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%e present the first rigorous electIomagnetic theory of diffraction in nonlinear optics,
This theory allows the study of any type of nonlinear grating: bare or coated, whatever the

groove depth and the profile of grating and coatings may be. The formalism developed here

is derived from Maxwell's equations. The existence of the excitation and its nonlinear

feature on the one hand, and the diffraction of the pump beams and of the signal on the

other hand, are fully taken into account. The calculation reported here is valid for all cases

of polarization (TM or TE) of the pump beams and of the signal. Two expressions of the

nonlinear polarization at the signal frequency are derived. One is valid below the modulated

region; the other one, inside this region. These two expressions take into account all the dif-

fracted orders at the pump frequencies: propagating and evanescent. We then gct the ex-

pression of the electromagnetic field at the signal frequency everywhere: not only outside

the Inodulated region, but also inside it. The results thus obtained show that this elec-

tfomagl1ctlc flcld ls 8 sllpcl'posllloll of a diffracted flcld, wltll fadlatcd alld cvaIlcsccIlt ol'-

ders, and an infinite number of elementary driven waves. We also derive the nonlinear grat-

ing equation which allows the determination of the directions of propagation of the radiated

diffracted orders. This is achieved using a new geometrical construction. It is shown that

thc cvancsccnt diff lactcd orders Rt thc signal frcqucncy Rnd Rt thc pump frcqucIlcics can bc
resonantly excited. The rigorous feature of the electromagnetic theory developed here al-

lows us to get the following new and important result: There exists an optimal groove depth
for which the electromagnetic resonance contribution to the enhancement of the nonlinear

optical process is the strongest. These results can be applied to the study of different non-

linear optical processes„such as enhanced second-harmonic generation, surface-enhanced

Raman scattering, Pockels effect, and optical rectification.

I. INTRODUCTION

The existing theories of diffraction all have in
common the following features: They deal with the
linear diffraction of light. In these studies, a plane
wave with frequency to is incident on a grating ruled
on a linear material (in the optical sense) and the in-
terest is in the diffracted field at the same frequency
co. A rigorous study of this problem, i.e., a study
which does not consider the groove depth of the
grating as a perturbation, was developed in the last
ten years by several authors (for a review, see Ref.
1). The rigorous feature of the formalism developed
by these authors allowed them to explain, among

other things, what is usually termed as Wood
anomalies of gratings. They showed that these
anomalies, exhibited with a TM incident wave, are
closely related to the resonant excitation of normal
modes (which correspond to surface plasmons or
surface polaritons) of the interface obtained by al-
lowing the groove depth of the grating to go to zero.

The authors of Ref. 1 also showed that, in the
case of coated gratings, other anomalies may exist
which are associated with the existence of different
normal modes (corresponding to guided waves) from
those considered above. These anomalies occur not
only with TM incident waves but also with TE ones.

Now what happens if the grating, instead of being
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ruled an a linear optical material, is impressed on a
nonlinear one'? In that case, we are concerned with
the diffraction of light by a nonlinear grating. Some
interesting questions may be raised:

(i) What are the efficiencies of the diffracted or-
ders at the new frequencies but also at the pump fre-
quencies'?

(ii) What about the anomalies described above?

It must be emphasized that the answer to this last
question is of great importance. Indeed, it is usually
believed that the enhanced feature of Raman effect
by molecules adsorbed on a grating' and second-
harmonic generation (SHG) is due, to a large ex-
tent, to the resonant excitation of surface plasmons,
i.e., of one of the normal modes cited above.

It is the aim of this paper to present the first elec-
tromagnetic theory of diffraction in nonlinear op-
tics. A forthcoming paper will be devoted to corre-
sponding numerical calculations. For the sake of
specificity, we only consider nonlinear optical pro-
cesses of the kind

where coi,coi are the two incident pump beam fre-
qUCQC1CS.

Our theory explicitly takes into account
(a) the existence of the excitation,
(b) its nonlinear feature,
(c) the diffraction of the pump beams and of the

signal beam,
(d) the losses of the different media, and
(e) it does not consider the groove depth as a per-

turbation.
This theory is valid for any groove shape. It even

applies to coated gratings, whatever the nature
(linear or nonlinear) of each of the layers may be.
The analysis allows dealing with the two fundamen-
tal cases of polarization (TE, TM) of the incident

pump beams and also of the signal. The generaliza-
tion of the study to TE mi, m2, co& waves is required
by the answer to question (ii) of this section. Indeed,
as previously noted, when dealing with coated grat-
ings, the anomalies also occur with TE waves.

To our knowledge, such a theory has never been
developed. The existing theories, which do not con-
sider the groove depth as a perturbation, take into
account neither the existence of the excitation nor
the damping of the different media.

II. THEORY OF NONLINEAR DIFFRACTION

A. General considerations

Twa beams with flcquciieics cubi and c02 (cubi )cop)

are incident on a grating (periodicity d, groove depth

5) ruled on a dielectric or metallic nonlinear medium
and coated by one or several dielectric or metallic
layers constituted by linear or nonlinear materials
(Fig. 1).

Above the modulated structure, space is filled
with a linear material whose permittivity is real and
pasitive. 8„(v=1,2) denotes the angle of incidence
of each of the pump beams. The case of a nonlinear
medium whose entrance face is constituted by a bare
grating is dealt with by making C=0.

Throughout the paper 8/Bz=O. Thus the solu-

tions at frequency cu„(v=1,2,3) are either TM or TE
polarized. In the following, the concept of associat-
ed smooth structure will be useful: It is the system
derived from that of Fig. 1 by allowing every modu-
lation depth to tend to zero.

