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I show that electron-hole plasma interaction has a very important effect on band-to-band Auger
recombination in semiconductors. The effect is an enhancement, by a factor of about 5, of the
Auger recombination rate as compared to the value calculated with the neglect of the electron-hole
plasma interaction. Quantitative agreements between theories and experiments in a number of previ-
ous papers are fortuitous as a result of overestimation of overlap integrals. By careful estimation of
overlap integrals the present theory gives a satisfactory explanation of experiments.

I. INTRODUCTION

The band-to-band Auger recombination (BBAR) of ex-
cess carriers in semiconductors is an intrinsic nonradiative
process which is important under high concentrations of
free carriers. A number of theoretical and experimental
investigations'~* have been made on the basis of the
pure-collision Auger recombination (PCAR) since a suc-
cessful work by Beatie and Landsberg.® This process has
offered, for order-of-magnitude estimation, a satisfactory
explanation of experiments when at least one of the fol-
lowing conditions is satisfied: a narrow direct-gap materi-
al, high temperature, and/or degenerate statistics. To ex-
plain experiments under some other conditions, e.g., espe-
cially under an indirect-gap material, phonon-assisted
Auger recombination (PAAR) has been proposed.®
Theories of PCAR (Ref. 5) and PAAR (Refs. 7—10) have
been based on the first-order and the second-order pertur-
bation treatments, respectively.

Recently, I have given a theory'! based on the Green’s-
function formalism through which the effect of energy-
level broadening due to some scatterings can be taken into
account. The theory is of general use since PCAR is ob-
tained as a special case where the scattering effect is not
considered. On the basis of the theory I have studied
PAAR (Refs. 12 and 13) and the impurity-assisted Auger
recombination'*~ 6 (IAAR). I have found that the PAAR
rate is considerably larger than that based on the second-
order perturbation treatment especially at high tempera-
tures as well as the PCAR rate under almost all condi-
tions. This situation is the same for IAAR but the differ-
ence between the IAAR rate and the PCAR rate is small
under some conditions.

The Green’s-function formalism of BBAR starts with
the four-particle Green’s function. Then the function has
been given approximately as a product of four one-particle
Green’s functions, giving a final formula. The approxi-
mation corresponds to neglecting interactions among four
particles which intervene between the initial state and the
final state for the Auger transition. I have shown!! that
the effect of the neglected interactions on BBAR is unim-
portant with the exception of the PCAR case. The in-
teractions result in energy shift of the interacting particles
on the one hand and in particle rearrangement due to
electron-hole plasma interaction on the other hand. All
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the discussions'! of the effect of the interactions have been
based on the first-order perturbation treatment. Actually,
however, the electron-hole plasma interaction should be
treated including all series of the expansion. This is a
weak point of the treatment in Ref. 11.

The purpose of the present paper is to offer improved
treatment of the electron-hole plasma interaction. As a re-
sult the BBAR rate in this paper is by a factor of about 5
larger than that in Ref. 11. It has been stated above that
the PAAR rate in Ref. 11 is considerably larger than the
results of the conventional calculations. In view of this
fact, the conventional calculations are also expected to
yield quite erroneous numerical results. Despite the ex-
pectation these calculations have often been shown to give
a satisfactory explanation of experiments. I show that the
agreements are fortuitous as a result of overestimation of
overlap integrals. I point out that the overlap integrals
should carefully be estimated in order to attain good
agreement between the present theory and experiments.

II. BASIC FORMULA

In this section we discuss the effect of carrier-carrier in-
teraction on BBAR. We consider the Auger transition
shown in Fig. 1(a), where a carrier 1 and carriers 2,3,4 be-
long to the valence band (VB) and the conduction band
(CB), respectively, and in Fig. 1(b), where carriers 1,2,3

VB 2

3
(a) (b)

FIG. 1. BBAR in (a) the VCCC process and (b) the V¥VVC
process.
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and a carrier 4 belong to VB and CB, respectively. Let us
call the processes shown in Fig. 1(a) and in Fig. 1(b) the
VCCC process and the VVVC process, respectively, in nu-
merical order of the labels 1, 2, 3, and 4 in the figure.

Let us start with quite a general expression for the
excess-carrier lifetime 7 of BBAR, which is given in Ref.
11 as

%=_ ¥ z I‘(1234)F(5678)A1234Ime(/,tA) .
5,6

(2.1)
Here # is the Planck constant divided by 2w, nc the
excess-carrier concentration in CB, and V the crystal
volume. The number m (=1,2,...,8) in the summand is
the abbreviation of m =1, E,,, o, for a state with the band
index I,,, the wave vector E,,,, and the spin o,,: It should
be noted that at present the number m (=1,2,3,4) does not
necessarily correspond to the label m in Fig. 1, represent-
ing all possible states. We write

A=Al =)+ AL, =)

—AUy—Ic)— Al —I¢) 22)

where /- denotes CB: With x as a scalar or a vector we
define A(x)=1 if x =0 and A(x)=0 otherwise. Assuming
that the CB system and the VB system can be described by
quasi-Fermi-levels uc and uy, respectively, we define

pa=(c—pny)Ans, - 2.3)

