
9'4 with the relevant-temperature Green's functions. In
Eqs. (2.18}—(2.21) we define

X exp( —~~), (2.18)

ao

9i(m, nr) = ——f dao e(ai)ImG "(m,n;ai) exp{cur),

Here 9' is the one-particle temperature Green's function,
9'~ is the two-particle temperature Green's function
describing electron-hole scattering, and 9'2a is the two-
particle temperature Green's function describing electron
(hole) —electron (hole) scattering; the bound parts of 9'~
and 9'2z are denoted by 9'2„and 9'zz, respectively. Inb b

Eq. (2.13) the first term is the free part and the residual
six terms are obtained by decomposing the bound part into
all possible combinations of interacting and noninteracting
pairs. In Ref. 11 the bound part is neglected and the free
part alone is retained.

In order to calculate 9'4(i g) from Eq. (2.8) we make use
of the following relations:

Oo

9(mr, n) =—f dc@[i e(a—))]lmG "(m,n;co)

exp —+ 1
T

P(a)) =
N

exp —1
T

(2.23)

9(m, n;i ri) = i}(p —p„)9' {m,i ri),

As for 9(m, n;cu) we consider only the intraband, spin
conserving, and wave-vector conserving scatterings. These
are the cases for the carrier-carrier interaction and the
electron-phonon interaction. On the other hand, the wave
vector is not conserved for the electron-impurity interac-
tion under random distribution of impurities. However,
the wave-vector conservation is restored by considering
the ensemble average over all the impurity sites. ' ' ' %e
can write

oo

9'2(r)= —f dai[P(e}+1]Im62(ai)exp( cur), r&—0

(2.20) h(p —p„)=6(1 —/„)i}(k —k„)h(o~ —o„),
oo 89'2(r) =— dpi P(co)Im62 (a)) exp( cur), r(0—. and 9(m, iri) is a new]y-defined one-particle temperature

Gfeeil s fllllctioil. Using Eqs. (2.18)—Q.24) we obtain
94(ig), fr'om which Im64 (co) is found using Eq. (2.7) as

X fdcoi f dN2 fdco3 f dco45(N i+f02 —cop —6)4—pc+@@)8i82(1—8g)(1 —84) ff III16 (p, co ), (2.26)

&i =&(p~ pi )&(p5 p—i )f devi J—devi fdao'5(co+coi roi —~')8, (—1 —83)[P(co')+ 1]

X ImG "(pi u])ImG (p3,~3)ImGqq(4, 8;2,6'') . (2.27)

S2, S3, and S4 are obtained from S] under interchanges of suffixes and indices, i.e., 3—+4 for Sp, 1~2 and 3—+4 for S3,
and 1~2 for S4. %e use abbreviation 0 =e(~ ). G~ is the bound part of Gqz. The terms So and S„come from the
first term and the (n +1)th term of Eq. (2.13), respectively. The reason why terms corresponding to the sixth and the
seventh terms do not appear becomes clear later.

Now we are at the position to find out the expression for Im62& (],2;3,4m). We make use of the relation

9'~(1,2;3,4r) =T g exp[ i (rii rip)r]9—~~(1,2—;3,

4ir}„iris')

.
g] A/3
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From this we obtain

$~(1,2;3,4ig)=T +3~(1,2;3,4iI}I,i2}I—ig) .
~l

Thc bouIld part of PxI rcpl'cscIlts thc electron-hole plasnla IIltcractIon shown by R dIRgI'RIII 111 Flg. 2(a) III terms of
y(1234) describing the interaction between two carriers. Consider an irreducible diagram of y(1234) and let I(1234) be
the contribution of these diagrams, called the irreducible interaction of two particles. Then me obtain, neglecting an
unimportant term for the free part,

3 ~(1,2;3,4i2)I, i2}3)=—5(pI —pq)h(p2 —p3)9(pI, ir}I)9'(p3,ir13}

—T9'(pI, 2}I)9'(p3, r13) g I(1536)P~(6,2;5,4:ir}6,i rl3) . (2.30)

The term of the lowest order in the modified interaction U( k ) of I(1234) is given as

I(1234}= [U(kI k4)I~'(oI o4)F14F23 ~(kl k3+(oI o)3FI F342j'(I'(pl+p 2 p3 p4}
V

The first term and the second term in the square brackets of the equation represent the Coulomb term and the exchange
term, respectively. The exchange term is not modified since I(1234) is irreducible. ' ' With the use of Eq. (2.31}we
find that in Eq. (2.30) the Coulomb term is only an energy correction, @which eve neglect for the reason described later,
We obtain the bound part of 9~ as

