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Thermopower in high magnetic fields: Electron-phonon mass enhancement
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We calculate the adiabatic thermopower in a high magnetic field. Continuing our previ-

ous work, we derive a many-body transport equation including the magnetic field and derive

the high-field conductivity tensor o.. The transport equation is derived by both the Keldysh

and the Kadanoff-Baym nonequilibrium formulation of many-body systems. The results

published by Opsal, Thaler, and Bass are confirmed to a certain extent. Electron-phonon

mass enhancement is present in the adiabatic thermopower in high magnetic fields.

I. INTRODUCTION

Therrnomagnetic measurements are one kind of
transport experiment. A variety of experiments may
be done according to the boundary conditions on the
sample and the orientations of the driving fields. In
the most general case there is an electric and a mag-
netic field in addition to the temperature gradient.
A special case of interest is when all fields are con-
stant in time after they were switched on. Response
functions, connecting the driving forces and the re-

sulting currents, are usually calculated in the steady
state, where all variations in space and time vanish.
A formulation which takes into account the tran-
sient phenomena in a transport equation has been
developed by the authors' using a method of Kadan-
off and Baym or the equivalent Keldysh pro-
cedure.

In this paper we apply the new transport equation
to the problem of low-temperature thermopower in a
high magnetic field. One motivation is the experi-
mental results for the thermoelectric power at high
magnetic fields in aluminum. Opsal et al. found a
disagreement between their experimental results and
an earlier theoretical prediction. They resolved this
discrepancy by giving an argument to include
electron-phonon mass enhancement in the thermo-
power in a high magnetic field. This assumption is

in contradiction with a statement made by Prange
and Kadanoff, that there is no electron-phonon

mass enhancement in the thermopower. Prange and

Kadanoff did not derive this result. It was a con-
clusion in a more general context to verify the quasi-

particle approximation for an electron-phonon sys-

tem. In a more elaborate analysis, which took
band-structure effects into account, Opsal and

Wagner confirmed the results of Ref. 4.
The experimental results of Opsal et al. have in-

spired a large number of recent theoretical papers on
the role of mass enhancements on the thermoelectric

power. However, none of these theoretical pa-
pers are appropriate for the actual experiments. The
previous theory papers all considered the longitudi-

nal thermopower in the absence of the magnetic
field. The experiments measure the off-diagonal
thermopower in the presence of a large magnetic
field. The off-diagonal thermopower is zero in the
absence of a magnetic field, so the previous theoreti-
cal papers never calculated the quantity which has

been measured. In order to relate to the actual ex-

periments, it is necessary to develop a transport
theory for large magnetic fields (to, r pp 1 ). Here we

report such a theory.
The usual way of calculating a Kubo formula for

a response function is not convenient in a high mag-
netic field because it is difficult to incorporate the
high-field limit into the Kubo-type expression. Us-

ing a Boltzmann equation approach, Lifshitz, Azbel,
and Kaganov' '" did the pioneering work in ther-

momagnetic effects in high magnetic fields. Follow-

ing Ref. 10, Wagner' calculated magnetothermal
conductivity of tungsten, and Averbeck and
Wagner' gave the now common formulation of the
low-temperature magnetothermopower in a metal.
The usual Boltzmann equation excludes many-body
effects because the spectral function is considered to
be a 5 function. ' In our formalism we avoid this
disadvantage and keep the exact spectral function,
which contains the effect of particle interactions, in
the transport equation.

After a brief review on the low-temperature ther-
mopower in a magnetic field in Sec. II we derive a
many-body transport equation in Sec. III. This is a
continuation of our previous paper' where the mag-
netic field was not included. This time our deriva-
tion starts from the Keldysh formulation. In Ap-
pendix A we show that both methods, Kadanoff-
Baym and Keldysh, give the same many-body trans-
port equation for the steady state. Section IV is de-

voted to the calculation of the conductivity tensor in
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a high magnetic field. Here we also follow the pro-
cedure given in the pioneering work by Lifshitz
et al. '0 Finally, we get an expression for the ther-
mopower and close in Sec. V with a discussion and
some concluding remarks.

II. THERMOPOWER

We consider an electrically conducting bar which
is subjected to two conditions: (1) a temperature
gradient V T, and (2) no current can flow through its
ends because of insulation. Then an electric field E
is developed whose magnitude is proportional to b, T.
Including the additional effects of a magnetic field
H the thermopower tensor S(H) is defined by

E=S(H) V'T .

If there is no magnetic field present and the tem-
perature gradient has a x component only the ther-
mopower S~ is given by

Sd(H =0)= =S (H =0),
V„T

(1.2)

where S~{H=0) is a component of the thermo-
power tensor with no magnetic field. By adding a
magnetic field along the z direction a secondary
temperature gradient in the y direction is created
The thermopower is now

ey„(H)
Sg(H) S (H) S y(H) (1 3)„'r ~ cr H

where o is the conductivity tensor.
The low-temperature experimental data are con-

sistent with the equation

with the Fermi distribution function nF(ro).
Rigorously, Eq. (1.5) applies to electron-impurity
scattering only, which is the dominant part at low

temperatures. However, for kT «eF the electron-
phonon scattering can be considered as quasielastic
because electrons are scattered by phonons only in a
small 2kT-wide shell around eF. The change of en-

ergy is small.
Setting the magnetic field in a direction z of two-

fold or higher symmetry and neglecting components
of the form o;„i=x,y, Averbeck and Wagner' de-
rived in the high-field limit

Sd(H~ oo ) =eLOT [21no„z(co)
dc'

—
incr~ (ai )]

Although (1.7) is sufficient for a calculation, the
difference b,Sd between the low-field (H =0) and
high-field (H~ ao ) limits of Sd(H) provides a quan-
tity which is almost insensitive to the impurity con-
centration of the sample' and is therefore closely
related to the host properties. It was Md which
gave strong evidence that electron-phonon mass
enhancement is involved in the magnetothermo-
power. Experiments were done on both polycrystal-
line and cry stallic based aluminum alloys. A
disagreement between experimental data and
theoretical predictions was explained by electron-
phonon mass enhancement. In a more heuristic way
Opsal et al. derived

Sd(H) =A {H)T+B(H)T (1.4) Sg{H~ ao )~(1+A)Sd(H ~ oo ),

S(H) =eLOT lno (e)

The first term is due to electron diffusion and the
second is attributed to phonon drag. T is the tem-
perature in degrees Kelvin. We are interested in the
first term only and therefore omit the phonon-drag
term. How to extract the different contributions
from experiment is given in Ref. 15.