I'(1234) is related to the Fourier component of the
electron-electron screened Coulomb interaction U(k)/V,
which is given for the bare potential 7”(k)/V, i.e.,

47e
r0="7 24
as
v =2k 2.5)
e(k)

In Egs. (2.4) and (2.5) e is the electronic charge and e(k)
represents the dielectric screening due to host lattice and
free carriers, which is given later. Thus we define

F( 1234)———%,[ U( El— E4)A(U|—U4)F14F23
— U( El—i3)A(Ul—U3)Fl3F24]

(2.6)
|

XA(py+p2—p3—p4)
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where p,, =fmam,
AP —pp)=A(K,, —K,) A0 —0,) ,

and Fpp = (1, Ky | I, K, ) is the overlap integral between
the modulating parts of the Block functions |I,,,k,, ) and
|1s,ky ). Use of I'(1234) is the convention to give the
Hamiltonian in a convenient symmetric form

In Eq. 2.1) GR(uy) i is obtained from G§(w), where  is
an energy variable. G§(u,) is the four-particle retarded
Green’s function, which can be related to the four-particle
temperature Green’s function ¥ ,(i€). Hereafter let
§/(wT) and 7/(wT), where T is the thermal energy, be an
even integer and an odd integer, respectively, when £ and
71 are used in a temperature Green’s function of any kind;
thus £ and 7, with suffixes attached to or not, take
discrete values. A relation we use is

G w)=Y (0 +ib) Q.7
pnder 80", F(i€) is the Fourier component of Z ,(7),
ie.,

G i&)= fol/TdTexp(i§T)94(‘r), (2.8)
where we define

G (1= —(T @l (nal(ra,(r)a,r)

X@H0)a}(0)a,(0)a(0))) . 2.9)

In the equation T, is the Wick chronological operator,
—T. ﬁ 0 ) N
@, (T)=exp(tH,)a,, exp(—7H,) ,

with H, as the Hamiltonian described below, and (%)
=Tr(po7 ), where

Q—H,
T

~t 7 .1
m(T)=exp(7H{)a,, exp(
a,,(7)=exp(tHy)a,, exp (2.10)

Po=e€Xp (2.11)

under the definition of a constant Q through Trpy=1.
We define H,, as

Ho=Ho—pcNe—pyNy 2.12)

where H, is the Hamiltonian consisting of the unper-
turbed Hamiltonian for electrons and the perturbations,
i.e., the electron-electron interaction and some other
scatterings such as the electron-phonon interaction and the
electron-impurity interaction: ﬁc and N y are the number
operators for the CB system and for the VB system,
respectively.

Now our task is to find & 4(7) from Eq. (2.9). Follow-
ing the procedure in Ref. 11, we use an approximation

Gyr)=—-49(1, 11)5(8,27)9(31,5)9 (41,6) —4 % (7, 11)?(31',5)93,4(4,8;2,6:1)

+49(1,17)9(47,5)9%,(3,8;2,6:7) —
+49(1,219(31,5) 9%,

+49(37,5)9(47,6)955(7,8;1,2: — 1),

49(1,21)9 (41,593,

(4,8;1,6:7)+4%(7,11)9(8,21) 955

(3,8;1,6:7)

(3,4;5,6;7)

(2.13)
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where we define

G(mr,n)=—(T @, (ral(0)), (2.14)
9(m,n7)=—(T,(iz’m(O)iz’,.(r))) , (2.15)
G24(1,2;3,4:7)= (T (@} (n)a, (1} (0)@,(0)))

(2.16)
9,5(1,2;3,4:7)=(T(a,(r az(*r)a;, 0)a4 ).

(2.17)

Here & is the one-particle temperature Green’s function,
& ,4 is the two-particle temperature Green’s function
describing electron-hole scattering, and &, is the two-
particle temperature Green’s function describing electron
(hole)—electron (hole) scattermg, the bound parts of ¥,
and 9, are denoted by ¥4, and ¥y, respectively. In
Eq. (2.13) the first term is the free part and the residual
six terms are obtained by decomposing the bound part into
all possible combinations of interacting and noninteracting
pairs. In Ref. 11 the bound part is neglected and the free
part alone is retained.

In order to calculate % 4(i£) from Eq. (2.8) we make use
of the following relations:
1 ©
— [ dol1-6)

Y(mr,n)= ImGR(m,n;w)

X exp(—w7) , (2.18)

9(m,n'r)=——;lr- f__: dw O(0)ImGR(m,n;w) explwr) ,
(2.19)
92(T)=%f_:odw[P(a)H—l]ImG?(w)exp(—arr), >0
(2.20)
92(T)=i f:ﬂde(w)Ime(w)exp(-wT), 7<0.