X (kI —k3)
&~(1,2;3,4InI In3}=—&(pI InI»(p3 In3}~(P2 p4 InI In3}—~ «(kI —k3, i2}I—ir13}

XFIIF2g&(oI —o3)&(pI+p2 —p3 —pg), (2.32)

A (p,p„;ig) =T g 9'(p~, i rl') 8(p„,i rl'+i g), (2.33)

e(k,ig)=l ——&(k) g 4 (pI,p2, ig) ~FI2 ~
6(oI —o2)b(k+kI —k2) .

h»z

With thc usc of Eq. (2.29) the bound part of 9'~ is

P (kI —k3)
gb~(1, 2;3,4;ig) = —— F»F2&A (p3,pI,ig)A (p2,pq ,i()4(oI o'3)4(pI+—p2 —p3 —pq) .

e( k I
—k3, ig)

Transforming the summation of Eq. (2.33) into the contour integration, ' we obtaIn und«g & o,

m(p, p„;g}= fd~—e—(~}[lmG"(p,co)G"(p„,ro+g)+ImG"(p. ,ro)ImG"(p ro —C)l

(2.34)

(2.35)

where G" is the advanced one-particle Green's function. From Eqs. (2.35) and (2.36) we obtain after some manipulations,

P (k) —k3)
ImG~(1, 2;3,4m) =, FI3F'24II (oI o3+(pI +p2 p—3 p4)——

Ir V c(kI —k3,co}

Ix fd~, fd~, fd~, fd~. [5(coI
—r03 —aI )—5(roy —r02 —r0)]

Cd i +Q)2 —A)3 —QP4

X(8,—8,)(8,—8 ) g ImG "(p,r0 ) . (2.37)

We write hereafter e(k, r0+I5) simply as c(k,c0).
Now we give a brief discussion of 9'2s( 1,2;3,4:r) in Eq. (2.13). Consider the Fourier component 7 2s(1,2;3,4:irl I, i2)2).

Noting that this represents the electron (hole) —electron (hole) interaction as shown in Fig. 2(b), we obtain'

92s(1,2;3,4i2}I,ir12)=$(pI, i2}I}$(p2,i2)2}T g I(1256)92s(5,6;3,4irIs, irIs),
I5~~5*"16~I6
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PIG. 2. Diagrams representing (a) the electron-hole interac-

tion and (b) the electron (hole) —electron (hole) interaction.

where we take I (1234)= I'(1234) as the term of the lowest
order in U(k}. We find that Vis(1,2;3,4:irli, ii}2) gives
an enerp correction in 9'is(1,2;3,4:ir}i,irIi) so that we
omit Pss. As a result the sixth and the seventh terms in
Eq. (2.13} are omitted. Modification to BBAR comes

essentially from the electron-hole plasma interaction.
Here we discuss the terms giving energy corrections

vrhich have been neglected in the equations for S~ and
9'is. Those terms lead to modification of the free part of
9'4 on the one hand and to that of the dielectric screening
constant on the other hand. The modification of the free
part of 9'q has been fully discussed in a previous paper, "
showing that the effect is negligible except in the case of
PCAR. The modification of the dielectric screening con-
stant, which appears only in relation to 9'~, is given in
terms of a renormalized energy, which replaces the bare
particle band energy. In BBAR the screening effect due to
free carriers is negligible awhile that due to the host lattice
is important. The screening due to the host lattice comes
in large part from states of large energy so that the effect
of the renormalization is negligibly small.

Let us discuss e(k, co), which is implicitly involved in
ImG4 (pa). We take into account the fact that practically
the energy u in e(k, co) is found to be the band-gap energy
in the case of BBAR. Then ~e can put m=0 and neglect
the 1maglnaiy pait of e( k, tg). With the use of Eqs. (2.34)
and (2.36) under the neglect of the imaginary part of
e(k, co) we obtain

&(k~~)=I ——~(k) g H, (p»p&,'ai)
~ F12 I

~(0&—o2)~(k+k& —kz)
Pl ~12

(2.39)

Ifp(pl~p2sco)= d~i d~i ImG (p],i)imG (pi, ~p) .
1 2 R- R—

C01 —632+ CO

Actually we use e( k, r0) =e( k, 0)=e( k ), where e( k ) has been defined in Eq. (2.S).
Use of Eqs. (2.1},(2.2S), and (2.37) leads, after some manipulation, to