If the scattering mechanisms are elastic the ther-

mopower tensor is given by the Mott relation'

X, ph(kF, co)

where X, ~h is the electron self-energy attributed to
electron-phonon interaction. Because of its slow
variation on the wave vector, it is usually restricted
on the Fermi surface with wave vector kF. In Sec.
IV we will give a confirmation of that result based
on a microscopic calculation of the conductivity in a
high magnetic field.

Lo is the Lorentz number (Lo ——2.44X 10
V K ), e the charge of an electron, and e~ the Fer-
mi energy. o (ro) is an energy-dependent part of the
conductivity tensor o

dr/F
v (co),

III. MANY-BODY TRANSPORT EQUATION

The solution of a classical transport equation pro-
vides a distribution function f(R, k, T) in real space
R, momentum space k, and time T. Once

f(R, k, T) is known, one can calculate the kinetic
coefficients. In a many-body system we have to add
the energy co as an independent variable, because
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F=(1+6"X')Fo(1+X'6') +G "QG',

6'= , (F —G"+—G') .

In addition, we have'

(2.1)

momentum and energy co are in general not related
in a simple way. The spectral function A (k, co) has
a finite width. A way of finding a transport equa-
tion for this new many-body distribution function
f(R, T, k, co) was proposed by Kadanoff and Baym,
Keldysh, and Craig. ' We find that the inain prob-
lem is to solve the set of equations [compare Eq.
(2.1) of Ref. 1]

O'= 60+O'X'Go

R= —,(r, +r2}, r=ri —rz,
(2.7)

This step is justified if the Green's functions have

separate contributions varying slowly on a macro-
scopic scale. This is certainly true if we introduce a
potential varying slowly in time and space.

In the new notation the Green's function G
reads, for example,

gradient expansion at the right-hand sides. To reach
this end we go from the arguments ri, ti, r2, t& to
center-of-mass (c.m. ) and relative coordinates R, T
and r, t given by the transformation

O'=G —G ' = —6+6 ',
O'=G —G'= —G+6',
F=6+6=G O+6~,

as well as

X'=X+X = —(X+X'),
X'=X+X~ = —(X+X~),
A=X+X= —(X'+X') .

(2.2)

(2.3)

G (R, T, r, t)=G (R+ , r, T+——,t, R—, r, T ——,t) .—

(2.&)

The gradient expansion of (2.4) is a straightfor-
ward calculation and we will give the result only.
We collect all terms to first order in derivatives with

respect to c.m. coordinates and take a Fourier
transform with respect to r and t:

G (R,T, k, m)= fd r fdhe 'e'"
The many-body distribution function is related to
the Green's function 6 ~. The superscripts r and a
denote, respectively, the retarded and advanced
Green's function. Quantities with a bar are calculat-
ed with an anti-time-ordering operator. For more
details we refer to the original work by Keldysh '
or the paper by Blandin et al. Products in (2.1)
shall be understood as integrals.

Combining the Eqs. (2.1) and (2.2), we derive an
equation for the Green's function of interest G~
(there is a similar equation for G ~

)

XO~(R, T, r, t) . (2.9)

6'= 60+GOX"G',

and add both of them:

(2.5)

6'=60+ —,(O'X"60+GOX'6') . (2.6)

A similar equation holds true for the advanced
Green's function. Equations (2.4) and (2.6) are ex-
act. To find an approximate solution we make a

6 =(1+6'X")F,(1+X'6') —6"X'6' . (2A)

In our previous paper' we used the equations of Ka-
danoff and Baym to calculate 6 ~. Here we like to
follow a different approach, which is closely related
to the Keldysh formulation of the problem. We will
show in Appendix A, however, that the Kadanoff-
Baym procedure gives the very same result for the
steady-state solution. To complete our system of
equations we rewrite the first of the equations (2.1},

+i—,[O',X~]G' . (2.10)

The products are now simple multiplications and

[X,Y ] is a generalized Poisson bracket:

[X,Y]=[X,Y] T
—[X,Y]-„-„,

ax aY aY ax"=aU av aU av

(2.11)

The gradient expansion of (2.6) is a bit more
cumbersome because the retarded self-energy X' has
contributions from the external fields whereas X ~ is
determined by the particle interactions alone. In the
notation we introduced in Ref. 1 this means X ~ has
only two-point contributions while X' has both one-
and two-point parts. We distinguish a one- and
two-point function by the number of time argu-
ments it contains.