The method used to study the nonlinear diffrac-
tion is the following: First, we obtain the expression
of the electric field of the diffracted beams at each
frequency co„(v= 1,2) below and inside the modulat-
ed region. Then, we determine the expression of the
nonhnear polarization at frequency c03——m 1 + roz

below the modulated region but also inside it. Final-

ly, we generalize the theory developed in Ref. 7
(henceforth referred to as I) to the case where the
diffraction of the pump beams is taken into account
and where the signal at frequency co3 may be TE po-
larized.

f&( 8' (ro~ r )=jco„poP'(co~ r ), (la)

0 g

4:2, f2

FIG. 1. Scattering geometry when the grating (periodi-
city d, groove depth 5) is coated by a single dielectric or
metallic layer. Index b characterizes the medium above
or below the modulated region.

B. Expression of the electric field
at frequencies ~, and ~&

We make the usual undepleted pump approxima-
tion for the two pump beams. Thus, Maxwell's

equations read
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p X5 (co„r)= —jto„eoe(to„x,y) @(ro„r),
v=1,2 . (lb)

The e J"' time dependence is assumed and the mag-

netic permittivity is equal to po everywhere.
In Eqs. {1),e(to x,y) is the relative permittivity

which, in the modulated region, depends on x and y.
Outside the modulated region,

e(t0 x,y)=ez(to„) fory (0,
e(to x,y)=e~(ro„) fory ~5+e, v=1,2.

From Eqs. (1}, we see that (a) the two pump
beams are linearly diffracted by the grating; (b) their
diffraction takes place independently of that of the
signal at frequency F03 since in Eqs. (1), v= 1,2.

According to point (a), the expression of 8'(N r}
(v= 1,2) can be obtained by using the rigorous linear
electromagnetic theory of gratings. ' For this theory
to apply, we must assume that all the overcoatings
have the same periodicity, but not necessarily the
same profile. This assumption will be made
throughout this paper. Let us consider separately
each case of polarization of the incident pump
beams.

2

pb{to„)= 2 (b =1,2, v=1,2) .
Qs (c0„)

Putting Eqs. {2}into Eq. (4) yield

~l, l,x = P'z, t„A( i }

EgC

1YI, 1p2(1)

SIC

ut (,——0.

From Eq. (lb), we get

to@2(to„)
8'(roar}=j VA (to r)ge, ,

E/

(5b}

(6b)

1. TM case

Since we deal with the TM case,

8 (to~r)=A (r0 r)e, (v=1,2)

where e, is a unit vector directed along the z axis.
a. Expression of I'(to r) below the modulated

region (yg0). The expression of P (r0 r} may be
written as

J ~
—~2, i, p+rv"'

l, 1

P (ro), r)= g Ht )(y)e (7a)

+ cc}

~(to2, r )= g H, 2(y)e (7b)

The expressions of the components of u z are de-
rived from those of ut & by making the substitution
(1,1)~(m, 2).

b. Expression of 8' (c0 r) in the modulated re
gion (0&y&5+e). We now have'

(2b)
2

p(to x,y)=
co+{co~x,y)

(8a}

with

2
QP2

2 ~ 2+7~ 2 e2(ro2) ——
z =k2(~2)

C

yt )——k)(ro))sin8)+la',

y 2——k&(toz)sin8z+ma',

(3a)

(3b}

(3c)

p(to x,y) is now a function of x and y which is
periodic with rmp~t to x with periM d Thus it
may be expanded into its Fourier series,

p(r0), x,y)= g pt, i{y)e" '. (8b)

8'(ro), r)= g Et )(y)e (9a)

For the expansion of p(~02,x,y), make the substi-
tution (1, 1)~(m,2). Putting Eqs. (7) and (8) into
Eq. (4) leads to

N'(co2, r) = g E,2(y)e (9b)
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with
coi + dH/ i(y)

E/ I » ——J 2 Q pi —/', I(y), (10a)
I'= —00

+ 00

E/, i,y =, g P/ /, I(yb'/, I&/, I(y),
&0

+ 00

and in the modulated region (0 &y &5+e),
+ 00

8'(o/I, r )= g E/ i(y)e (13c)

The components of E 2 are derived from those of
E/ I by making the substitution (I, /', 1)~(m, m', 2).

2. TE case

Here, the situation is much simpler since the elec-
tric field at frequency co„(v=1,2) is directed along
the z axis:

8'(o/2, r ) = g E 2(y)e

Where the components of u/i, u 2, E/, I,E,2 are
determined according to the above mentioned state-
ment. We are now in a position to get the expres-
sion of the nonlinear polarization at frequency
N3=Ni+N2.

8'(co, r)=$'(co„,r)e, .

a. Expression of 8"(to„r ) belou/ the modulated re
gion' (y &0).

4. Nonlinear polarization below
the modulated region (y&0)

g ( ~) ~ // +2, /, Iy +r/, I

I = —00

+ 00

(1 la)
We have to distinguish between the two situations

where the nonlinear material on which the grating is
ruled is either a dielectric or a metal.

a. Dielectric. The nonlinear (NL) polarization at
frequency co3 is written as

with u/I „u 2, being the Rayleigh coefficients of
8'(ioi, r) and 8'(ro2, r).

b. Expression of t/'(to„, r) in the modulated re-
gion' (0&y &5+e)

H/, "(/o3 ——coi+co2, 5, r )

—Xjg ' j (o/3 —o/I +Co2) 8'; (toi, r ) 8'1(oi2, r )

(14)

8'(coi, r)= g E/ I,»(V)e

+ 00

5'(co2, r)= g E 2, (y)e
" '

3. General expression of 8' (o/„, r ) (v= l,2)

(12a)

(12b)

[g(o/3)] is the nonlinear susceptibility tensor of the
medium on which the grating is ruled.