(2.40)

x g' fda), fda), fdao, fdco45(coi+co, co3 cog —pc+—pi —)8i8i(1 —8,)(1—84)
1,2, 3,4

X Qo+2 g Q„g ImG"(p co„),
n=1

(2A1)

(2A2)

(2.43)

Qp
——

i
I'(1234)

i

Qi ———U(k4 —ki) g Re[i (1234)1 (3S16)F4iF6i)H, (ps,p5, co4 —co )b(in o42)h(p4+p6 p2 pi) . — —
PsiP6

Qz, Q&, and Q& are obtained from Qi under interchanges
of subscripts, i.e., 3~~4 for Qi, 1~~2 and 3~~4 for Qq, and
1~2 for Q4, noting the relations

I (1234)=—I'(2134)= —I'(1243}=I'(2143) .

We have also used I'(3412)= I (1234)', e(k, co) =e(k), and
Eq. (2.S). It is to be noted that g' in Eq. (2.41) means the
restricted summation over the states 1234=VC'CC or
VVVC, where C' and V' represent energetic states for an
electron in CB and for a hole in VB, respectively. The

terms Qo and Q„correspond to the first term and the
(n+1}th term of Eq. (2.13}, respectively. Thus Qo
represents the BBAR rate in an approximation of nonin-
teracting carriers and Q„ the correction arising from the
electron-hole scattering. We ferrite

1 1 1+
7 fo Pcog

(2.44)

where ro and r~, come from Qe and Q„Q„,respectively.
Thus vo is the conventional BBAR lifetime used in previ-
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Tel
Qi=Qz

Q3=Q~

'We consider HH VC.

Interacting
states

2—3
2—4
1—3
1—4
1—4
2—4
1—3
2—3

Relevant
bands

C'8-CB

CB-VB

CB-VB

V'8-VB

TABLE I. Properties of Q„'s

Note

sider the phonon scattering effect as an examj31c. We use
Eq. (2.45) in Eq. (2.41) and give g, ImG (p, ro ) in

a power series of X. Then v
' can be given as a sum of

inverse lifetimes for PCAR in the first-order perturbation
theory, for PAAR in ihe second-order perturbation
theory, and for terms in the higher-order perturbation
theory. If the higher-order terms can be neglected, we ob-
tain PCAR and PAAR as independent events. Therefore,
the correction due to the electron-hole scattering is prere-
quisite for all types of calculations.

III. CORRECTION TERMS

G =Go+Goroo (2.45}

where Go is the free-particle Green's function. We con-

ous papers' ' and v, ,' is the correction to 7o whose
discussion is the central subject in the following sections.

Note that G"(p,ro ) in Eq. (2.41) is the complete
Green's function, through which all scattering effects such
as the phonon scattering effect, impurity scattering effect,
and carrier-carrier scattering effect can be taken into ac-
count in terms of the self-energy X(p, e3 ). Let us ex-

pand 6" in a power series of X as

In this section we discuss the corrections Q„s in Eq.
(2.41) with particular attention to CB, the heavy-hole band
(HB), the light-hole band (LB},and the spin-splitoff band
(SB) as states 1,2,3,4 in Fig. 1. Those bands are denoted

by lc, lH, lL, and lz, respectively, and let EG and ho be the
band-gap energy and the spin-splitoff energy, respectively.
As for the VVVC process we consider only the HHVC pro-
cess, which is usually of practical importance. Some
pl'opcrtlcs of Q„s arc shown ln Table I. Equalitlcs tn thc
second column come from equivalent roles of electrons 3
and 4 in Fig. 1{a) and of holes 1 and 2 in Fig. 1(b) in
BBAR. The terms in the first and fourth rows are
neglected because scatterings are for energetic carriers.