As is common in transport phenomena, we use
the external field in a semiclassical approximation. '

Thus we get for the one-point contribution, if we
describe the external field by a vector potential '

The first term in (2.4) gives a vanishing contribu-
tion. The solution does not depend on its initial
state, since the system has no memory. This feature
is in accordance with the Kadanoff-Baym result.
Finally omitting the arguments, we have

G = —G'X G'+i —,[G',G']X —i—,[G;X ]6'
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e
P(r, t) =i —A( r, t) V'„+ A (r, t) .

mc
(2.12)

We have already shown that our theory is gauge invariant. The special choice of the vector potential is no re-

striction.
Separating the one- and two-point contributions we can write (2.6) symbolically:

G'=Go+
2 (6'$60+GO/6 "+6"X"60+GOX'6") . (2.13)

Now that X' does not contain the external fields anymore, it is determined by the particle interactions of the
system. Therefore, it is similar to X, a two-point function only. The one-point function P gives all informa-
tion on the external fields. From (2.12) we see that P is an operator rather than a plain function. We must
take heed of that fact. In the same order we used before, we have

6'(R, T, k, co)=60(k,co) 1 — k A(R, T)G'(R, T, k, co)
mc

2

+ 2
A (R, T)G'(R, T, k, co)+X'(R, T, k, co)G'(R, T, k, co)

2mc

V'g I GO( k, co)[G"(R,T, k, co),A(R, T)] G "(R,T—, k,co)[60(k,c0),A(R, T)]
4mc

—A(R, T)[60(k, to), G'(R, T, k, a))] I . (2.14a)

Details of the calculation are delegated to Appendix
B. Neglecting second-order terms in derivatives
with respect to the c.m. coordinates, which is at
least a good approximation due to the slow variation
in these coordinates, (2.14a) can be cast into a well-
known form,

G'(R, T, k, ~)= [co—e( k —(e/c)A(R, t) )

I

coordinates, as is (2.10), which is the equation pro-
viding G~(R, T, k, co). To calculate G~ we can
therefore insert (2.14b) into (2.10). Before we do so,
we would like to discuss some other conclusions
drawn from (2.10) and an analog equation for G ~,
replacing & by & in (2.10).

The four Green's functions 6 ~, G ~, 6', and G'
are not independent. They are related by

—X'(R, T, k, co)] (2.14b)

with the free-electron energy e(k)=k l2m This.
level of approximation does not contain the quan-
tum effects due to the discrete structure of the Lan-
dau levels. Quantum oscillations are for most met-
als superimposed in the form of a fine structure onto
the main dependence on the magnetic field and are
more important in a region where the spacing be-
tween Landau levels fico, is larger than the broaden-
ing of the Fermi surface. For a generalization of
the result to a more general dispersion, see the end
of this section.

In (2.14b) we rederived the solution obtained by
Kadanoff and Baym [compare Eq. (9.31) in Ref. 2].
Although we used a completely different method,
we end up with the same leading term in a gradient
expansion for the retarded Green's function. It is
obvious that a similar result is valid for
G'(R, T, k,co). We keep in mind that (2.14b) is exact
in first-order derivatives with respect to the c.m.

G —G =G' —G"= 2i ImG'— (2.15)

and so are the self-energies

X~ —X~ =X"—X'=2i ImX" . (2.16)

G ~ —6 ~ = —G'G'(X —X ) = —2 IinX'G'G'

(2.17)

using (2.16). The right-hand side defines a spectral
function A (R, T, k, to) similar to the equilibrium one.
Equation (2.17) is a check whether the gradient ex-
pansion is consistent with the exact equations (2.15)
and (2.16). The spectral function in our order of ap-
proximation is represented by

Equations (2.15) and (2.16) can be checked by Eqs.
(2.2) and (2.3). Subtracting the equations which pro-
vide 6 ~ and 6 ~, we get
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(2.18)

(2.20)

We take the external fields constant in space and
time which are switched on at T=0. For T &0
these fields are represented by the vector potential
A(R, T)

A(R, T, k,co)=— 2 ImX "(R,T, k, co)

[ai —e( k —(e/c)A(R, T))—ReX"(R,T, k,co)]2+ [ImX"(R,T, k,ai)]

Now we multiply (2.10) by 2i ImX . On the left-hand side we use (2.16) and on the right-hand side, (2.17) in
the first term. We get

6 «X» —X«G» =—ImX"[6',6']X»+ImX"[G',X»]6'—ImX'[O', X»]6". (2.19)

Equation (2.19) is close to our final result. To calculate the Poisson brackets in (2.19) we use (2.14b) for 6' and
the corresponding expression for G'

[O', G"]=(G'G") I2i[lmX;a) —e(k —(e/c)A)]+[X', X']I,
[O',X»]=—(6') I [r0 —«(k —(e/c)A), X»]—[X',X»]I,
[O',X»]=—(6')2I [ai—«(k —(e/c)A), X»]—[X',X»]I .

This transformation also effects the R and T deriva-

tives

q~k+(e/2c)RXH+eTE . (2.22)
l

A(R, T)= —
2 R)&H —cTE . (2.21}

Whenever the wave-vector k appears, it appears in
combination with the vector potential. Therefore,
we redefine the wave vector

BT BT

V„~V„+(e/2c)HX V, .

(2.23)

Combining (2.19), (2.20), and (2.23) we get, after
some algebra,

6 X» —X«6» =iA (G'6')X» + vq. V R ImX' —i —,A 2 +v, Vii X'
r

iA(6'6')X» vq + Vq ImX +i A2 vq + Vq X»
Ci) CO

+i A(G'—6")X»(Hyv ) V ImX"+i——A (Hxv ) V X»

+iA (O'G")X; ImX"]:iA ReG"[ImX;X»] +iA [ReX",X»]

[X,Y]:—[X,Y]„T+eE[X,Y] -—[X,Y]- - —[X,Y]-
(2.24)

(2.25}

Equation (2.24) includes all terms consistent with our approximation of neglecting all derivations with respect
to c.m. coordinates higher than first order. At this stage we linearize the equation further. We keep terms
linear in the fields and self-energy contributions only up to linear in first-order derivatives. To collect the
correct contributions we must insert the equilibrium value X» =2in ImX' in the second and fourth line of
(2.24). Equation (2.24) becomes

G «X» —X«G» =iA (G'G')X» +vq Vz ImX"—i A +vq Vz X»

+ ImX' Re '+(co —eq —ReX") ImX' A
T T Cd

+eE [(vq+ Vq ReX') ImX"+ Vq ImX'(ro —eq —ReX')] A

+i A( O' 6) X»( —H&(v ).V ImX'+i A2(H&(v ).V X» .
q q 2 q q (2.26)
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For steady-state conditions (c}/c}T= Vz ——0) and no magnetic field (H =0) we discover the transport equation
derived in our previous work [compare Eq. (5.39} in Ref. 1] by using the Kadanoff-Baym equations. When
studying steady-state solutions, many terms in (2.26) vanish,