2.21)
I

4
So+ 3, (—1)"S,

n=1

Ime(a))z—% exp | ——
T

So=A(p;—p1)A(Ps —P2)A(Ps —P3)A(Ps—P4)

4
X [do, [do, [ do; [ dod(o;+0;—03—0s—pc+uy)010,(1—05)(1—6,) [T ImG*(Fp,0m) ,

$1=AF—p)APs—53) [ do, [ do; [ do'd(0+01—03-0)0,(1-6,)[ P
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Here 9,(7) represents 9,4(1,2;3,4:7) or 9,5(1,2; 3,4:7).
GR(m,n;0) and GX(w) are the one-particle retarded
Green’s function and the two-particle retarded Green’s
function, respectively, which are obtained from

GRim,n;0)=%(m,n;0+i8),

and G§(0)=9 0 +i8); F(m,n:in) and F,(i§) are the
Fourier components of ¥ (mt,n) [ (m,n7)] and ¥ ,(7),
respectively, which are given from Eq. (2.8) by replacing
%, with the relevant-temperature Green’s functions. In
Eqgs. (2.18)—(2.21) we define

1

O(w)= 5 (2.22)
exp % +1
1
exp 21-1
T

As for ¥(m,n;w) we consider only the intraband, spin
conserving, and wave-vector conserving scatterings. These
are the cases for the carrier-carrier interaction and the
electron-phonon interaction. On the other hand, the wave
vector is not conserved for the electron-impurity interac-
tion under random distribution of impurities. However,
the wave-vector conservation is restored by considering
the ensemble average over all the impurity sites.!*!7!® We
can write

G (m,n;in)=A(p,, —pn) G (m,in) , (2.24)

where p,=m=I,k,,op,,

A — ) =AUl —1,)A(Kp, — K, )A(Gp —0)
and ¥(m,in) is a newly-defined one-particle temperature
Green’s function. Usm%z Egs. (2.18)—(2.24) we obtain

G ,(i§), from which ImG () is found using Eq. (2.7) as

(2.25)
(2.26)
=1
w')+1]
X ImGR(5), 0 IMGR(F;,0;)ImGRE(4,8;2,6:0") . 2.27)

S5, S3, and S, are obtained from S| under mterchanges of suffixes and mdlces, 1 e, 324 for S,, 1=

and 1222 for S,. We use abbreviation 8,, =0(w,,). Gy

22 and 34 for S;,

is the bound part of GX. The terms S, and S, come from the

first term and the (n + 1)th term of Eq. (2.13), respectlvely The reason why terms corresponding to the sixth and the

seventh terms do not appear becomes clear later.

Now we are at the position to find out the expression for InG Rb(1,2;3,4:0). We make use of the relation

G24(1,2;3,47)=T* 3 expl —i (0, —13)71F 24(1,2;3,4:im,,im3) .

M3

(2.28)
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From this we obtain

G24(1,2;3,4i8)=T 3, T ,4(1,2;3,4iimy,in, —i§) . (2.29)
m

The bound part of &,, represents the electron-hole plasma interaction shown by a diagram in Fig. 2(a) in terms of
1(1234) describing the interaction between two carriers. Consider an irreducible diagram of y(1234) and let 7(1234) be
the contribution of these diagrams, called the irreducible interaction of two particles.!* Then we obtain, neglecting an
unimportant term for the free part,
G (1,2;3,4im,,im3) = — APy —pa)AF2 —§3)F (B1,in) I (B3,im3)
—~TYE )Y Pam) 3 1(1536)9,,4(6,2;5,4:im4,ins) . (2.30)

N5:Ps5:NeyPe

The term of the lowest order in the modified interaction U(K) of I(1234) is given as
1(1234)= iV[U( K1—Ka)A(0) —04)F14F23— 7 (K, — K3)A(0y—03)F13F 24 JA(py +p2 —p3—ps) . 2.31)

The first term and the second term in the square brackets of the equation represent the Coulomb term and the exchange
term, respectively. The exchange term is not modified since I(1234) is irreducible.?%?! With the use of Eq. (2.31) we
find that in Eq. (2.30) the Coulomb term is only an energy correction, which we neglect for the reason described later.
We obtain the bound part of F,, as

7(K;—K3)

o _ . _ . ]
72(1,2;3,4=1m,m3)=-—9(171,1171)g(ps,ms)%(pz,pum—mﬁ; e
€(k;—ks,in—ins3)

X F3F3Al0)—03)A(py+p2—p3—ps) (2.32)
where
H P sPn3iE)=T 3, G (P in' )G (Byim’ +i€) (2.33)
2
( E,ig)zl——:;V(l_{) S 5150 | Fia | 20— o) AK +K,—Ky) . (2.34)
PP,

With the use of Eq. (2.29) the bound part of &, is
, 1 7(K;—ky)
UL 23,408)= = == FisFa B3, 516X 52,55 €)M 01— 03)A(p1 +py —p3 —pa) - (2.35)
e(k;—k3,i8)
Transforming the summation of Eq. (2.33) into the contour integration,'” we obtain under & > 0,
H (D Pn3i€)=— i [ do ©()[ImGR(5,,,0)GR(5,,0+i&) +ImGR(,,0) MG, 0 —i£)] , (2.36)
where G4 is the advanced one-particle Green’s function. From Egs. (2.35) and (2.36) we obtain after some manipulations,
7(K —K3)

1
ImGR(1,2;3,4:0) = ﬁ—ﬁmmmm —03)A(py +Ppy—P3—Pa)
€l 1— K30

1
Xfdwlfdwzfdwsfdw4m[5(wx—ws—w)—ﬁ(wa—wz-w)]
4
X (6,—05)(8,—64) [[ IMG (B, 0m) - (2.37)
m=1

We write hereafter e(kK,w+i8) simply as €( K,0).
pr we give a brief discussion of $%5(1,2;3,4:7) in Eq. (2.13). Consider the Fourier component ?'Z’B( 1,2;3,4:im,in,).
Noting that this represents the electron (hole)—electron (hole) interaction as shown in Fig. 2(b), we obtain!’