First we consider Q& for the HHVC process. It is con-
venient to define

11(»34)=(fi,g~)= —[fi~(~i —«)—g3~(~i —~3)1~(71+72 p3 I 4)
V

(3.1)

where f& and g& are found from Eq. (2.6). Similarly we define I'(3516)=(f&,gz). By performing a summation over spin
states, we obtain for Q3

S'r =g I (1234)I (3516)F4,Fest(« —tr3) b («+ mrs —tr3 —tr5)
spin

=2(f, —2g) )f3—2g2)F42Fssb(k3+ k3 —k3 —k4)b(k3+ ks —k3 —ks) . (3.2)

From close similarity between the expressions for ~ and ~o

we can make use of an approximation adopted usually for
ro. Quantities other than the statistical factor are evaluat-
ed under the threshold condition of BBAR and taken out
of the summation and the integral. Let us assume that
some scatterings such as phonon scattering are present. A
scattering effect on BBAR is to relax the momentum-
conservation requirement in PCAR. The threshold condi-
tion is

or (3.3)

(b) k,=k„k,=k,=O,

where k3 is the wave vector at the threshold for an ener-
getic hole: We assume that k3 is of significant magnitude.
The two conditions (a) and (b) come from equivalent roles
of 1 and 2. For Q~ we need to know Sr under both

Xh(k)+k2 —k3 —k4)b(k3+k5 k] ks) (3.4)

under the condition (b). It is important to note that the
threshold condition has been considered for the states
1,2,3,4 but not for the intermediate states 5 and 6. Thus

p& and p6 can still cover all possible states allowable for
k4+ k6 —k2 —k5 ——0.

In order to consider Sp under the threshold condition
(3.3) we make use of an approximate form '

I 1H, k„)=g» (k —k„}, (3.5)

where lH denotes HB and l denotes CB, LB, or SB. $IH is

given by Kane's k p method23 in a form

k4+k& —k2 —k, =0 and the condition (3.3). We find
Sr ——0 under the condition (a) and Sr&0 under the condi-
tion (b). On the average over both cases we obtain

Sr=(4 Igi I I F63 I

—2gifzF42F63}
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CiH =k(e.+ier ) (3.6) X I
I'(»34}I'=2( Ifi I'+ lgi I'+ Ifi —gi I') .

SPNl

xh(kg+kg —ki —k6) . (3.7)

Next we consider Qs for the HCCC process. Assuming
also that some scatterings are present, the threshold condi-
tion is

(3.8)

where 8'& and 8& arc QIlit vectors in thc x and p directions,
respectively, and g& is a material parameter. Hereafter let
us assume spherical enexgy surfaces for all bands. Since
all quantities other than Sq in Eq. (2.41) are spherically
symmetric with respect to k3, we give Sx by taking an an-

gular average over ki. Then the second term of Eq. (3.4)
vanishes so that we obtain

~r =4
I gi I

'
I F6s I

'awk i+ k2 —ki —4}

(3.13)

Ths becomes 4lfi I' 4lgi I' ~d 2(lfi I'+ lgi I')
under the conditions (3.3a), (33b},and (3.8}. Since we find

f, =gi for the threshold conditions, we finally obtain

4(«—1)
1+ (3.14}

e(kr)

where k~ is the threshold value of k2 for the HCCC pro-
cess and k3 for the HHVC process, respectively. Here we
have uscxl the relations e(k,m)=e( —k, —co), kq —ki
=—ks under the condition (3.3b), and ki —ki ——k2
under the condition (3.8).

The Thomas-Fe~mi approach gives

where k~ is the wave vector at the threshold for an ener-
getic electron. By the discussion similar to that given
above,

A,
2

e(k)=«1+
k

(3.15)

Sr =g I'(1234)l'{4526)FiiF65

X b.{oi cr i )h(cr—i+o6 o i o i—)—
for Qi is rewritten as

&r =4
I g i I

'
IFss I '~(ki+ kz —ki —k4)

x i}(kg+ k6 —k i
—kg) . (3.10)

IA:t us rewrite Q, and Qs with the use of Eqs. (3.7) and
(3.10). Since Qi and Qi represent the electron-hole in-

teImtion, for intermediate states S and 6 we have l5 ——/~
when /6 ——/y, and vice versa wherc /y denotes VB. It
should be noted that /q and l6 cover all bands. Hex'e we

make use of Eq. (2.39}noting that e(k,co} can be written

where 1t, is the inverse screening length. Usua}ly we have
kr » A, so that to take e( kr }=« is a good approximation.
We see that Eq. (3.14) gives the BBAR rate larger by a
factor of about 5 than the conventional one, noting that
we have e0-10.