G X —X G =eE [(vq+ V ReX') ImX'+ Vz ImX'(co —ee —ReX")] A

+i A—(G'G")X~(HX ve) Ve ImX'+i A (HX ve). V'&X~ . (2.27)

Multiplying (2.10) by (e/c}ve. (H &( Vz ) and collecting terms in the order in which we are working, the second
line of (2.27) can be changed to a more convenient form. After taking this last step we finally end up with our
desired result: a many-body transport equation including the magnetic field,

G X —X G ~=eE [(vz+ V'e ReX') ImX"+ Ve ImX'(co ee ——ReX")] A

+i v&
—(H.X V&G ~) 2n—A—ReG've. (H)& V& ReX") ImX'. (2.28)

Equation (2.28) describes steady-state transport phenomena. It can be viewed as the asymptotic (T~ oo ) limit
for a transport equation including all transients.

An equation very similar to (2.28) was derived by Langreth who calculated the Hall coefficient of
Hubbard s model. Neglecting the k dependence in the self-energies and replacing c}n/c}co by its zero-
temperature limit, Eq. (2.28) turns out to be the same as that derived by Langreth. He used the Kadanoff-
Baym formalism [compare Eq. (3.6) in Ref. 23]. He found an approximate solution for high magnetic fields
neglecting the scattering terms. We will solve (2.28) self-consistently with an ansatz

y.
N

n
G ~ =inA i— (2.29)

The first term in (2.29) is the equilibrium expression and y is a (vertex) function which is linear in the electric
field. Once we know this function we can calculate the current density j

d lj f dlo

(2m )3 2n

c}n(co) ~ (~ )very q, co (2.30)

and henceforth the conductivity tensor cr.
To continue our calculation we have to specify the scattering mechanisms in our system. We are considering

electron-phonon and electron-impurity scattering. For a dilute alloy, the second-order Born approximation is a
reasonable approximation for the latter. Phonon scattering is approximated, as usual, by a one-phonon process,
which gives vertex corrections corresponding to the ladder series summation done by Holstein. ' Using the

rules for calculating the self-energies X ~, we have for the electron-phonon part

(2.32)

X, (R,~Tp,|kryo)= —g ~g-,
( f B (q, ((', )G (R, Tk —q, ru —((),, (2.31)

7T
q

where D is the appropriate equilibrium phonon propagator and g- the electron-phonon interaction matrix
q

element. For the electron-iinpurity contribution we have

X; (R, T, k, co)= —n P l
U(q)

l
G~(R, T, k —q, co) .

q

Here, n; is the density of impurities (n;~0}and U(q) is the electron-impurity interaction. Inserting (2.29) into
(2.28), and by using the self-energy contributions according to (2.31) and (2.32), we obtain an equation for the
function y:

A eE [(ve+ V'z ReX") ImX"+ Ve ImX"(co e&
—ReX")]+——ve(HX V&y)

C

mX'y+A g Igz I [[na(co& }+1—nF(co —co&)]y(q —"co —co& }

+[nz(coi,

)+nz(co+co&�

)]y(q k, co+co& )]+—An; g l
v(k)

l y(q —k, co) . (2.33)
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For the details of the calculation concerning the phonon part, we refer to our previous work (see Ref. 1). The
subscripts 8 and F, respectively, refer to fermion and boson distribution functions. In a metal, the variations
of the self-energies with wave vectors are usually small and their derivation with respect to q can be neglected.
Calling I = —ImX, we deduce a simplified version of (2.33)

eE v,-A'I'+ (—HX v ) V. y=21 y A—g ~
g-„~ '[[.. . ]y(q —k, co —co-, )+[. ]y(q —k, co+co-„)j

k

A—n; g i
v ( k)

i y(q —k, co) . (2.34)

A solution of (2.34) in high magnetic fields is given in Sec. IV. In Appendix A we show that the Kadanoff-
Baym method gives the very same Eq. (2.33) for the steady-state solution G ~ according to the ansatz (2.29).

So far we have implicitly assumed the free-electron picture and used it in deriving Eq. (2.14b). No further
use has been made in the following steps leading to (2.34). Staying in the semiclassical regime with only
moderately high fields so that we can neglect interband transitions, Eq. (2.14b) holds true for even a more gen-

eral dispersion. We simply incorporate an arbitrary band structure by labeling the energy by an index n In.
what follows we omit this label because it is not important, but keep in mind that v~&q /yn.

IV. CONDUCTIVITY

Setting the magnetic field H in the z direction of
our coordinate system, the system of reference is
fixed with respect to this axis. The most general
form of y linear in the electric field is given by

y(q, co) =( v, E)F, (q, co)+ vq (HXE)F, (q, co)

+( v~ H)(H. E)Fi(q, co) . (3.1)

The functions F; are not functions of E but can still
have magnetic field contributions. Equation (3.1)
ean be deduced from the classical Boltzmann equa-
tion treatment in a magnetic field. For an arbi-
trary electric field and the specified H direction it is

I

convenient to introduce three new functions u, uy,
and u, :

u„(q, co) =v,Fi (q, co)+vyHF2(q, co),

uy(q, co) =vyFi(q, co) v„H—F2(q, co),

u, (q,co)=v,Fi(q, co)+v,H Fi(q, co) .