F55(1,2;3,4:im1,im) =G (5y,in)) % (By,in,) T S 1(1256)F55(5,6;3,4:ims,in6) » (2.38)
1’5155’776!56
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—>— G(m,ip

(a) (b)

FIG. 2. Diagrams representing (a) the electron-hole interac-
tion and (b) the electron (hole)—electron (hole) interaction.

where we take 1(1234)=T"(1234) as the term of the lowest
order in U(K). We find that ?12’3(1,2;3,4:1'7;,,1'172) gives
an energy correction in ¥,5(1,2;3,4:im,,in,) so that we
omit F35. As a result the sixth and the seventh terms in
Eq. (2.13) are omitted. Modification to BBAR comes

(K 0)=1— —:;V(E) S H,(51,52;0) | Fiz | 2Alo,—0y) AR+ K — K,)
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essentially from the electron-hole plasma interaction.

Here we discuss the terms giving energy corrections
which have been neglected in the equations for &,, and
Y 5. Those terms lead to modification of the free part of
9 4 on the one hand and to that of the dielectric screening
constant on the other hand. The modification of the free
part of &4 has been fully discussed in a previous paper,'!
showing that the effect is negligible except in the case of
PCAR. The modification of the dielectric screening con-
stant, which appears only in relation to ¥,,, is given in
terms of a renormalized energy, which replaces the bare
particle band energy. In BBAR the screening effect due to
free carriers is negligible while that due to the host lattice
is important. The screening due to the host lattice comes
in large part from states of large energy so that the effect
of the renormalization is negligibly small.

Let us discuss e( l—(',a)), which is implicitly involved in
ImGR(us). We take into account the fact that practically
the energy o in €( K, o) is found to be the band-gap energy
in the case of BBAR. Then we can put =0 and neglect
the imaginary part of e K,»). With the use of Egs. (2.34)
and (2.36) under the neglect of the imaginary part of
e(k. ,@) we obtain

(2.39)
120 2)
where
Hy(p1,5y0) =5 [doy [ do—2 =% 10625 0 mG R (py0y) . (2.40)
‘Irz HJ]'—602+(1) ’ 2 )
Actually we use €/ K,0)=¢l K,0)=e(k), where (k) has been defined in Eq. (2.5).
Use of Egs. (2.1), (2.25), and (2.37) leads, after some manipulation, to
1 - 2 ex Hc—Hy -1
T ﬁ‘ﬂ':’ch P T
X 2’ fdanfda)zfdw3fdm48(w1+w2—a)3—w4—uc +,UV)9192(1—93)(1-——94)
1,2,3,4
4 4
X |Qo+2 3 @n | [I ImGR(pp0m), (2.41)
n=1 m
where
Qo= |I'(1234)|2, (2.42)
1 .- =
Q= 7U( kys—ky) 3, Re[T(1234)T'(3516)F ,F 65 1H,(Pg,'s;04—02)A(04— 03)A(p4 +Pps—P2 —Ps) - (2.43)

Ps:Pg

Q,, 03, and Q, are obtained from Q, under interchanges
of subscripts, i.e., 324 for Q,, =22 and 34 for Q3, and
122 for Q4, noting the relations

I'(1234)=—T'(2134)=—T'(1243)=T(2143) .

We have also used I'(3412)=T'(1234)*, e(k,0) =€(k), and
Eq. (2.5). Itis to be noted that 3’ in Eq. (2.41) means the
restricted summation over the states 1234=VC’'CC or
VVV'C, where C' and V' represent energetic states for an
electron in CB and for a hole in VB, respectively. The

terms Q, and Q, correspond to the first term and the
(n+1)th term of Eq. (2.13), respectively. Thus Qg
represents the BBAR rate in an approximation of nonin-
teracting carriers and Q, the correction arising from the
electron-hole scattering. We write

1 1
—+ ’
To Tcor

1_ (2.44)
.