Although the discussion has been given for the case
where some scatterings are present, we find that Eq. (3.14)
is also useful under the threshold condition of PCAR.
Thus Eq. (3.14) is useful in almost all cases where ro is
calculated on the basis of the first-order perturbation
treatment, of the second-order perturbation treatment, and
of the complete Green'8-function forrnahsm. This point
has been stressed just below Eq. {2.45). The only case
where Eq. (3.14} is not useful is the HHSC process under

Eo &Q, where ho is the spin-sphtoff energy. In this case
we have k3~ at the threshold and we cannot give S~ in a
tractable foehn.

e(k, ru) =«(k, a&)+e/(k, ro), (3.11)

where «( k,ro) and e/(k, ra) represent the dielectric screen-
ing due to the host lattice and free carriers, xespectively;

«( k, r0} is obtained from Eq. (2.39) by restricting the sum-
mation over pi and pi to (li ——lc, l2 ly) and (——li ——li,
li ——lc): Summation over all other possible states yves

e/(k, ai). With the use of Eqs. (2.39), {3.7), (3.10), and
(4.11) we obtain

eo—1
Q, = —4

I g, I

' (for HHVC),
e( kg —k1)

eo—1
Q, =—4

I g, I

' (for HCCC) .
e(ki —ki}

(3.12)

Herc wc have ncglccted thc aP and k dcpcndctlcc of
«{k,~}. This is approximately ~~i to «(0,0)=«since
in BBAR we have ~-EG and k is nearly at the center of
the first Bxillouin zone especially for direct-gap materials.

As for Qo we obtain

IV. DISCUSSION OF OVERLAP IKXKGRALS

In this section wc discuss how we attain a satisfactory
explanation of experiments on the basis of Eq. (3.14). The
discussion 18 necessary 81ncc some of thc picvious calcula-
tions' ' have shown agreemcnts between the conven-
t1onal thconcs and cxpenmcnts. I point out that thc
agreemcnts are fortuitous as a result of the fact that the
overlap integrals have been overestimated' ' or as a
result of the fact that the screened exchange term in
I (1234) has been replaced by the unscreened one '2 al-
though accuxate estimation of the overlap integxals has
been done. As for the latter case I have pointed out
that the replacement is incorrect; the screened exchange
tcrIIl Should bc used, as 18 done ln th1s paper.

Let us consider the overlap integrals by restricting the
discussion to the HCCC process and the HHSC pxocess.
%C define the wave-vector-dependent effective masses m2
and mi as follows. A ki /(2m') is the energy of a state 2
for the HCCC process shown in Fig. 1(a), which is mea-
sured upward from the CB edge. On the otheI hand,
A ki /(2m') is the energy of a state 3 for the HHSC pro-
cess shown in Fig. 1(b), which is measured downward
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(Ic,o
I IH, k & = (IH, Q

I Is, k & =0

if the effect of the bands outside the s-p subspace is
neglected as in Eq. (4.1). An alternative procedure of cal-

culating (Ic,o
I IH, k& and (IH, O

I is, k& is based on the
use of the oscillator strength, of which a careful discus-
sion is given below.

We first consider (Ic,o I I~, k &. If we make a k p per-

turbation expansion of
I II', k & starting with

I IH, O& as
the zeroth-order function, we obtain

Ii k /2mo
1&ic o IIH k& I'= fcH(o)

with the oscillator strength given by

f (0)= —,
'

I
gc(0)1' (43)

Here the subscripts C and H are used for lc and l~,
respectively, Ei(k ) is an energy for the band I, E~ a matrix
element with dimension of energy, ' and mo the electron
mass in the free space. We have ac(0)= 1 and
Ec(0) Ea{D)=Eg giving fcH(0) =Ep/(3Eg ). The
overlap integral (Ic,o I le, k & also appears in the theory
of PCAR. . In a good deal of the fjterature5'i2'i ' 5'

the estimation based on Eqs. (4.2) and (4.3) has been done
or seems to have been done. I have pointed out' ' that
this estimation is incorrect since HB and LB are degen-

erate at 4 =0: We cannot calculate
I IH, k & starting sim-

ply with
I IH, O&. Agreements which are found in some

caseszs 2s between the theory based on Eqs. (4.2) and {4.3}
and experiments can be ascribed to the use of the PCAR
theory; actually PAAR and/or IAAR should be taken

from the SB edge. Practically we use m2 and m3, which

are estimated at the threshold values of k2 and k3, respec-

tively, for BBAR. Taking into account the threshold con-
ditions, dependence of vo on the overlap integrals is given
in a form ~o