(3.2)

y=u E=u E„+uyE&+u,E, . (3.3)

Equation (2.34) separates into three decoupled equa-
tions, each determining one component of u,

We used the abbreviation v;=Be/c}q;. This set of
functions turns y into a remarkable simple form if
we consider them as components of a vector u,

v„A (q, co)I (co}+ Hv„——
vy

qy q»
u„(q,co)=21"(co)u„(q,co) —A(q, co) g ~g& ~

E+u„(q —k, co),

vyA (q co)l (co)+ H v —
vy

2 ~ e c} 8
e c}qy c)q»

uy(q, co)=21 (co)uy(q, co) —A(q, co) g ~g& ~
N+uy(q —k, co), (3.4}

v,A (q,co)1 (co)+ Hv„——
vy

8 c) c)

e
"

c)qy
' aq„

u, (q,co)=21(co)u, (q, co) —A(q, co) g ~gz ~

X u, (q —k, co) .

We keep the phonon part in the scattering term only because its structure is more complicated than the impuri-
ty contribution. At the end of our calculation we put back the missing part. Every step done with the former
one can be carried over to the latter. The operator N+ takes care of the arrangements of the occupation num-
bers not listed in (3.4) [compare Eq. (2.33)]. Calculating the conductivity tensor cy with (2.30) and (3.3), we
have for its components

1

(2m. )

c}nF 3 c}uj

,. J' J'„ ~ ~

) l)J =X)p)Z . (3.5)

In this work we are especially interested in the leading high magnetic field components contributing to the
transverse conductivity [compare Eq. (1.7}]. Therefore, we have only to calculate u„and uy.

At this stage it is convenient to introduce cylinder coordinates, with its z direction parallel to the field H and
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a plane peq endicular to H. We illustrate this in Fig. 1, where an el~tron is moving along a traj~ton of con-
stant energy. Components with the subscripts 2 and i, r~p~tively, lay along the magnetic field or in a plane
perpendicular to H.

We multiply the equation for uz by i and add the result to u„. The new function

g(q)co) =u~( q, co)+Iud( q, co)

obeys the txluation
r

Bg(q, to} Bg(q, co)

ay
"~

aq

(3.6)

cr(to)
H. " v +i U~ e'iA (q, to) —2g(q, co}+A(q,co) g Ig k I

X+g(k, co}'7

q —k

(3.7)

Now we keep the energy fixed e=e~ and go from the parameters qi, P,q, to a new set P,q„e. The function

qi(P), defined by the intersection of a surface of constant energy e and a plane perpendicular to the magnetic
field which is located at q„ is parametrized with

dP
dt '

dt
= —

Vy =V

The left-hand side of (3.7) is now a total differential with respect to t. Multiplying by dt we have

(3.8)

cr(~)
qi i — A (e,co)e' dP 2g(g, q„E—,co)qidt

Bqi

+A(e, ~) X Ig, -„ I'x+g(e, &„e',~)q, dt
k

(3.9)

We neglect angle-dependent contributions in the spectral function which come from the self-energies. Using
(3.8) it is easy to show that the following relationship holds true:

2 1/2

qidt = 1+ (3.10)=4(P, „e)dg=
Vg

g(P, q„e)—g(go, q„e)= — A (e,co}h(P,q„e)—2 J~
dP'4(P', q„e)

cr(co}
e

zs

Here dL is an arc of the trajectory under consideration and Ui the velocity of the electron in the plane perpen-
dicular to H. The prime denotes a derivative with respect to p. An angular integration along the trajectory of
constant energy e and fixed q, gives

X g (f', qg, e) —A (e,ro}
2r(a))

X X Igq k I &+g(4,kz, e—',~}
k

h(P, q„e)= iqie'~
I ~~, . —

The continuum limit in the new set of variables is given by

(3.11)

gf(k)~ Jl deJI dk, f

dpi'(p,

k„e)f(p, k„E) .
(2n )

(3.12)

To proceed it is convenient to write (3.11}in a shorthand notation. Qmitting the arguments and setting all the
complicated operations in an operator L~,



%.HANSCH AND G. D. MAHAN

2 C
g =go —KA 5 K—Lyg, K=

He '

(Lyg)(p, q„e,ro) = —2 dp'4(dt)', q„c)

(3.13)

X g(4'q. ~~) A—(eo)) g lg- k I'&+g(+k. &')
q —k

(3.14)

To look for high-field solutions, )r provides an ap-
propriate expansion parameter. Therefore, the exact
solution is represented by an expansion of the type

(0)+ g(1)+ 2g(2)+. . . (3.15)

Inserting (3.15) in (3.13) and collecting contributions
of equal order we generate a sequence of equations

g(0) g(0)

g =go —A b, L~g-(&) (1) 2 (0)

g =go L~g—, n)2.( pg) (n) (n —1)

(3.16)

g'")((})),q„e,o) }=g'"'(&+ 2m.,q„e,co) (3.17)

is obvious. Equation (3.17) means the function g is

We see at once that this system is not solvable in a
unique way because go itself is an integration con-
stant and hence determined by boundary conditions.
The kind of boundary conditions appropriate to our
problem are closely related to the trajectories on
which the electrons move. They move periodically
on closed trajectories and in a complicated non-

periodical way on open ones. The influenc of their
topological structure on the high-field conductivity
was first pointed out in the work by Lifshitz, Azbel,
and Kaganov.

For closed orbits a boundary condition of the
OITI1

a single valued function in a plane perpendicular to
H. If we indicate the integration over a closed path
by L~~L2, Eq. (3.17) turns the system (3.16) into
another one providing the integration constants go"',

Lingo L~+—b, L2nL—pgo ——0,(1) 2 (0)

Lingo L2 L—yg'" "=0, n &2 .

(3.18)

Bearing in mind that go does not depend on the an-

gular variable ()( and using (3.14), we can show that
(3.18) is equivalent to

(0) (0)
go =Bgo

(n) B tn) + (n)

c'"=Q '(L2nA b, +L2nLpgo )

c =Q L2~Lg, n )2 .