where 7 and 7, come from Q; and Y, Q,, respectively.
Thus 7 is the conventional BBAR lifetime used in previ-
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TABLE 1. Properties of Q,’s
Interacting Relevant
Process Term states bands Note
ycee 01=0; 2-3 C'B-CB Neglected
24
0,=0. 1-3 CB-VB
1-4
| 244%: 0:1=0, 1-4 CB-VB
2-4
Q=03 1-3 V'B-VB Neglected
2-3
*We consider HHVC.
ous papers'>~!¢ and r_;! is the correction to 75 ', whose

discussion is the central subject in the following sections.
Note that G®(p,,,0,) in Eq. (2.41) is the complete
Green’s function, through which all scattering effects such
as the phonon scattering effect, impurity scattering effect,
and carrier-carrier scattering effect can be taken into ac-
count in terms of the self-energy =(p,,,0,,). Let us ex-
pand G® in a power series of = as
GR=GE+G&=GE+ --- , (2.45)
where G¥ is the free-particle Green’s function. We con-

J

I‘(1234)=(f1,g1)=LV[f,A(Ul—ou)—glA(ol—03)]A(P1+P2 —P3 _P4) ’
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sider the phonon scattering effect as an examgle. We use
Eq. (2.45) in Eq. (2.41) and give [} _,ImG*(p,,0,) in
a power series of . Then 7! can be given as a sum of
inverse lifetimes for PCAR in the first-order perturbation
theory, for PAAR in the second-order perturbation
theory, and for terms in the higher-order perturbation
theory. If the higher-order terms can be neglected, we ob-
tain PCAR and PAAR as independent events. Therefore,
the correction due to the electron-hole scattering is prere-
quisite for all types of calculations.

III. CORRECTION TERMS

In this section we discuss the corrections Q,’s in Eq.
(2.41) with particular attention to CB, the heavy-hole band
(HB), the light-hole band (LB), and the spin-splitoff band
(SB) as states 1,2,3,4 in Fig. 1. Those bands are denoted
by I¢c, Iy, I;, and [, respectively, and let E; and A be the
band-gap energy and the spin-splitoff energy, respectively.
As for the V¥V VC process we consider only the HHVC pro-
cess, which is usually of practical importance. Some
properties of Q,’s are shown in Table I. Equalities in the
second column come from equivalent roles of electrons 3
and 4 in Fig. 1(a) and of holes 1 and 2 in Fig. 1(b) in
BBAR. The terms in the first and fourth rows are
neglected because scatterings are for energetic carriers.

First we consider Q@ for the HHVC process. It is con-
venient to define

(3.1

where f, and g, are found from Eq. (2.6). Similarly we define I'(3516)=(f>,g;). By performing a summation over spin

states, we obtain for Q,

Sr=2 I( 1234)r(3516)F42F65A(04'—Uz)A(U4+O’6—0'2—(75)

spin

=2(f, —2g1)f2—2g2)F42F65A(E1+E2—Eg—i4)A(§3+E5—E1—E(,) .

From close similarity between the expressions for 7 and 7,
we can make use of an approximation adopted usually for
7o Quantities other than the statistical factor are evaluat-
ed under the threshold condition of BBAR and taken out
of the summation and the integral. Let us assume that
some scatterings such as phonon scattering are present. A
scattering effect on BBAR is to relax the momentum-
conservation requirement in PCAR. The threshold condi-
tion'! is

(a) 1—(" = I(’:;, Ezz E4=O
or

(b) K,=k3;, k;=K4=0,

where E; is the wave vector at the threshold for an ener-
getic hole: We assume that k; is of significant magnitude.
The two conditions (a) and (b) come from equivalent roles
of 1 and 2. For Q, we need to know Sy under both

E4+ Ke— Ez— §5=0 and the condition (3.3). We find
St =0 under the condition (a) and S0 under the condi-
tion (b). On the average over both cases we obtain

Sr=(4|gy|*|Fes|*—2g) f2F,Fes)

XAK,+Ky—K3— Kg)A(K3+ Ks— Kk, —Kg) (3.4)

under the condition (b). It is important to note that the
threshold condition has been considered for the states
1,2,3,4 but not for the intermediate states 5 and 6. Thus
Ps and pg can still cover all possible states allowable for
K4+ Kg—K,— K5=0.

In order to consider Sy under the threshold condition
(3.3) we make use of an approximate form??

(LK | 11 K ) =Eppy (K —Kp)

where I; denotes HB and / denotes CB, LB, or SB. E,H is
given by Kane’s kP method? in a form

(3.5)
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Em=E6+i8) (3.6)

where €, and €, are unit vectors in the x and y directions,
respectively, and &, is a material parameter. Hereafter let
us assume spherical energy surfaces for all bands. Since
all quantities other than St in Eq. (2.41) are spherically
symmetric with respect to l_(.3, we give St by taking an an-
gular average over K;. Then the second term of Eq. (3.4)
vanishes so that we obtain

Sr=4|g1 || Fes | *A(K, + k,— k3—K,)
XA(k3+ks—k;—Kg) . 3.7)

Next we consider Q3 for the HCCC process. Assuming
also that some scatterings are present, the threshold condi-
tion'! is

(3.8)

where l?z is the wave vector at the threshold for an ener-
getic electron. By the discussion similar to that given
above,

Sr=13 T(1234)T(4526)F3, Fes
spin

XA(0'3—0'1)A(0'3+05—0'|—05) (3.9
for Q) is rewritten as
Sr=4|g;|? | Fes le(il-i-Ez—Es—EA)
X A(K3+Kkg—K;—Ks) . (3.10

