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Anharmonic effects in light scattering due to optical phonons in silicon
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Systematic measurements by light scattering of the hnewidth and frequency shift of the q =0 op-

tical phonon in silicon over the temperature range of 5--1400 K are presented. Both the linevyidth

and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indi-

cates the necessity of including terms in the phonon proper self-energy corresponding to four-

phonon anharmonic processes.

I. INTRODUCTION

Experimental studies of the inelastic scattering of light

by crystals have provided a great deal of information con-
cerning the optical modes of vibration at the center of the
Brillouin zone. In pure materials one finds typically that
both the line center and the linewidth vary with tempera-
ture. This temperature dependence can be attributed to
the anharmonic terms in the vibrational potential energy. '

If one restricts oneself to cubic anharmonicity in second
order, the damping constant which characterizes the
linewidth is proportional to the absolute temperature T in

the high-temperature limit, but when one includes quartic
anharmonicity to second order and/or cubic anharmonici-

ty to fourth order, the damping constant involves terms

proportional to T in the high-temperature limit. For the
case of silicon, Hart, Aggarwal, and Lax have measured
the frequency shift of the line center and the damping
constant over a range of temperatures from 20 to 770 K.
They found that their data for the frequency shift agree
rather well with the theoretical calculations of Cowley"
based on cubic anharmonicity to second order, but their
data for the damping constant show significant deviations
from Cowley's results. Hart et al. were able to show,

however, that their data for the damping constant can be

fitted satisfactorily by the cubic anharmonic model of Kle-

mens if the zero-temperature value of the damping con-

stant is properly chosen.
I

Recently, Tsu and Hernandez6 have reported measure-

ments of the frequency shifts of both one-phonon and
two-phonon Raman lines for silicon over the temperature

range 20—900'C. %here their results overlap with those
of Hart et al. , the agreement is good. No data on the
linewidth is presented by Tsu and Hernandez.

In the present paper, measurements of the light scatter-

ing spectrum of silicon are reported for the temperature
range between 5 and 1400 K. The temperature depen-

dences of the frequency shift and damping constant of the
Raman active LO phonon ale analyzed in terms of cubic
and quartic anharmonic contributions. It is found that at
the higher temperatures, cubic anharmonic ter ms to
second order are not sufficient to fit the data, but the in-

clusion of higher-order terms involving cubic and/or
quartic anharmonicity makes possible a satisfactory fit.

II. ANHARMONICITY IN LIGHT SCATTERING
BY OPTICAL PHONONS

For a system whose equilibrium atomic positions are

specified by

where R(l) =l l v l + l2 ~q+ 13~3, the ~; are primitive

translation vectors, the l; are integers, and R(x) is a vector
of the basis; the vibrational Hamiltonian can be written as

H= —, Q P (l, tc)+ ,
' g g 4 p(l, tt—;1',tt')u (l, tt)up(1', a')

l, a,a & l, r,a l', ~',P

+ —, g g g 4 p„(l,tt ,l', tt', 1",tc")u (-l, tc)up(1', tc')ur(l", tt")
l,r,a l', x', P l",lt:",y

+—„g g g g @op~(l,tt;1', tt', 1",tt";1"',tt'")u (l, tc)up(1', a')ur(l", tt")us(l"', tc'")+
l, a,a l', ~',P l",a",y l"',a'",5

where u(l, a) is the displacement of atom l, v from its
equilibrium position and Cap, 4a~y, and kacy~ are the har-
monic, cubic anharmonic, and quartic anharmonic force
constants, respectively. The first two terms are the har-
monic Hamiltonian Ho. The remaining terms are the
anharmonic Hamiltonian Hg . %e diagonalize the har-
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monic Hamiltonian by means of the normal-coordinate
transformation
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and N ls the number of Unit cells in the crystal. The field
operators A and 8 are specified in terms of the pho-

q ~j q ~j
non creation and annihilation operators b . and b . by

qSJ
the relations

,=b,.+b'

Here ~ . is the normal-mode frequency for wave vector
qSj

q and branch index j, W(»
~ q,j) is the polarization vector

for the normal mode, M„ is the mass of an atom of type ~,
After making the normal-coordinate transformation, the
contributions to the Hamiltonian take the forms

qSJ q J

v(q, j;q ',j', q ",j")A A, ,A

q J'q j'q j

(2.7)
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The anharmonic coefficients

V(q~j~q «J ~q J 6

Vale given by
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and 6 is a vector of the reciprocal lattice.
In the case of light scattering, the efficiency for Stokes

scattering by zone-center LO phonons in a homopolar
crystal is given by

d 5 e'I.v
2Mma M¹m-

O,j

where R(j;I,S) is the Raman tensor, the branch index j
refers to the longitudinal optical branch, riI (ris) is the
wave vector of the incident (scattered} radiation, a is the
lattice constant, I. is the crystal thickness, m-. is theo,j
zone-center LO-phonon frequency, and no is the mean
number of I 0 phonons.