(3.19a)

(3.19b)

The actual form of B and Q ean be deduced from
(3.14}, but is not important in what follows. Equa-
tions (3.16) and (3.19) determine the solution of
(3.13) to be correct as far as closed orbits are con-
cerned. We start the iteration at lowest order and
work our way upwards. The very first step is sim-

ple. Because g is a single valued function, the first
equation in (3.19a) yields g' '=0. The next step is a
little bit more cumbersome. Without lack of gen-
erality g' "ean be written like

g (f,q, E,co) =D"'(q„E,oi)+iA (e,co)qi(P)e'~, (3.20)

which is just a regrouping of angle-independent terms. To calculate D'", we have to study the boundary con-

ditions ong' '. This yields an integral equation of type (3.19a) with the inhomogeneity c' '

e'"(q ,e( —2(gee.dd, @(d-,q„e) A'(e, a&)q(d)e'e —A(e, ee)
(2m. )'

X &', „e' g p + e', co g%e'

Equation (3 21) vanishes under ce~ain conditions. The magnetic field must point in a direction of twofold or
»gher symmetry and the electron-phonon matrix element must be of the form g =g . The phonon

q I
ql'

dispersion is approximately correct in the Debye model ~-=~ - . We postpone the discussion of these re-
k IkI'

strictions for the moment and take them for granted. As a result, D'" turns out to be zero for the same
ICRSODS g0 MRS.

Further iteration is not possible in a simple way; therefore, we collect our results,
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g'"=iA (e,ro)qi(dt2)e'~,

g' '
g=a '(q e„m,)+2(Ar(e, m) f ddr qr('r[r ,q„'e)qa(dr le''q

+iA(era) f dd qr('d q ',e„)g (g --„('N+A'(e ,m)k', (qr)a'e .
r(~) q —k

(3.22)

go
' is still an unknown function, but does not depend on the angular variable ([[|. The energy-dependent part of

the conductivity extracted from (1.6) and (3.5} is

Bu;( q, co}
rr,",(m)= fde f d'q 0 ~

&&J =&agaZ ~ (3.23)

Inserting the corresponding expressions u, and u„which are given by the real and imaginary parts of g, we fi-
nally get in lowest nonvanishing order

[T„„(co)= J deA'(e, co)[n+(e) —n (e)],

o'gy(co) = —v~y(ro) e

'2 2

(ar)= 2)l deA'(e, ar) f d' qq(rd, q„e), —fde ' f d' qq(rd, q„e)

(3.24)

X g ~g- -„(',"f[fq.A (e',co)+ri;g (u(q —k)(', A'(~', oi) (3.25)

Changing x to y in (3.25) we get o~yy(co). n+(e) and n (e) are, respectively, the volumes enclosed by an elec-
tronlike and holelike surface of constant energy. ' The second equation, (3.24), is the Onsager relation in a
magnetic field. If the linewidth I is not zero but sufficiently small, we can use the relation A 2=A/I . We
must evaluate the logarithmic derivations of o„„(co)and o~z(ro). To this end we rewrite cr„„(oi)and o~~(co), and
drop (o-independent factors

rrr(m)- f deA(em)[na(e) n(e)]-,
rrm(m I(m) f deA-(e, 'm)L (e,ra),

(3.26a)

L(e,~)= J" d q4((t), q„e) "
, n; g —~u—(q—k)

~

--X lg- -I 2'
qi

A (e', qo —co-
k )

[ns(co -„)+1 np(co ro -„—)]-
q —k q —k f'(oi ~ )

A (e', io+co- ~ )

+ [ns(ro- k )+nF(os+co- k )]
q —k I (co —oi- -„)

Here we restored the electron-impurity scattering term. The spectral function A (e,e) is given by

A (e,co)= 2r(~)
[co—e—ReX"(co)] +1 (~)

(3.26b)

(3.27)

The self-energy parts ReX"((o) and I (ro) =—ImX'(ro) are evaluated and averaged on the Fermi surface, so that
only the (o dependence remains. In a metal, self-energy corrections are small compared to the Fermi energy, so
that the main k dependence of the spectral function is attributed to e=ek. The calculation of the [o derivation
is straightforward. Neglecting contributions of the form BI (io)/Bra which are small compared to the rest, we
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et

do„~(o2)

dco
——2 ( — ReX'(e) f deReG'( em) A( ea&)( e+(ro) —e (m)(, (3.2S)

d cry@ ( co )

dco
——2 ) — ReX'(m) ('(a&) fd eReG'( erg)A( ea&)L(e, m)

aco

+I(a&)'f ded (e, ro) L(e,ru) .

ReG "(e,(o) is the real part of the retarded Green's function 6"(E,co):

6'(ro) = [co—e—X"((o)]

In the small-I (co) limit we can simplify (3.28) and (3.29) further,

(3.29)

(3.30)

der~ (co)

dco
-2rr 1 — ReX'(co)

re aco
[n+ (z) —n (z)]

z z =a)—ReX(co)

(3.31a)

do~(ro)
d('o

a-2m 1 — ReX"(co) 1(co) L(z, co)
aco az z =op- ReX(cu)

+22rl'(a) ) L (z,co)
z =m —ReX(u)

(3.31b)

In the same order, we get for the conductivities
o+ ((o) and cr „(ro) with the use of Eq. (3.26)

ir y(ro)
~

-2~[n+(z) —n (z)], „R,z( ),
(3.32a)

I

energy contributions of order 10 meV to the Fermi
energy, which is of order 10 eV.

In comparison, we also evaluate the unrenormal-
ized conductivities by approximating the spectral
function in (3.26}by a 5 function:

(ro) ( „- rico)[L (z,a))], „,z(„) .

(3.32b)

do y(ro)

dco
-27r [n+(z) —n (z)]

un az

(3.33a}
For metal electrons, the small-I (ro) limit is not a
serious restriction, because we must compare seif- do~((o) -2~r(~) I.(z,~)

un az

c=&(q

+2m I (co)

o,y((o)-2m[n+(z) —n (z)],

(ro)-2m I (co)[L (z,do)],

L (z, co)
z=N

(3.33b)

(3.34a)

(3.34b)

FIG. 1. The electron moves on a trajectory along the
intersection of a surface of constant energy e with a plane
perpendicular to the magnetic field H located at q, =q~t.
q~ and q~~ are, respectively, the components of q perpen-
dicular and parallel to H.