Let us rewrite Q; and Q; with the use of Eqgs. (3.7) and
(3.10). Since Q; and Q; represent the electron-hole in-
teraction, for intermediate states 5 and 6 we have /5=I¢
when l¢=Iy, and vice versa where I, denotes VB. It
should be noted that /5 and I¢ cover all bands. Here we
make use of Eq. (2.39) noting that e( E,w) can be written
as

e(k,0) =€ k,0)+€/(K,0), (3.11)

where € E,w) and €4 ( E,w) represent the dielectric screen-
ing due to the host lattice and free carriers, respectively;
€o(k,o) is obtained from Eq. (2.39) by restricting the sum-
mation over ﬁ] and ﬁz to (I]-:Ic, 12=Iy) and (l|=ly,
I,=Ic): Summation over all other possible states gives
€7(K,0). With the use of Egs. (2.39), (3.7, (3.10), and
(4.11) we obtain

€—1
Q,=—4|g,|>——— (for HHVC) ,
€! 4‘-‘k])
(3.12)
-1
Q3=—4!g1|2—§~;— (for HCCC) .
6(1(3—-—1{])

Here we have neglected the w and k dependence of

€l K,»). This is approximately equal to €,(0,0)=¢, since

in BBAR we have o ~Eg and K is nearly at the center of

the first Brillouin zone especially for direct-gap materials.
As for Q, we obtain

3 ITA) 2=21 £ 2+ g1 |2+ | fi—&1 | .
spin

(3.13)

This becomes 4|f, |2 4|g,|% and 2(|f; |2+ |g:|?
under the conditions (3.3a), (3.3b), and (3.8). Since we find
f1=8, for the threshold conditions, we finally obtain

4(60"-'1) L

lz 1+ — ,
T eky) To

(3.14)

where k7 is the threshold value of k, for the HCCC pro-
cess and k; for the HHVC process, respectively. Here we
have used the relations e(k,w)=€(—K,—w), E4— K,
=—k; under the condition (3.3b), and K;—k,;=k,
under the condition (3.8).
The Thomas-Fermi approach gives
eK)=¢

2
1+%; , (3.15)

where A is the inverse screening length. Usually we have
k1 >>A so that to take e(k ) =¢ is a good approximation.
We see that Eq. (3.14) gives the BBAR rate larger by a
factor of about 5 than the conventional one, noting that
we have €5~ 10.

Although the discussion has been given for the case
where some scatterings are present, we find that Eq. (3.14)
is also useful under the threshold condition of PCAR.
Thus Eq. (3.14) is useful in almost all cases where Ty is
calculated on the basis of the first-order perturbation
treatment, of the second-order perturbation treatment, and
of the complete Green’s-function formalism. This point
has been stressed just below Eq. (2.45). The only case
where Eq. (3.14) is not useful is the HHSC process under
Eg < Ao, where A, is the spin-splitoff energy. In this case
we have k3;~O0 at the threshold and we cannot give St in a
tractable form.

IV. DISCUSSION OF OVERLAP INTEGRALS

In this section we discuss how we attain a satisfactory
explanation of experiments on the basis of Eq. (3.14). The
discussion is necessary since some of the previous calcula-
tions'*?4=2° have shown agreements between the conven-
tional theories and experiments. I point out that the
agreements are fortuitous as a result of the fact that the
overlap integrals have been overestimated'>?6~% or as a
result of the fact that the screened exchange term in
I'(1234) has been replaced by the unscreened one?*? al-
though accurate estimation of the overlap integrals has
been done.® As for the latter case I have pointed out®
that the replacement is incorrect; the screened exchange
term should be used, as is done in this paper.

Let us consider the overlap integrals by restricting the
discussion to the HCCC process and the HHSC process.
We define the wave-vector-dependent effective masses m,
and m; as follows. #°k,%/(2m,) is the energy of a state 2
for the HCCC process shown in Fig. 1(a), which is mea-
sured upward from the CB edge. On the other hand,
#°k32/(2m3) is the energy of a state 3 for the HHSC pro-
cess shown in Fig. 1(b), which is measured downward
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from the SB edge. Practically we use m, and m;, which
are estimated at the threshold values of fz and E;, respec-
tively, for BBAR. Taking into account the threshold con-
ditions, dependence of 7, on the overlap integrals is given
in a form 75 ! « P, where

P=|(1c,0|lg,K3) |* | {Ic, 0| Ic, k) |2
for the HCCC process and
P=|{1c,0 |1y, K3} | | (15,0 | Is,K3) | 2

for the HHSC process. Hereafter let K represent K, or k.
According to Kane’s k*P method,”® we obtain the wave
functions |/,k) for I =l¢, | =I;,and =I5 as

| LK) =a)(K) |ist ) +b;(K) | (x +ip)/V21)

+e(K)|zt), 4.1)

where |ist), |(x +iy)/V2l), and |zt) are the wave
functions at k=0 in the s-p subspace. The energy of the
band I and the relevant coefficients @,(k), b;(k), and ¢;(k)
are calculated from characteristic equations of the K-P
method, which represent direct coupling among CB, LB,
and SB. To these bands is coupled HB indirectly only
through interaction with bands outside the s-p subspace.