The resonant frequency Q(o,j;co) in Eq. (2.11) deter-
mines the scattering line position and is given to first ap-
proximation by

O(o,j;~)=u- +5(O,J;m) .o,j
The quantities 6(o,j;co) and I (O,j;m) specify the real

and imaginary parts of the pr'oper self-energy, P(O,j;cu),
according to the relation'

lim P(0j;a)+i e)=—PA[h(0, j;a))—iP 0,j;a))]
e~O+

(2.13)
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and are referred to as the frequency shift and damping
constant, respectively. Each of these quantities is the sum
of contributions arls1ng from the cubic, quartic, and

I

higher-order terms in the anharmonic Hamiltonian Hz.
The cubic and quartic contributions up to and including
second-01der terms are given by

Pl]+Pl2+ 1 n]+Pf2+ 1 Pl] —n2 n] —Pl 2X +
N+N1+N2 N N1 N2 N N1+N2 N+N1 N2

~' '(Oi'~)= g ~(0 i;o,i;q|,A; —qi,j|)(ni+-,'),
] j]

(2.14b)

q|J~ qpJ2 q3J3

X R [(ni+1)(nq+1)(n3+ ) ) n i—nqn3]

1 1
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+ 3[n 1 (n2+ 1)(n3+1)—(n
& + 1)n2n3]

1 1

N —N]+N2+N3 N+N] —N2 —N3
(2.14c)
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(n3+ —,),
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)& [ [(n&+1)(n2+1)( n31+)ninzn3][5(co coi co2 —co3) —6(co—+co]+—672+co3)]

+ 3[n, (n, +1)(n, +1)—(n, + &)n2n3]

X [5(co+coi ci)2 —c03)—5(co c—oi+c02+ci)3)]—] (2.15b)



ANHARMONIC EFFECTS IN LIGHT SCATTERING DUE TO. . .

where H denotes the principal value. In Eqs. (2.14) and
(2.15) we have written

cog =co~ . , l = 1,2, 3 (2.16a)

n;=n
q ;,g;

/ =1,2, 3 (2.16b)

where P=-I/ksT. The various contributions to the fre-

quency shift and damping constant are shown diagram-
matically in Fig. 1. In addition, there are other diagrams
not shown in Fig. 1 which can give nonzero contributions
due to the fact that the atoms in silicon do not lie at
centers of inversion symmetry.

A specific remark should be made about the tempera-
ture behavior of 5 and I . At high temperatures, i.e., tern-

peratures larger than the Debye temperature, the cubic
anharmonic terms in 6 and I" given by Eqs. (2.14a) and
(2.15a), respectively, vary linearly with T. The quartic
anharmonic term in 5 corresponding to Eq. (2.14b) also
varies linearly with T, but the quadratic terms correspond-
ing to Eqs. (2.14c) and (2.14d) vary quadratically with T.
The quartic anharmonic term in I corresponding to Eq.
(2.15b) also varies quadratically with T. Additional T
contributions to both 6 and I arise from terms corre-
sponding to the diagrams in Fig. 2.

The light scattering process can be viewed as involving
the absorption of a photon Acoq, the emission of a photon
%cod, and the creation of an optical phonon Oj which then
decays via anharmonicity into two phonons, three pho-
nons, etc. The production of two and three phonons is

C UBI C

FIG. 2. Diagrams representing higher-order contributions to
the proper self-energy of the Raman-active LO mode in silicon.

shown diagrammatically in Figs. 3(a} and 3(c). At
nonzero temperatures, processes can also occur in which
the decay of the optical phonon Oj is accompanied by the
absorption of another phonon, and the emission of one or
more phonons, as shown in Figs. 3(b) and 3(d) for the
cases of one and two emitted phonons, respectively.

III. EXPERIMENTAL RESULTS

(c) QUARTIC

CUBIC

Light scattering measurements have been performed
with a CODERG PHO spectrometer and an excitation
laser on single crystal nondoped silicon with a resistivity
of 100 0 cm and oriented with a (111) face perpendicular
to the incident beam. In view of the large temperature
range explored the temperature was regulated in a liquid-
He cryostat for low temperatures, an electrically heated
furnace for the intermediate temperatures, and by laser
heating at high temperatures.