' ~ I', where

p=
I &ic, o

I IH, k2& I

'
I & Ic,o

I ic, k2& I

'

for the HCCC process and

p=
I (ic o

I IH ks& I
'1&IH o

I is ks& I

for the HHSC process. Hereafter let k represent k2 or k3.
According to Kane's k p method, we obtain the wave

functions
I I, k & for I =Ic, I =IL, and I = Is as

I
I k & =gi(k)

I
i» &+bi(k)

I
(x+iy) W» &

+ci(k)
I
zt &, (4.1)

where
I
is t &, 1(x +iy)/v 2& &, and

I
z t & are the wave

functions at k =0 in the s-p subspace. The energy of the
band I and the relevant coefficients ai(k ), bi{k ), and ci( k )

are calculated from characteristic equations of the k p
method, which represent direct coupling among CB, I B,
and SB. To these bands is coupled HB indirectly only
through interaction with bands outside the s-p subspace,

We can calculate (Ic,o
I
ic, k & simply from Eq. (4.1) but

we have

into account. A simple alternative method which I have

used' ' is to give Ilc, o& starting with
I ic, k& as the

zeroth-order function by the k.p perturbation expansion.
We obtain

with

Ii k /2mo
I &I o li k& I'= f

Ec(k}—EH(k)
(4.4)

1(ic,01IH, k & I
= fcH(k)

2moEG

in the literature' ' ' in accordance with the convention
and have found fortuitously good agreement between the
theory of vo and experiments. For this calculation we

wri«
I & Ic 0

I IH, k & I s while we write
I & Ic 0

I IH "& I a
for the calculation based on Eqs. (4.2) and (4.3).

Equation (4.5) is still not a rigorous expression for the
oscillator strength since the momentum matrix element

(Ic,k
I p IIH, k& in fc~(k) has been given under an ap-

proximation
I lss, k & =

I IH, O &: Thus we have neglected
the effect of the bands outside the s-p subspace. A
rigorous calculation of

I (Ic,o
I l~, k & I

has been done by
Lochmann from the first principle using the full-zone

double-group k p method. Since this calculation is too
tedious for a practical purpose, we adopt a simpler method
of solving Kane's 4X4 matrix, which is obtained by tak-
ing into account the bands outside the s-p subspace but
neglecting the spin-orbit interaction: This neglect is a
good aPProximation under Eg ~Pro and vari k /(2mo)
&&4o. In this method we obtain a form

IHk & =am(k }
I
s t &+Pa(k) I

x t &+rH(k) I y»
+5~(k)

I
zt & (4.6)

for HB, where the coefficients a~(k), PH(k), rH(k), and

50(k) are determined using the 4X4 matrix. Since the

coefficients are dependent on the direction of k, we con-

sider averages such as ( IaH(k)1 &„over all direc-
tions. We find

& I & {k)
I
'&-= & I rH(k }

I
'&.,= & 150(k) I

'&"

for various III-V compounds. The value of
(

I
aH( k)

I &,„may be sensitive to the spin-orbit splitting

fcH(k}= i lgc{k)l'
Ec(k)—EH(k)

The equations give a value of
I
( lc 0,

I
IH, k & I

smaller by
1 order of magnitude than the value given by Eqs. (4.2)
and (4.3). Here we give

Ec(k) EH—(k)=Ec(k } EH—(0)

as 2EG for the HCCC process and

Eg + (Eg Eo}ms/me( ks)

for the HHSC process, where mc(ks} is the CB mass at
k3.

Actually I have given Eq. (4A) approximately as
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which is neglected for the 4 g 4 matrix. In fact

( I
aH(k) I &,„ is too small especially if EG &ho. There-

fore, it is inadequate to use the direct relation

I (lc,0 llH, k& I =( laH(k) I &,„. Instead of using the
relation we calculate the momentum matrix element

(lc, k
I p I

1H, k& in fcH(k) using Eqs. (4.1) and (4.6). We
obtain

fcH(k}= 3 lac(k} I' ll a(k) I'
Ec(k }-EH(k}

both the HCCC and HH+C (under EG & bo} processes we

find
I
bH(k)

I
=0.89+0.06. Table II shows the calculat-

ed results of the products

P.= I &l„oil„,k, & I.'I (l,,oil, , k, & I',
Ps= I &lc, o llH»& Is I &lc 0 llc»& I'

and

P.= I &lc,o 11H, k~& I.' I «'0 ll'k~& I'

where we define

pH(k)k„+yH(k }ky+5H(k)k,
I
bH(k }

I

'=3
k

(4 7} for the HCCC process, and the products

P.= I &lc o
I
18 k3& I'1&1H 0 Iis k3& lb *

(4.8)

For the calculation based on Eqs. (4.4}, (4.7}, and (4.8) we

write I lc, o
I 1H, k & I c. We consider this to offer the most

rigorous calculation.
Next we consider (1~,0 I ls, k &. Discussions are analo-

gous to those for (lc,0
I lH, k &. To obtain the expressions

for (l~, o
I ls, k & the subscripts C and H in Eqs.