We can calculate (Ic,0 | Ic,k ) simply from Eq. (4.1) but
we have

(Ie,0 | 1z, K Y= (1,0 | Is,K ) =0

if the effect of the bands outside the s-p subspace is
neglected as in Eq. (4.1). An alternative procedure of cal-
culating (Ic,0|ly,K) and (lg,0|ls,k) is based on the
use of the oscillator strength,* of which a careful discus-
sion is given below.

We first consider {Ic,0 | Iy, k). If we make a k-P per-
turbation expansion of |ly,K) starting with |ly,0) as
the zeroth-order function, we obtain

ﬁ2k2/2mo

Ic,0 | lg,K) | 2= ———"—fcn(0 4.2
[ {Ic,0 |lg,k) | EC(O)—EH(O)fCH( ) 4.2)
with the oscillator strength given by
E
fen(0)=7|ac(0)|? ; (4.3)

Ec(0)—Eg(0) ~

Here the subscripts C and H are used for I and Iy,
respectively, E;( K) is an energy for the band /, E, a matrix
element with dimension of energy,’! and m, the electron
mass in the free space. We have ac(0)=1 and
Ec(0)—Ey(0)=Eg, giving fcy(0)=E,/(3Eg). The
overlap integral {Ic,0 |ly,k) also appears in the theory
of PCAR. In a good deal of the literature>!%1415:26-28,32
the estimation based on Egs. (4.2) and (4.3) has been done
or seems to have been done. I have pointed out'*? that
this estimation is incorrect since HB and LB are degen-
erate at k=0: We cannot calculate | IH,E) starting sim-
ply with |l4,0). Agreements which are found in some
cases?*~28 between the theory based on Eqs. (4.2) and (4.3)
and experiments can be ascribed to the use of the PCAR
theory; actually PAAR and/or IAAR should be taken
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into account. A simple alternative method which I have
used'»? is to give |Ic,0) starting with |Ic,k) as the
zeroth-order function by the l_f-ii perturbation expansion.
We obtain

- - #k2/2 -
|Ue,0 | 1, K) | 2= — =20 oK), 44)
Ec(X)—Eg(K)
with
- ) =g Ep
fCH(k)=-3-|ac(k)l _— (4.5)

Ec(K)—Ex(¥)

The equations give a value of | {/c0, |ly,K ) |? smaller by
1 order of magnitude than the value given by Egs. (4.2)
and (4.3). Here we give

Ec(K)—Eg(K)~Ec(kK)—E(0)
as 2E for the HCCC process and
Eg+(Eg—Ag)ms/mc(K3)

for the HHSC process, where mc(K;) is the CB mass at

k;.
Actually I have given Eq. (4.4) approximately as
P #k? -
2_
| {Ic,0 | Iy, k) |*= 2moEq fen(k)

in the literature!>!%?° in accordance with the convention

and have found fortuitously good agreement between the
theory of 7o and experiments. For this calculation we
write | (Ic,0 |,k ) |3 while we write | {(Ic,0|ly,K) |2
for the calculation based on Egs. (4.2) and (4.3).

Equation (4.5) is still not a rigorous expression for the
oscillator strength since the momentum matrix element
(Ic,K | B |Iy,K) in fcy(K) has been given under an ap-
proximation |ly,k)=|ly,0): Thus we have neglected
the effect of the bands outside the s-p subspace. A
rigorous calculation of | {Ic,0 | Iy,K ) | * has been done by
Lochmann® from the first principle using the full-zone
double-group Ef)’ method. Since this calculation is too
tedious for a practical purpose, we adopt a simpler method
of solving Kane’s 4 X 4 matrix,2® which is obtained by tak-
ing into account the bands outside the s-p subspace but
neglecting the spin-orbit interaction: This neglect is a
good approximation under Eg>>A, and #k2/(2m,)
>>Aq. In this method we obtain a form

[ 1gK ) =agy(K)|st)+By(K) | x1) +ru(K) | y1)
+85(K)|z1) 4.6)

for HB, where the coefficients ag(K), By(K), yu(K), and
8y(k) are determined using the 4X4 matrix. Since the
coefficients are dependent on the direction of k, we con-
sider averages such as (|agy(k)|?),, over all direc-
tions. We find
(1B [ 2= 78 (K) |2 av= ([ 8 (K) [Py
~1t s (ag(K)] P

for various III-V compounds. The value of
(| ag(k)|?),, may be sensitive to the spin-orbit splitting
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which is neglected for the 4X4 matrix. In fact
(|ag(K)|?),, is too small especially if Eg <A, There-
fore, it is inadequate to use the direct relation
| {Ic,0 | Ig,K ) | 2=( | ay(K)|?),,. Instead of using the
relation we calculate the momentum matrix element
(Ic,K | B | ly,K ) in feu(K) using Egs. (4.1) and (4.6). We
obtain