According to Eqs. (3c), (3d), (13a), and (13b)

/, p
with

The coefficients of expansions (5), (9), (11), and
(12) are determined with the aid of computer pro-
grams described in Ref. 1. From now on, u/ I and
E/ I refer to vectors whose nonzero components are
derived respectively from Eqs. (6a), (6b), (10a), and
(10b) in the TM case and from u/I, and E/I „
occurring in Eqs. (11a) and (12a), in the TE case.
To get u 2,E 2 make the substitution

(l, 1)~(m, 2). Let us emphasize that

u/ I, u~ 2, E/ I,E~ 2 depend oil 5, but contrary 'to

E/I and E 2, u/I and u 2 are independent of y.
Finally, whatever the polarization of each of the in-

cident beams may be, we may write the following
expansion for the electric field, below the modulat-
ed region (y & 0):

+ 00

p =l+m,
+/p, » ) /, I+ Yp —1, 2 ~

/r/, p,y (/ 2, /, I++2,p —1,2)

NL
P/ p /, / =&/, /—j(i'o3 =toi+/o2)u/, I, /up /, 2,&

~

Let us introduce

(17)

( 5 r) e/K'r g pNL( 5 ) jp~»

which would be the wave vector of the nonlinear po-
larization if the two pump beams were not diffract-
ed.

Equation (15) may be rewritten as

(18a)
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with

Equations (17), (18a), and (18b) are valid for any po-
larization of the incident beams.

b Metal. In Ref. 9, Bloembergen et al. deter-
mined the expression of the nonlinear polarization at
the second harmonic frequency in a metallic medi-
um. If, instead of dealing with SHG, we are con-
cerned with the nonlinear interaction
({oi,to2)~col=oii+672 thc 1'cslllts of thcsc authors
Inay bc gcncralizcd lllf 0

(to3,5)=a V[ P(oil, r). S'fco2, r)]

+b[to28'(to{, r)V S'(oi2, r)

+toiS'(co2, r)V S'(oil, r)] . (19)

Equation (19) is obtained in the same way as Eq.
(14) of Ref. (9), except that now the expansion of the
qualltlflcs occurring lfl Rcf. 9 nlust b{: done with
rcspcct to tllc fI'cqllcIiclcs col, co2icol +{o2,. . .

In Eq. (19)
Pl Oe

N]&26)3

ee(0)
rr{ colco2o13

with 110 tllc llIlpcrfurbcd dcIlslty of fh{: elecflons, e
the charge of the electron, m~ the average effective
mass of the electrons, and c(0) the static permittivi-
ty.

The nonlinear polarization at frequency o13 can
still be put under the form given by Eqs. (18a) and
(18b). But now, due to Eqs. (3c), (3d), (13a), and
(13b), we get

P Ip —i=Jafu1, 1 up l, 2)~l, — (20)

5. Nonlinear polarization inside

the Ir{od{{latedregion f'0&y &5+e)

Here, we must take care of the fact that the layers

are not necessarily of the same nature. We may

find, for example, an overcoating of nonlinear

dielectric on a nonlinear metallic grating or more

generally a superposition of several layers, each of
them being either a linear or a nonlinear dielectric, a
linear or nonlinear metal. For a given x, when y is
varied, we meet a succession of linear or nonlinear

media which can be either a dielectric or a metal.
Thus, inside the modulated region, XI, ;I, a, and b

are functions of x and y.
The dependence of Xi, ;1, a, and b on x and y is re-

lated to the characteristics of the modulated region:
shape and groove spacing of the profile, nature of
the material constituting the grating, and the even-

tual overcoatings.
The nonlinear polarization of a dielectric is writ-

ten as

9'I, "(OI3,5, r ) =XI, ;,(to3,x,y)

y S';(oil, r )S'J(co2, r ),
and that of a metal is written as

(21R)

P
with

1 p I, (5,x,y) =XI, ;J (x y) Vp, J(5,y)e

inside a nonlinear dielectric where

+ 0O

I'p, (»y)= g Eii;fy)E, », fy)

(23)

and with

i'p(5, x,y) = Fp(5,x,y)+ P"«(5,x,y) (24)

inside a nonlinear metal with [according to Eqs.
(3c), (3d), (13c),and (13d)]

F'p(5, x,y) =a(x,y)V«(5,y)e

~Q + 00

Vp(5,y)= e„j (po+K„) g Ei ify) Ep I 2(y)
I = —co

+" d IEi, I(y)'Ep 1,2(y)]-
ey

I =—00

e„e„are unit vectors directed along the x and y
RxlS Rlld

P'p(5, x,y) =b(x,y)V«(5, y)e

CO IE« 1,2—

+{O2EI,1

+ JYp t2E«

9" (co3,5, r)=a(x,y)V[S'(oil, r) S'(o12, r)]

+b(x,y)[to21(roi, r)V @(ro2,r)

+rol S'(o)2, r )V. S'(col, r )] .

(21b)

In Eqs. (21a) and (21b), s'({ol) and S'(o12) are the
electric fields at the pump frequencies inside the
modulated region. According to Eqs. (3c), (3d),
(13c), and (13d), both Eqs. (21R) and (21b) can be put
under the following form:

+ 00=ej~' g F' „(5,x,y)ejp ",
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According to Eqs. (23) and (24), the h coordinate
P s q(x,y) of vector P z depends on x only through

Xi, ; J (x,y ), a(x,y) and b(x,y). Thus Ws i, (x,y) is
a periodic function of x with periodicity d. There-
fore, we may expand it in Fourier series:

ing to a given set have the same longitudinal wave-
vector component. Any of these sets arises from the
nonlinear interaction between all the diffracted or-
ders [1] at frequency coi and [m] at frequency co2 for
which

+ CO

p"~ i, (5,x,y)= g Us ~ q(5,y)ejs ". (25)
1+m =p .

Each of these sets gives rise to an elementary non-
linear polarization with longitudinal wave-vector
component K„+po.