We are almost close to (1.9). The difference between

our result and that proposed by Opsal et al. is that
the renormalized thermopower, according to (1.7), is
not simply the unrenormalized one multiplied by
(1+A,) because the second term in (3.31b) has no
enhancement factor. For the temperature region
(2—5 K) of interest, impurity scattering is dominant.
Kaveh and Wiser reported a fraction of 10 for
both scattering mechanisms in aluminum without a
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magnetic field. Both mechanisms enter L(e,to) the
same way and we expect that their ratio will not
change dramatically. Neglecting the phonon contri-
bution we have

L e{,m)= f 13q 4{/,q„e)

This is exactly the well-known result for an uncom-
pensated metal if we replace the spectral function
A (e, to} by 2@5(e —co), which is the usual quasiparti-
cle approximation.

2

X z
——,n;g ~U(q —k)

~

(3.35}

It can be shown that (3.35) leads to the many-body
generalization of a result obtained by Wagner, ' who
calculated the high-field conductivity with a classi-
cal Boltzmann equation approach.

Employing the same approximations as used in
the derivation of Eq. (3.31), we can calculate BL/Boo
in the second term of (3.31b) with L (e,co) according
to (3.35). As a result, we find that the renormalized
version of that contribution is the unrenormalized
one multiplied by the enhancement factor (1+A,).
We therefore have for the thermopower

Se(H~oo)
~
„= 1—8 RCX'

Sg(H~oo)
~ „„,

(3.37)

(3.36)

where X' contains both electron-phonon and
electron-impurity interactions. The electron-phonon
self-energy gives a significant result in the co deriva-
tive of its real part. The impurity part is usually
only weakly dependent on co around to —eF. If this
is true we can neglect it. Otherwise we do have a
second contribution in the enhancement factor. We
can confirm the result derived by Opsal et al. with
ccrtMQ ICStACtlOI18.

We would like to conclude this section with a re-
mark on the Hall constant R in high magnetic
fields"

We presented a calculation of the low-temperature
thermopower in a high magnetic field and essential-
ly confirmed the suggestion made by Opsal et al.
Based on measurements on samples of aluminum
they concluded that the low-temperature high-field
magnetothermopower shall contain an electron-
phonon mass enhancement factor. Our results show
that we can separate two contributions [compare Eq.
(3.31b)]; one that does contain enhancement and
another that does not. This different behavior, how-
ever, disappears if we neglect the phonon scattering
term. It is small compared to the impurity scatter-
ing at sufficient low temperatures. The conjecture
of Opsal et al. is correct in this case.

In this paper we continued our previous work' on
many-body transport equations. Starting from the
Keldysh formulation of nonequilibrium quantum
mechanics we derived a transport equation which
now includes the magnetic field. We have shown
that the Kadanoff-Baym method2 gives the same
equation for the steady-state solution.

Although we solved the transport equation for
high magnetic fields, we have to restrict the solu-
tions to a range of the magnetic field H and tem-
perature T where the discrete structure of the Lan-
dau levels is not yet important. This is a usual re-
striction to transport theory. Thus we are not able
to explain, for instance, oscillations of the resistivity
(Schubnikov —de Haas effect). To include these ef-
fects involves taking terms higher than first order in
the magnetic field into account. The approximation
of the retarded Green's function [compare Eq.
(2.14b)] is then no longer justified. An extension of
the presented formulation including quantum effects
in the magnetic field is under current investigation.
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the off-diagonal resistivity tensor element p„„,where

p is cr . Using the high-field 11~it of o' [Eqs.
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APPENDIX A: TRANSPORT EQUATION
FOR STATIC ELECTRIC

AND MAGNETIC FIELDS

In Sec. III we derived a new transport equation
for particle motion in static electric and magnetic
fields. This derivation employed the Keldysh for-
mulation of the many-particle equations. Here we
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will show that the same final equation is obtained
starting from the Kadanoff-Baym formalism. The
two derivations give the same result. This is expect-
ed, since there are very general proofs that the two
formalisms are equivalent. ' We include the deriva-
tion starting from the Kadanoff-Baym formulation
simply because this method is familiar to most
readers.

Earlier we derived the transport equation in a
static electric field. There the electric field was in-

troduced as a longitudinal vector potential. Now we
introduce both fields as contributions to the vector
potential

A(r t)= —etE ——,
'

r&(B . (A 1)

With this form for the vector potential, we follow
exactly the same steps as before.

The first step is to write equations of motion for
the retarded G" and other 6 «Green's functions in
terms of their coordinates x = ( r, t),

H(r„—p„t, ) G'(x„x,)= fdx [X,(x'„x )G''(x', x, ) —X'(x, ,x')G;—(x',x, )], (A2a)

H(rr, p—xtt) —G (xt,xt)=fdx [G,(xt', x')X (x',xt) —G (xt,x')Xgx', xt)],
f2

(A2b)

—H(r], p[,&]) 6'(&],&~)=&(&[—&2)+ J/&&'X'(&[,&')6"(&',~2) (A2c)

—t H(rt, —pr t—t) G'( x,tx)t=5( x—
t xr)+ fdx G (x„'x'')X'(x', xr).

f2
(A2d)

The two Hamiltonian functions have the form

H(r], p],t])= p]+et]E+ r]+B2' 2c
(A3a)

(A3b)1
H(r2, —p2, ~2)= p2 —e~2E — r2XB

2@i 2c

Each pair of equations is first added, and then subtracted. Next we change to c.m. coordinates as defined in
Sec. III. In these coordinates the new equations have on the left-hand sides