E,

fen(K)=1 |ac(K)|? |by(k) | P—Fr~P—r
E-(k)—Eg(k)
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both the HCCC and HHSC (under E; > Ag) processes we

find |bH(E) |2=0.89+0.06. Table II shows the calculat-
ed results of the products

P,=|{Ic,0 |1y, K5) | 2] Uc,0 | Ic,k,) | 2,
Py=|{lc,0 |1y, k) |31 €1c,0 | lc, k20 | 2,
and

P.= [ (lc,0|1y,Ky) | 2] (e, 0 | Ic, k) |2

where we define 4.7 for the HCCC process, and the products
- - - 2 _ n v 2 ~ e 2
b (miz:g(lBH<k>kx+m<k>ky+8H<k)kz > Fa=1{le:01 ks o | {1 O lsoka |5 »
H | k av'(48) Py=|(1c,0 | lg,K3) |5 <1y,0 | Is,k3) |3,

For the calculation based on Egs. (4.4), (4.7), and (4.8) we

write |Ic,0 |Ig,K ) |%. We consider this to offer the most
rigorous calculation.

Next we consider (IH,6 | IS,E). Discussions are analo-
gous to those for (I¢,0 | lz,k ). To obtain the expressions
for (ly,0|ls,k) the subscripts C and H in Egs.
(4.2)—(4.8) are replaced by the subscripts H and S, respec-
tively, with the exception of bH(E) which is common to
feu(K) and  fys(K). We write |(ly,0/ls,K)|2,
| {Iy,0|Is,kK) |2, and | (ly,0 ]I,k ) |2 for the calcula-
tions based on the pairs of equations corresponding to
Eqgs. (4.2) and (4.3), Eqgs. (4.4) and (4.5), and Eqgs. (4.4) and
(4.7), respectively. We have | (IH,6| Is, k) | 2=0 because
of ag(0)=0. Conventionally I(IH,6|IS,E) |3 has been
used. However, |{ly,0|ls,k) |2 offers the most
rigorous calculation based on fgs(K).

The value of |bg(K)|2 which is commonly involved
in the expressions of |{lc,0|lg,k)|? and
| (14,0 | Is,K ) |2, is calculated under the threshold condi-
tions of the HCCC process and the HHSC process. Ma-
terials Ga,_,Al, As, InAs,P,_,, In;_,Ga,As,P,_,, and
GaSb are taken as examples. For these materials and for

and
Po=|(lc,0 | Iy, K3) | 2| (1,0 | Is,K3) |2
for the HHSC process. In the table we also show
P =[1+4(e;—1)/€o]P, .

It should be noted that P,, Py, and P, correspond to 7y !
and P, corresponds to 7~ ! in Eq. (3.14). We see that P, is
quite incorrect as compared to P, even though this has
frequently been used for the calculation based on the con-
ventional formulas. Although P, is a result of the im-
proved calculation, P, is larger than P,. However, it is of
special importance that P, fairly agrees with P, since the
calculations of 7, based on P, have given a satisfactory ex-
planation of experiments for p-type GaAs (Refs. 13 and
16) and n-type InAs.'** This shows that 7, i.e., Eq.
(3.14), gives an accurate description of experiments. Dis-
cussion concerning the overestimation of the overlap in-
tegrals has also been given from a different view point in
Ref. 33.

In conclusion, although a number of calculations of the
BBAR rate have led to agreements between theories and
experiments, the agreements are fortuitous as long as the
calculations have been based essentially on 7,. We should

TABLE II. Values of P,, P;, P,, and P,.

Process Material P, P, P, P,
HCCC GaAs 0.72 0.23 0.10 0.48
Gag sAlg,As 0.84 0.27 0.11 0.52
InP 0.77 0.23 0.097 0.46
InAso ¢Po4 0.61 0.19 0.083 0.39
InAs 0.68 0.20 0.095 0.45
GaSb 0.70 0.22 0.087 0.36
Ing 91Gag 00AS0.2Po s 0.69 0.23 0.10 0.47
Ing 7,Gag 28A80.6P0.4 0.64 0.22 0.10 0.47
Ing 53Gag 47As 0.64 0.22 0.10 0.47
HHSC GaAs 0.081 0.035 0.019 0.087
Gayg Alg,As 0.083 0.039 0.020 0.095
InP 0.088 0.037 0.018 0.082
InAsg 6Po.4 0.073 0.031 0.016 0.075
InAsg sPo.2 0.10 0.018 0.0090 0.042
Iﬂo_g]GaologASQ_zp(). 8 0.098 0.042 0.021 0.099
Il’l(), 72G80,23AS()_ 6P0_4 0.092 0.040 0.022 0.10
Ing 53Gag 47AS 0.071 0.029 0.015 0.070
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use Eq. (3.14) for a rigorous calculation under a careful es-
timation of the overlap integrals. This is important espe-
cially at the present stage when a discussion of semi-
conductor laser operation requires a high-accuracy calcu-
lation of the BBAR rate. In order to find the overlap in-
tegrals, use of the oscillator strength under

| by K) | 2=0.89 is recommended for practical purposes.
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