The same is true for the region 0 &y &5+e. But,
in addition, one has the o periodicity along the x
axis which comes from the modulation of the non-
linear polarization. The longitudinal wave-vector
component of each of the elementary nonlinear po-
larizations is equal to K„+(p+q)o. Now, the dif-
fracted orders have to be classified with respect to
the values of n =p +q, each set n leading to an ele-
mentary nonlinear polarization in the modulated re-
gloil.

Contrary to what one could think, all the subele-
mentary nonlinear polarizations with the same long-
itudinal wave-vector component K„+po (or
K„+no) may have very different efficiencies. This
will occur whenever the associated smooth structure
will support guided normal modes at frequency coi
and/or co2.

Indeed, it has been shown in Ref. 10 that, Axing
the frequency co„(v=1,2), there exists a specific
value 8i ~

of 8i and 8 2 of 82 for which the quanti-

T,2 I

' of a g~~~~ «ansmitted diffra«ed
order, 1 at frequency coi, m at frequency co2, is max-
imum. It has also been shown in Ref. 10 that the
value of this maximum strongly depends on 5:
There even exists a value 5,~,(co„) of 5 for which this
maximum value is itself maximum. If 5 is increased
beyond 5,~,(co„), then this peak value decreases.
These results remain valid if, instead of fixing co„,
we fix O„and sweep co„(v=1,2).

This phenomenon, i.e., the existence of 5,~, and 8,
arises from the resonant excitation, at aii and co2, of
the guided normal modes which propagate along the
associated smooth structure. " For example, we
have surface plasmons (surface polaritons) when
dealing with a bare metallic (dielectric) grating; sur-
face plasmons or guided waves (either TE or TM) in
the case of a dielectric coated metallic grating.

The feature of the modulated region, namely bare
or coated grating, is taken into account in the theory
via the Fourier expansions, Eq. (8b), of P(co x,y)
and Eq. (25) of F's q(x,y, 5).

We are led to the following important conclusion:
Among the numerous values 1 of [I] and m of [m]
such that 1+m =p, one may select two special cou-
ples (1,8i i) and (m, 8 3) for which the transmitted
intensity of the corresponding diffracted orders at

Use of Eq. (25) shows that Eq. (22) may be rewritten
3,S

+ 0O

9'P"(a33,5, r) =eJ ' ' g P„P (a33, 5,y)ej" ",

(26a)

with

(26b)

n =p +q =1+m +q .

Equations (18a) and (26a) give the expression of
the nonlinear polarization at frequency co3 ——coi+ai2
below and inside the modulated region. Let us em-
phasize that these equations are valid for any grat-
ing profile and even for multicoated gratings (what-
ever the nature of the coatings may be), as well as
for any polarization of the incident pump beams.
These two equations are important and, before con-
tinuing, it is worth discussing them.

6. Discussion ofEqs. (18a) and (26a)

It is seen from these equations that the diffraction
of the two pump beams has the following conse-
quence: Below the grating and inside the modulated
region the nonlinear polarization at frequency
ai3=ciii+c02 is a superposition of an infinite number
of elementary nonlinear polarizations, each of them
having a longitudinal wave-vector component:
K +po below the modulated region and K„+no
inside this region.

In order to understand this result, one has to
remember that the nonlinear polarization at frequen-
cy co3 comes from the nonlinear interaction between
all the diffracted orders at frequencies co& and ~2.
Besides, in region y &0, the interaction between a
given 1 and a given m leads to what we may call a
subelementarg nonlinear polarization, i.e.,

jÃh -r
pi& ie ', with longitudinal wave-vector com-
ponent:

yi i+y 2
——K„+(1+m)o .

Thus the subelementary nonlinear polarizations
may be ordered in sets characterized by the fact that
all the subelementary nonlinear polarizations belong-
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coi and ai2 is maximum, i.e., such that a resonant ex-
citation of the guided normal modes occurs at fre-
quencies coi and aiq. Then, the modulus of the corre-
sponding subelementary nonlinear polarization is
strongly enhanced when compared either to the case
of flat interface between the two media ei and e2 or
to the case where no resonance takes place at the

pump frequencies

cubi

and ra2. This occurs, if
8,&8, , and 8 &8 and if the associated smooth
structure does not support any guided normal
modes. Moreover, this enhancement can be opti

mized by choosing 5=5„„,either at frequency a~i or
at f1equeilcy f02.

The special case of SHG (i.e., rai ——ai2) is of in-

terest because if the modulated structure is opti-
mized (5=5,~, ) at cubi it is also optimized at ra2.

Thus the case of SHG is the most favorable with
respect to the enhancement of the nonlinear effect
[Figs. 2(a) and 2(b)]. When 5=5,~,(rai), the second-
harmonic intensity will be strongly enhanced as
compared to the case of a flat interface.

Let us now discuss the nature of the coi and ca&

diffracted orders occurring in the expressions (18a)
and (26a) of the nonlinear polarization at frequency
C03 =N ~+602.

According to the sign of Re[@2(ra„)] (where Re
means the real part thereof ) and to the values of y&,
and y 2 as compared to Re[kb(co„)] (b=1,2), a
given diffracted order at rai or co2 is almost one of
the following cases: (a) evanescent above and below
the modulated region; (b) evanescent below the grat-
ing and radiated above the modulated region (or vice
versa); (c) radiated above and below the modulated
region.

Expressions (18a) and (26a) of the nonlinear polar-
ization at co3 explicitly take into account the fact
that the nonlinear excitation of the electromagnetic
(EM) field comes from a nonlinear interaction be-
tween all the preceding types of diffracted orders at

cubi and coz. All these diffracted orders, regardless of
their nature, contribute to the nonlinear polariza-
tion. But, as pointed out previously, the efficiency
of each contribution depends on the fact that a given
diffracted order may or may not lead to a resonant
excitation of one of the guided normal modes of the
associated smooth structure. Notice that it is the
diffracted orders of type (a) which may lead to this
resonant exntation.