The sample temperature was measured by a platinum
resistor for low temperatures, by a thermocouple in the in-

termediate range, and by an optical pyrometer at high
temperatures. Verification of the measured temperature
was made by two additional methods. The first used the
integrated ratio of the Stokes to anti-Stokes Raman peaks.
The intensity of the Stokes and anti-Stokes peaks being
proportional, respectively, to np+1 and np, the intensity
ratio is

Ig fuup
(3.1)

QUARTI C

FIG. 1. Diagrams representing contributions to the frequency
shift 6 and damping constant I for the Raman-active LO mode
ln silicon.

where up is the Raman frequency. (We omit the subscript

j from here on. )

The second method was based on the black-body radia-
tion of the sample. If we admit that the sample is a black
body we can apply Planck's law for the power emitted per
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FIG. 3. Diagrams representing three- and four-phonon
anhaITl1onic processes contribut1ng to the decay of the Raman-
active LO mode in silicon.

and with a (co)=1 get the sample temperature.
The shape and the position of the peak due to scattering

b the Raman-active I.O mode in silicon vary for differentC

temperatures. In Fig. 4 we show for comparison two spec-
tra taken at 295 and 1140 K. From these spectra we can
deduce the values of I snd Q for these two temperatures:
for T=295 K, f'(O, LO)=4 cm ', and Q(O, LO)=520
cm ' and for T=1140 K, PO, LO)=14 cm ' and

Ti1140K Ti295K

480 500

FIG. 4. First-order Raman spectra for silicon at 295 and
1140 K. The line position of the zone-center LO mode shifts
from 520 cm ' at 295 K to 498 cm ' at 1140 K and the
linewidth from 4 cm ' at 295 K to 14 cm ' at 1140 K.

I I t I

200 400 800 800 )000 1200 ~400

FIG. 5. Anti-Stokes to Stokes intensity ratio vs temperature,
considering the correction as discussed in the text. The closed
circles represent points for which temperature was measured by
a Pt resistor, a thermocouple and for temperatures above 600' C
by an optical pyrometer. The open circles are points obtained by
heating the sample with the laser and the oven; their tempera-
ture is not precisely determined. The theoretical curve

exp( —fuuo/kq T) is represented by a solid line.

Q(0 LO)=498 cm ' The Stokes to anti-Stokes ratio of
the intensity of these peaks gives the temperature by using
the sohd line representation given in Fi. 5. In this figure
the black circles represent the Pt resistor, thermocouple,
an pyI'od romctric mcasulcmcnts of thc temperature. n or-

ihder to reach the melting point, we heated the sample wit
the oven and the laser, by increasing the power beam.
This is represented by the circles. %C should note that for
these points we were unable to measure the temperature
accurately. The calibration of the solid line applies after
the measured Raman intensities have been corrected for
the actual absorption coefficient and the frequency depen-
dence of the Raman efficiency. In applying these correc-
tions the expression for the intensity ratio becomes

3
ls &I+&As ~s S(aII s) ~o

CXP
IAS ttI +its IOAs S(~I ~~As) 8

where a~,eAs, o,'@ are the absorption constants at thc fre-
quencies mI, ruAs, cos (incident beam, anti-Stokes, an
Stokes) and S(t0I,aIs) and S(coI,coAs) are the Raman cross
sections at the involved frequencies. Practically all the
points obtained by pyrometric measurements are above the
curve given by the Raman intensity ratio. This indicates
that the temperature determined by this method is sys-
tematically higher than that obtained by other measure-
ments. A better knowledge of the correction factors is
therefore necessary in order for this method to be used for
temperature measurements.

The damping constant and the frequency shift have
been investigated systematically as a function of tempera-
ture. Figure 6 gives the temperature variation of the
damping constant I (T) between 5 and 1400 K. The
dashed curve represents I ( T) calculated from thc relation
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I {cm-')

200 400 600 800 1000 1200 1400

FIG. 6. Temperature dependence of the damping constant I
for the Raman-active LO mode in silicon. The solid curve gives
the theoretical fit using both three- and four-phonon processes.
The dashed curve gives the theoretical fit using only three-
phonon processes. The open and closed circles have the same
significance as in Fig. 5.

Q( T)=f00+6(T) (3.9)

h(T)=C 1+ +D 1+2 3 3
e"—1 e~—1 (e~—1)

where y =Leo/3k~T and A and 8 are constants. In the
high-temperature limit, the factors multiplying A and 8 in
Eq. (3.8} vary as T and T, respectively.

Equation (3.8}has been used to fit the experimental data
presented in Fig. 6 by suitably choosing the constants A

and 8. The best values of A and 8 are found to be 1.295
and 0.105 cm ', respectively, and the resulting plot of
I'(T) vs T is given by the solid curve in Fig. 6. We see
that the agreement between the calculated curve and the
experimental points is now quite good.