1 —+

2i — p„+eTE+ RX8
Pl 2c

r

1 —+

Px+etE+ r)(B
Ptl 2c

. 8 1 —+ e —+ -+ -+ —+

i — p„+eTE+ RXB Pz+etE+ r XB 6 .
T apl 2c 2c

I

The next step is to Fourier transform the variables (r t) to the set (k,co). This transformation is easy to apply
to the left-hand sides of the equations. In the scattering terms, on the right-hand sides of the equations, the
transformation generates a series of terms in higher powers of space (R) and time (T) derivatives. These latter
series are described in Refs. 1, 2, and 14 so we only need to quote their results. We follow standard practice,
and only retain first derivatives

2

k+eTE+ RXB
2c 8m

V„+eE + B~ V„
co 2c

XG (k, co, R, T)=(ReX')6 «+X«(ReG')+ —[X,G «]——[X,G ],

i + k+eTE+ R&&B V~+eE + Bx Vk
BT &pl 2c co 2c

6 «(k, co,R, T)

=X G —X«6 «+i [ReX",6 «]+i [X«,ReG "], (A4b)
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'2

k+eTE+ Ry B
C m

V„+eE + By Vk

8 1 - - e- - - 8 e-
i + k+eTE+ RyB Vg+eE + By VkBT m 2c CO 2C

—X'(k, co,R, T) G'(k, ro, R, T)=1,

G'=i [X„G"] . (Asb)

Although these equations are correct, they are not in a useful form. Instead, we must change the k variable to
Q=k+eTE+(e/2c}RyB. The motivation for this change is that the current is the average value of Q, and
not of k. This variable change alters a number of terms in the equation [compare Eqs. (2.22), (2.23), and
(2.25)]:

Q k+ eTE+ Ry 8,
C

aT aT+'
Vg ~Vg +(e/2c)By Vg,

[X,Y]~[X,Y]—eE Vg Y — VgX +—B [(VgX}y(Vg Y)] .
BCO BCO C

After making these changes, we derive our final transport equation for static electric and magnetic field,

Q2
CO — +

2m 8m
Vg+eE + —By Vg

BCO C
G»(Q, a), R, T)

=(ReX')G»+X»(ReG')+ —[X»,G «]——[X»,G»]

.eE—l
4

X»V G» — X»V G» — V' X»+ Vae g a~ g + a~

+i (VgX» y VgG» —VgX»y VgG»), {A6a)

i + — Vg+ 1 — ReX' eE Vg+e +Vg ReX" E +—By VgPl CO N C

r

yG»(Q, ro, R, T) ieE — —Vg ReG"— - ReG" VgX» —i—B [(VgX»)y(Vg ReG')]
BCO BCO C

=X G» —X G»+i [ReX;G»]+i[X»,ReG'], (A6b)

Q 1
QP — +

2m 8m

'2

Vg+eE +—By Vg —X" G"(Q,ro, R, T)=1,
BCO C

(A7a)

8 Q- a, -- Qi + Vg+ 1 — X' eE Vg+ + VgX" eE +—By Vg G"=i [X",G"] .T m CO Pl CO C
(A7b}

One can show that these equations are g~~g~ invari-
ant: The same equations are obtained regardless of
the form of the scalar or vector potential which is
used to introduce the electric and magnetic fields. If

we use in (A6a) or (A6b) the ansatz {2.29)
. Bn6 « =in' i y—

BCO

we derive the transport equation (2.33).
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APPENDIX 8: GRADIENT EXPANSION OF 6'

The retarded Green's function solves Eq. (2.13)

Gt'tdG'= fdtrf d(Gtt(Ft —rt , —t)

G"=Go+ —,(6"(I)6(')+Go/6"

+O'X'6() +6oX "6") . (81)
yg(r, t}6"(r,,~, r2, t, ) . (83b)

We make a gradient expansion of the right-hand
side of (Bl). The interesting feature comes from the
one-point contribution (}). We drop the two-point

part X' and add its contribution later. Therefore, we

study the simplified equation

G'= 6,"+—,(G"$6,'+6,"$6') . (82)

The two terms in the brackets are integ rais
represented by

6'/Go= ~td3r ~tdt 6'(ri, ti, r, t)

gg(r, t)Go(r r2, t—t2),—
(83a)

The operator (r)( r, t) is given by (2.12) and contains a
gradient operator V'-, . In both Eqs. (83a) and (83b)
we can extract it from the integral. In (83a) the
operator V, acts on the unperturbed Green's func-

tion Go which depends only on the difference r —r2.
Thus we can write V,-~—V,, In (83b} we use the

fact that the vector potential commutes with the
operator V„and shift it by a partial integration to
act on 6(') and again use V„~—V„. The minus

sign created by partial integration compensates for
the former one. We have

'G()G=tt—i F, fd r fdt G ( Fttt, r t )A( r, t )Go( r r t t tt )— —
M, C

2 3- ] t t 2

2Fnc

G(tdG'=i (),
, Jl d'r fdt G', (F,—F t, t)A(r—t)G'(F t F„, t, )

(84a)

2

+ fdtr fdt Gt't(Ft —rt, —t)dr, (F t)G (rtrt t') . , ,
2plC

In (84) we go over to c.m. coordinates (2.7}. In particular, we must replace

V, ,
~

2 Vii+ V„,

V,,~—, Vii —V, .

(84b)

(85)

The gradient expansion of the integral is now straightforward. After taking the Fourier transform with respect
to the relative coordinates we have

e2
6'(R, T, k, co)=Go(k, co) Go(k, c—o)k.A(R, T)6'(R, T, k,c0)+ 6()(k,co)A (R, T)6"(R,T, k, co)

l?lC 2' C

Vg I Go( k,c())[6"(R,T, k, co),A(R, T)]—6"(R,T, k, c())[6(')(k, c(i),A(R, T) ]4mc

—A(R, T)[G('i( k, ai), 6"(R,T, k, co)] ) . (86)

Adding the contribution from the two-point function X, where first-order terms cancel each other (similar to
the 6(') A 6' term), we have (2.14).
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