V X 8'(ra3, r)=jraiiuuA (ca3, r), (27a)

C. Nonhnear diffraction of the co3 ——co~+a~
electromagnetic field

The starting point is Maxwell's equation written
at freqlleilcy ra3.'

)T)( (a)

100,

50.

0
44.5

100.

50

0
50 150 250 350 450 & (A)

FIG. 2. (a) Relative transmitted intensity,
~

T,
~

', of
the I= 1 diffracted order at the puInp wavelength

A, , =1.06 pm (A& ——2~c/~, ) as a function of the incidence
0

angle 9~ for different groove depths from 50 to 500 A in

the case of a bare sinusoidal grating with periodicity 6174
A. Notice the shift of the

~
T~

~
peak position with 5.

Grating material: Ag. If the beam with wavelength A,
&

acts as a pump for SHG in such a medium, then the max-
imum increase of the square modulus of the nonlinear po-
larization at the second-harmonic flequency 1s of the oi-
der of 10' as compared to the case of a flat air-Ag inter-
face (h} Peak va1.ue,

~
T~

~ ~ of
~

T~
~

', as a furiction of
the groove depth 5. The maximum maximorum of

~
T~

~

' occurs at paint A for 5,~, =150 A. d=6174 A,
grating material: Ag.

7 XA (ra3, r)= —jca34'(co3, r),
with

(27b)

4'(ra3, r)=e eO(a) 3x,y)8'(ra3, r)+9' "(ca3,r) .

(28)

The determination of the nonlinear diffracted EM
field at frequency ai3 is performed in the following
way:
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(a) We divide the space into three regions by
means of the planes y=0, y =5+e and obtain the
expression of the propagation equation in each re-
gl011.

(b) The solution of each propagation equation is
looked for by means of a suitable expansion of the
EM field.

(c) The coefficients of these expansions are linked
to each other through the matching conditions at
y=O and y =5+e applied to the tangential com-
ponents of 8' and Pi .

We then get a boundary value problem whose un-
knowns are the Fourier coefficients of the EM field
inside the modulated region. According to the hy-
pothesis 8/Bz=O, the solutions at frequency col are
either TM or TE polarized. Let us first consider the
TM case.

TM ease

In this case, M(ro&, r ) is directed along the z axis:

o'l, n, i+i., 1=k l(~1)2 -2 2 (32)

hA (col, r)+kg(col)A (co3, r)

=jcoi[V &( 9 NL(roi, r)], .

In this equation, the nonlinear polarization is given

by Eqs. (18).
The solution is now a superposition of plane

waves (propagating and evanescent) and driven
waves produced by the source term jcoi[ V

+ P NL( ~r)]

+ 00

4 (co r)= g T™e
?

The constants y„i occurring in Eq. (32) will be
derived later [see Eq. (40)].

b. y&0. Equation (30) becomes

4'(a)i, r)=A (a)i, r)e, . (29)
+ 00j K ~ r ~ gNL jpex

TM, p~
P =—oo

(33)

According to Eqs. (27a), (27b), (28), and (29),
A (cog, r) fulfills the following equation:

with

&1,.1+i'., 1 =k 2(~1),2 -2 2 (34)
V- VA (col, r) +P (col, r)

k (~i,x,y)

P NL(~

k (co&,x,y)

wltll

(30)

NL
(lrjp&Pip 1)z—QP3

k z(mi) —@ip

j(aI „—K )y?P?P 3'

2
Q)3

k (a)p, x,y) = e(roy, x,y)2

and the subscript z denotes the z component of the
curl operator.

It must be emphasized that (a) Eq. (30) is valid for
any region, even in regions where e and 9 "are x
and y dependent, and (b) since Maxwell's equations
are valid in the sense of generalized functions or dis-
tributions, Eq. (30) is also valid in the sense of dis-
tributions. Thus, although the function (1/k ) VA
is discontinuous on the grating profile, its diver-
gence is well defined. The same thing applies to
V X(9' /k ). To solve this equation, we consid-
er three regions: y y5+e, y&0, and 0&y &5+e.

a. y&5+e. Equation (30) reduces to

where the subscript z denotes the z component of the
cross (vector) product.

c. 0&y & 5+e. In this region, since e depends on
x and y, we have to deal with Eq. (30) whose solu-
tion must be looked for in the following form':

+ 00

~(&01,r ) = g H„ 1(y)e

The determination of the Fourier coefficients
H„i(y) is done as follows: The periodicity of the
modulated region with respect to x implies the
periodicity of e(roy, x,y), g(roy, x,y) = (a)i/c )

)& e(ro&,x,y), and P(r0&,x,y) = 1/g(a? &,x,y). Thus
g(col, x,y) aild p(col, x,y) call be expanded lllto
FOUAC1 SCACS".

bA (roi, r)+kl(cgi)A (a),, r)=0. g(ro x y) g g (y)ej??lM (37a)

+ 00

r ) ~ g TM ~~~&,n, 3p+4, P~
n, 3& (31)

p(~1 X y)= g p.,
i(y)ej""

It is convenient to introduce the functions

(37b)
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K„3(y)= g p„„,3(y)
' +j ru3P„„e &

+" dH„3(y) NL Jx y

dy

where P„„"is given by Eq. (26b).
According to Eqs. (26a), (30), (37a), (37b), and (38), we get

dH„3(y) +" — N„jx 3,
3(y)K„3(y) je3—3P„„(y,5 )e

=)., 3 & 1'.,A ., {y»., H—., {y) ~3r., (39b)

together with

yn 3——Kn+na. ' (40)

T„3 +ATM p(0)5„p ——H„3(0), (4 la)

where 5„& is the Kronecker symbol. The continuity
of 8'„(a33,r) leads to

TM NL—JQZ „3Tn 3 +JKyATM p(0)5„p ——

y=0

(41b)

The Fourier coefficients H„3(y) not only fulfill

Eqs. (39a) and (39b), but also the boundary condi-
tions at the limits of the modulated region, i.e., the
tangential components of the electric and magnetic
fields must be continuous at y=0 and y =5+e.