The experimental results for the line position Q(T) as a
function of T' are shown in Fig. 7. Also shown is the fit to
the data (solid curve) specified by the expressions

where x =Amo/2k~T and I (0)=1.40 cm '. Equation
(3.4) is an approximate expression for the temperature
dependence of the damping constant based on three-
phonon processes (cubic anharmonicity in second order)
and the simple Klemens model. It seriously underesti-
mates the damping constant at high temperatures. We at-
tribute this discrepancy at least in part to the neglect of
four-phonon processes associated with the diagrams in
Figs. 1(fl and 2(a)—2(c).

It is of interest to investigate whether this discrepancy
can be eliminated by generalizing Eq. (3.4) to include the
contribution of four-phonon processes. Following the ap-
proach of Klemens we write the kinetic equation for the
net rate of decay of an incident phonon into three thermal
phonons in the form

—(5no) = —8[(5no+no)(ni+1)(n2+1}(n3+1)
df

—(5Il 11 + Il 11 + 1 )Il all 2 Il 3 ],

(3.10}

where mo, C, and D are constants with the values 528,
—2.96, and —0.174 cm ', respectively. Equation (3.10}is
the analog of Eq. (3.8) and specifies the contributions of
three-phonon and four-phonon processes to the frequency
shift. The agreement between the experimental points and
the solid curve is seen to be good.

If we try to fit the experimental data with three-phonon
processes only by omitting the term in Eq. (3.10) with the
factor D, we obtain the dashed curve in Fig. 7 with
uo ——529 cm ' and C = —4.24 cm '. Although this
curve fits the data well at temperatures up to 600 K, it is
clearly inadequate at higher temperatures. This demon-
strates the necessity of including terms corresponding to
four-phonon processes in the expression for h(T}.

In principle, the four-phonon contributions in Eqs. (3.8}
and (3.10) should include terms arising from difference
processes of the type represented by Fig. 3(d). We have
omitted such terms on the grounds that their inclusion

where 5no is the deviation of the incident phonon occupa-
tion number from its thermal equilibrium value no and 8
is a constant. Using the equilibrium condition

Ilp(n 1 + 1)(n2+ 1)(n 3+ 1)—(no+ 1)n 1 n2n3 ——0,
(3.6)

we can rewrite Eq. (3.5) as

Q
525

520

515

510

(5no) ~( nln2+n1n3+n2n3+n1+n2
dt

Energy conservation can be satisfied in the simple Kle-
mens fashion by setting ~&——co2 ——co3 ——coo/3. Consequent-
ly, Ill n2 ——If 3. T——lie generahzatfon of Eq. (3.4} to follr-
phonon processes then takes the form

I (T)=A 1+ „+81+ +2 3 3
ex e~—1 (e"—1)

(3.8)

I I I

200 400 600 800 3000 2200 T{K)

FIG. 7. Temperature dependence of the line position 0 for
the Raman-active LO mode in silicon. The solid curve gives the
theoretical fit using both three- and four-phonon processes. The
dashed curve gives the theoretical fit using only three-phonon
processes. The open and closed circles have the same signifi-
cance as in Fig. 5.
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would simply introduce additional terms varying as T and
as T in the high-temperature limit and would not add
any new qualitative features.

IV. DISCUSSION

We have seen in the previous section that the extension
of the Klemens-Hart-Aggarwal-Lax model ' to include
four-phonon processes provides a good fit to the experi-
mental values for the frequency shift and damping con-
stant of the Raman-active mode in silicon up to 1400 K.
This fit is achieved by suitably choosing two adjustable
parameters for each of the two quantities. Since one
would expect the contribution of four-phonon processes to
be small compared to that of three-phonon processes, the
ratios B/A and D/C should be small. The actual values
of these ratios are 0.08 and 0.06, respectively, so this ex-
pectation is fulfilled.

It would, of course, be desirable to carry out a first-
principles calculation of the frequency shift and damping
constant arising from both cubic and quartic anharmonici-
ty. However, such a calculation is by no means trivial.
The principal difficulty is that a simple model such as a
nearest-neighbor model is inadequate to describe either the
harmonic or the anharmonic properties of silicon. This
was shown a quarter century ago by Herman and by Lax
for the harmonic properties and very recently by Wanser

and Wallis' for anharmonic properties. Long-range
forces are necessary for a proper description and can be in-
troduced via a shell model, " a bond charge model, ' or a
model containing dipole-dipole and/or quadrupole-
quadrupole interactions. ' '

Cowley has carried out a calculation of the frequency
shift and damping constant for silicon at temperatures up
to 500 K using a shell model for the harmonic forces and
a nearest-neighbor model for the anharmonic forces.
Reasonable agreement with the experimental data was ob-
tained by Cowley for the frequency shifts, but not the
damping constant. We are currently engaged in making a
calculation of these quantities using the long-range force
model of Wanser and Wallis generalized to quartic anhar-
monicity.
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