(4.2}—(4.8) are replaced by the subscripts H and S, respec-

tively, with the exception of bH(k) which is common to

fcH(k) and fHs(k}. We write
I (1H, O

I lz, k& I„
I ( lH, O

I lg, k & I s„, and
I (lH, 0

I lg, k & I,' for the calcula-
tions based on the pa1rs of equations correspond1ng to
Eqs. (4.2) and (4.3), Eqs. (4.4) and (4.5), and Eqs. (4.4}and

(4.7), respectively. We have
I (10,0 I ls, k & I, =0 because

of az(0) =0. Conventionally
I (!H,O

I lz, k & I b has been

used. However,
I (lH, O

I lz, k & I, offers the most

rigorous calculation based on fHs( k ).
The value of

I
bz(k }I, which is commonly involved

in the expressions of
I (lc,o

I
10,k & I, and

I (lH, O
I ls, k & I „is calculated under the threshold condi-

tions of the HCCC process and the HHSC process. Ma-
terials Gai „Al„As, InAS„P]» In~ „Ga„AS&Pi ~, and
GaSb are taken as examples. For these materials and for

and

P, = I &l,,o I i„,k, & I,'I (l~, o ll„k, & I,'

for the HHSC process. In the table we also show

P,' = [1+4(eo—I )leo]P, .

It should be noted that P„P~, and P, correspond to ~o
'

and P,' corresponds to r ' in Eq. (3.14). We see that P, is
quite incorrect as compared to P, even though this has
frequently been used for the calculation based on the con-
ventional formulas. Although P& is a result of the im-

proved calculation, P~ is larger than P, . However, it is of
special importance that P,' fairly agrees with P~, since the
calculations of vo based on Pb have given a satisfactory ex-
planation of experiments for P-type GaAs (Refs. 13 and
16) and n-type InAs. ' ' This shows that ~, i.e., Eq.
(3.14), gives an accurate description of experiments. Dis-
cussion concerning the overestimation of the overlap in-

tegrgs has also been given from a different view point in
Ref. 33.

In conclusion, although a number of calculations of the
BBAR rate have led to agreements between theories and
experiments, the agreements are fortuitous as long as the
calculations have been based essentiaBy on wo. Vfe should

TABLE II. Values of P„Pb, P„and P,'.
Material

GaAs
Gao SA10 2As

InP
InAso 6PO 4,

InAs
GaSb

Ino 9)Gao O9Aso 2PO 8

in0. 7zGao. zsAs0. 6P0.4

Ino, 53Gao g7As

P,

0.72
0,84
0.77
0.61
0.68
0.70
0.69
0.64
0.64

Pb

0.23
0.27
0.23
0.19
0.20
0.22
0.23
0.22
0.22

0.10
0.11
0.097
0.083
0.095
0.087
0.10
0.10
0.10

P,
'

0.48
0.52
0.46
0.39
0.45
0.36
0.47
0.47
0.47

GaAs
Gs, ,A)O, As

InP
InAso 6Po 4

InAso SP() 2

Ino.91Gso.09As0.2PO. 8

Ino.72Gao.zsAs0. 6P0.4
Ino 53Gao ~7As

0.081
0.083
0.088
0.073
0.10
0.098
0.092
0.071

0.035
0.039
0.037
0.031
0.018
0.042
0.040
0.029

0.019
0.020
0.018
0.016
0.$80
0.021
0.022
0.015

0.087
0.095
0.082
0.075
0.042
0.099
0.10
0.070



use Eq. (3.14) for a rigorous calculation under a careful es-
timation of the overlap integrals. This is important espe-
cially at the present stage when a discussion of semi-
conductor laser operation requires a high-accuracy calcu-
lation of the BBAR rate. In order to find the overlap in-
tegrals, use of the oscillator strength under

~
bH(k)

~

=0.89 is recommended for practical purposes.
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