At y=0, from the continuity of A (e33, r ), we get

I

c03 —clii+cog everywhere, not only outside the modu-
lated region, but also inside it.

Before considering the solution of the TM BVP,
let us deal with the TE case at frequency
QP3=QP~+QP2.

2. TE ease

The method is similar to that of the TM case.
Now F7 (a33, r ) is directed along the z axis:

8'(A@3, r)=$'(a33, r)e, . 44

Thus V' 8'=0 (remember r)/Bz=O) and, from
Eqs. (27a), (27b), {28),and {44),we get in the follow-

ing different regions;
a. y~5+e. We haue

b, S'(cu3, r)+k f(r03)Ã(c03 r)=0 .

Similarly, at y =5+e, we get
+ ao

g ( ~) ~ g TE & l, n, 33'+rn, 3
, r = ~ „3e (45)

TM ja/ 3(S+& I dHn, 3(y)
J&i,n, 3&n, 3 e

Equations (41a) and (41b) on the one hand, and

Eqs. (42a) and (42b) on the other hand lead to

b. y(0. We haue

b 8'(a33, r)+k2(a33)8'(c03, r) =—
2

XL
(103,r )

E'OC

with 9', (co3, r ) derived from Eqs. (18). We get

dH„3(y)

dH„3(y)

y=0
+ja2 „3H„3(0)

=J(~, „,+K, )A,'„',(0)5„, ,

—jai „3H„3(5+e)=0 .

(43a)

(43b)

+ oo

g( ) ~ TTE J~ —
2, ,

33'+'Y 3 ~

CO3, r = ~~ „3e

+ COj K r ~ ANL jpax
TE,pe

where

(46)

Equations (39a), (39b), {43a), and (43b) constitute

the TM boundary value problem (BVP) whose un-

knowns are the Fourier coefficients H„3(y). The
numerical determination of these Fourier coeffi-
cients allows knowing the Rayleigh coefficients T„3
and 8„3 via Eqs. (41a) and (42a). We then know
the TM nonlinear diffracted EM field at frequency

NL
ATE~ ———

2 + NL
I,p-i, s

eoc I ~ k3(Ci33) —Ki &
2 2 2

j(xI —E )y
7

c. O~y~5+e. In this region, the propagation
equation takes the form
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5$'(to3, r )+k (co3,x,y}8t'(to3, r )

2
NL

(co3, r)

with H, (to&, r) derived from Eq. (26a).
We have to look for the solution of the form

+ ao

8'(co3, r )= g E„i(y)e (48)

H„3(y)

E (y)

for the TM and TE cases, respectively.
According to the discussion of Secs. IIC1 and

IIC2, the functions y„(y) are solutions of the fol-
lowing set of equations which constitute the BVP
common to the TM and TE cases:

Then the Fourier coefficients E„3(y) fulfill

d E„3 + ce

y'„,E„,+ g g„„,(y)E„3y'

y=0
+ja2 „3p„(0)=j(a2 3+Ky )Ay (0)5„y

(52a)

Q) 3 NL JK y
2~n, ze

EpC

0'n —jai „3y„(5+e)=0,
dy y =s+e

(52b)

Tpg 3 +A TE y (0)5„y——E„3(0) (soa)

TE—jap, , 3T„,i +JKyA TE,y(0)5, ,y
=

y=0

The continuity of 8', and 4 „at y =0 and y =5+e
leads to the following set of equations:

together with Eqs. (39a) and (39b) in the TM case
and with Eq. (49) for the TE case.

In Eq. (52a), Az "(0)=ATM&(0) in the TM case

and Ay (0)=ATEy(0) in the TE one.
In order to get the solution of this new BVP, let

us consider the following expansion:

(50b) [@(y}]= g C~[@~(y}]+[@'"(y}]. (53)

n, 3e (50c)

TE jo& „3(s+e) dEn, 3(y}jai „3B„3e
ly =~+e

(sod}

From Eqs. (50a)—(50d), we get

y=0
g ja2 „3E„(O)

=j(a2 gg 3+Ky)ATF y(0)5„y, (Sla)

n, 3 —ja& „3E„i(5+ e ) =0 . (51b}

Equations (49), (51a), and (51b} constitute the TE
BVP whose unknowns are the Fourier coefficients

E„,(y).

3. Solution of the BVP in the TM and TE cases

From Eqs. (36}and (48), the inagnetic field in the
TM case, the electric field in the TE case, can be
written as

[4(y)] is a column matrix with elements y„(y);
[4,(y)] is an infinite set of particular column ma-
trices with elements g„,(y) which fulfill Eq. (52b)
and are solution of equations derived from Eqs.
(39a) and (39b) for TM waves, and Eqs. (49) for TE
waves, by putting H NL=O (which leads to P„=O,
P =0); [4 (y)] is a column matrix with elements

(y) which fulfill Eq. (52b) and is a particular
solution of Eqs. (39a) and (39b) in the TM case and
of Eq. (49) in the TE case.

By construction the column matrix [4(y)] de-
fined by Eq. (53} fulfills Eqs. (39a) and (39b} in the
TM case, Eq. (49) in the TE one, together with Eq.
(52b). Thus [4(y)] will be the solution of the BVP
common to the TM and TE cases provided the un-

known coefficients C, are determined in such a way
as to fulfill Eq. (52a). If [C] is a column matrix
with elements C„ this implies

[M][C]= [G]

or

[C]=[M] '[G]

where [M] is a square matrix with elements

y„(y)e' "' f'n, t +ja2,., 3f.,t(0}
y=0

with and [G] is a column matrix with elements
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j(u2 „3+Ey)Ap "(0)b„p

NL( )

3' y=0

The Rayleigh coefficients ~™2and T™3are
rived from Eqs. (41a) and (42a), whereas 8„3 and
T„3 are obtained from Eqs. (50a) and (50c). Thus
the EM field is determined everywhere.

Notice the following:
a. For the TMcase, matrix [M] is thesameas in I

since it is constituted by an infinite set of particular
column matrices whose elements are solutions of Eq.
(52b) and (39a) and (39b) in which H "=0;matrix
[G] is different from that computed in I. Indeed,
because of the diffraction of the pump beams, we
deal with a different nonlinear polarization at fre-
quency u3.

b. For the TE case, the elements y„,(y) and

(y} are different from those corresponding to the
TM case since the basic propagation equations are
different.

This method allows us to determine the EM field
at frequency to3 ——toi+to2 outside, but also inside, the
modulated region whatever the polarization of the
toi, co2, and to3 beams may be.

This is achieved with the aid of a computational
method which is a generalization of that used in I.
Corresponding numerical results will be given in a
forthcoming publication. They will fully include the
frequency dependence of e, It, ;J, a, and b. Effects
considered in this study are such that no wave-

vector dependence of these quantities occurs. This
is the usual situation in diffraction theory. ' ' ' '"

Before taking up the next section, let us say a few
words about the convergence of the series occurring
in this formalism. Computer calculations valid in
the case of linear diffraction" " (i.e., concerning
expansions of the fields at frequencies toi and co2)

have shown that the pump fields are represented
with an accuracy at least equal to 1% when 15
terms are taken into account (from l = —7 to
l= + 7). Early computer results show that the ra-
pidity of convergence is about the same for the ex-
pansions of the EM field at frequency co3.

4. Description of the nonlinear diffracted EM field
at frequency to3 ——tot+ to2

outside the modulated region

The pertinent equations are Eqs. (31)—(35), (40),
and (45}—(47). We have to consider separately the
regions y & 5+e and y & 0.

a. y & 5+e. The transverse variation of each dif-
fracted order at frequency to3 depends on the sign of
ai „3. The diffracted orders for which cti „2&0

(y„3&ki(to3)) are evanescent above the modulated
Ieg10Il.

Note that for sufficiently large IC„(K„&ki(coi))
even the diffracted order n=O may be evanescent.
This is a specific feature of nonlinear diffraction.
As is well known, in linear diffraction the specularly
reflected wave (corresponding to l=O) is always ra-

diated.
The diffracted orders n for which ui „3& 0

(y„3&ki(coi)) are radiated in the outside medium

y &5+e.
b y&. 0. Below the modulated region, the EM

field at frequency toi is a superposition of a diffract-
ed field and of a driven field. The diffracted field is
described by the first term of Eqs. (33) or (46).

If Re[e2(to3)]&0, all the diffracted orders are
evanescent in the region y&0. In this case, the or-
ders n for which ai „3& 0, correspond to diffracted
orders which remain bounded to the modulated re-

gion, i.e., these orders n correspond to surface
waves; the other diffracted orders correspond to ra-

diated waves.
If Re[e2(co3)]&0, one has to compare y„i with

k2(toi). Diffracted orders n for which y„3& k2(to3}
are evanescent in the region y &0, whereas those for
which y„3 & k2(co&) are radiated in this medium.

The driven field is a superposition of an infinite
number of subelementary driven fields, each of them

having a wave vector tris. The longitudinal com-

ponent of tet& is always real and, as a consequence,
all the subelementary driven fields, regardless of the
indices l and I, propagate along the x axis. The
transverse variation of each of these driven fields de-

pends on the nature, real or imaginary, of a2 t, and

a2 & t 2. The results are summarized in Table I.
In fact, due to the damping of the nonlinear medi-

um at frequencies toi and to2 a2, t, i and tx2,p —1,2 are
complex. But, since this damping is usually small,

a2 t i and a2& t 2 are either almost real or almost
imaginary. This justifies the classification of Table
I.

For metallic gratings A TM ~
——A TE ~

——0. For
these gratings there is no driven field in the TE case.

The guided EM waves at frequency co3 (surface
plasmons, surface polaritons, guided waves) must be
looked for in the diffracted field at that frequency.
They correspond to diffracted orders n which are
evanescent both above and below the modulated re-

gion. For example, we have the following: surface
waves for a bare grating with Re[e2(to3)] &0 and or-
ders n such that tz i „3& 0; guided waves when2

Re[e2(to3)] &0 together with a high index coating,

i.e., whose permittivity e, (to3 } fulfills
Re[e, (to3)]&Re[et, (to3)] (b=1,2), and n such that

ized„3&0. These guided diffracted orders at fre-
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&2,p —l, 2 Characteristic of an ( i, m )

subelementary driven field

Re Re Propagates in the bulk in the
direction ~I~

Re Im Propagates in the direction

I px~l22, l, l }.
Evanescent in the y direction.
Attenuation length: (a2 p I 2)

Im Re Propagates in the direction
(+Ip, I22,p —l, 2 }.
Evanescent in the y direction.
Attenuation length: (a& I &)

Im Im Propagates in the x direction.
Evanescent in the y direction.
Attenuation length:

(I22, I, I+ I22p -I,2 }
—1

TABLE I. Discussion of the nature of the driven fields. direction of propagation is given by gb „
Equation (54) expresses the conservation of the

longitudinal component of the total impulsion of the
system constituted by the two incident photons, the
signal photon and the grating through the nonlinear
interaction (al &,to2) ~a23 —clj I +N2.

The nonlinear grating equation is valid even for
dispersive media. Notice that the nonlinear diffrac-
tion angles gb „are different from the diffraction
angles corresponding to the linear diffraction of the
pump beams. Thus this novel grating effect allows
separating pump fields and signal.

The geometrical construction, which leads to the
determination of the direction of propagation of the
radiated diffracted orders at frequency co3, is de-
duced from Eq. (54) in the following way (Fig. 3):
Draw two circles CI, C2 and two half circles C3, C4
with radius, respectively, equal to n, (A, , ) /A. I,
n&(A2)/l(2, nI(A3)IA3, n2(l(3)/A3', add the lengths
OA 2 to OA I to get OBo. Then, OB„

quency to3 can be resonantly excited for suitable
values of OI, 02,d, cu3, n [see Eqs. (32), (34), and (40)].
In fact, due to the damping of the nonlinear medium
e2(co3) is complex and these guided waves do not
propagate strictly parallel to the x axis, but this does
not change significantly the results stated above.

c. Direction of propagation of the nonlinear dif
fracted orders at frequency to3 to, +to2. A——s already
pointed out, the diffracted field contains propaga-
ting and evanescent waves. The direction of propa-
gation of the radiated waves can be deduced from
Eqs. (32) and (40) for the medium y &5+e and
from Eqs. (34) and (40) for the mediumy&0.

We get the following result:

nb(A3) , nI(A, I)
sinfb „—— sinOI

3 1

nI(A, 2)+ sin82+— (54)

with n =0, +1, +2, . . . , nb(A„) (b=1,2, , v=1,2,3) is
the refractive index of medium b at wavelength A,„
(A,„=2nc/co„), and pb„ is the diffraction angle of
the diffracted order n at wavelength A, 3 in medium b
(b = 1,2).

Equation (54) is very important since it represents
the nonlinear grating equation. This equation al-
lows determining which diffracted orders n (at the
signal frequency co3) are radiated in medium b
(b=1,2) (by

~
sin1}'Ib„~ &1). For these orders, their

FIG. 3. Geometrical construction for nonlinear dif-
fraction when the lower medium is a nonlinear dielectric.
Note that the n =1 diffracted order at co3 is radiated only
in medium 2; it is evanescent inside medium 1. All the
diffracted orders n )2 and n (—3 are evanescent in
media 1 and 2. B 2B ~=B ~BO=BOB&=1/d. With the
arbitrary numerical values corresponding to the figure,
the only propagating orders at the pump frequencies co&

and co2 are the orders 0 and —1 (not reported on the fig-
ure).
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n](A2)—sin82 .

(55a)

Equation {55a) determines the direction of non-

linear reflection when (b= 1)„or nonlinear transmis-
sion (b=2), in the case of a plane interface separat-
ing two media with permittivity e„e2. It is worth
noticing that only the direction of propagation, and
not the intensity, of the n=O diffracted order is the
same as that deduced from the theory of nonlinear
reflection. From Eq. (55a), it is seen that g] Q is
different from 8] and 82 when the upper medium is
dispel'slve.

If n](A3)=n](A2)=n](A]), we get

1 1 . 1 . 1+ sing] Q
—— sin8]+ sin82 .

] 2 ] 2

{55b)

If in addition 8]——81, Eq. (55b) shows that
tj ] Q

——8]——82, i.e., the nonlinear specular reflected
beam and the specular reflected pump beams merge
together. Figure 4 represents a possible aspect of the
EM field at frequency a]3 in the case of SHG in a
sllvel gratlllg.

5. Summary of the EM theory ofdiffraction
ill RolllltfeQI' OpflCS

The formalism developed in the previous sections
corresponds to a three-step theory of nonlinear dif-

(n =0, +1,+2, . . . ) is the longitudinal wave-vector
component divided by 2m. , of the nth diffracted or-
der. The direction of propagation of the nth reflect-
ed (transmitted) nonlinear diffracted order in OR„
(OT„).

Circle C4 exists only in the case of a nonlinear
dielectric. When dealing with a nonlinear metallic

grating there is no circle C4. All the nonlinear dif-
fracted orders are evanescent in region y&0. When

8],82, A, ],A,2 are such that

n](A]) n](A2) nb(k3)
sl118]+ —sln8p &

1 3

Then, even the n=O nonlinear diffracted order is
evanescent in medium b (5=1,2).

This case, which has been already considered for
region b= 1, corresponds to K„&kb (a]3) (b=1,2). It
is of special interest since, in medium b= 1, it corre-
sponds to the nonlinear specular reflection.

When n=0, the nonlinear grating equation, Eq.
(54), becomes

n](A, ])
nb(A, 3) + slnfb Q

= sln8]
~]

Aq

FIG. 4. SHG in the bare grating of Figs. 2(a) and 2(b):
A, 2 ——k) ——1.06 Pm; 02 ——8)——45', n 1 {X) )

—n ] ( A 3 )= 1. In this case, the nonlinear grating equation,

Eq. (40), reduces to (d/A, ,)(sing„3 —sin8]}=n (X3——A]/2).
The specularly second-harmonic reAected light {n=O) is

emitted in the direction t]'r] o
——8]. Aside from this order,

only the n = —1 second-harmonic diffracted order is

propagating, with a back-diffracted angle P] ] = —8.63'.
Concerning the diffraction of the fundamental light, m&,

only the 1=0 (specular reflection) is radiated in direction

8]. , incident pump beam at co]', '
, radiated dif-

fracted orders at m3 ——2'~, —' —., evanescent diffracted or-

ders at m3 ——2~&. Since the grating material is a metal all

the transmitted diffracted orders are evanescent.

fraction (Fig. 5):
(1) The diffraction of the two pump beams is ac-

counted for by using the rigorous linear theory of
gratings: This allows getting the expression of the
electric field of the diffracted pump beams below
and inside the modulated region.

(2) We then derive the expression of the nonlinear
polarization at frequency a]3 ——a]]+a]2, not only
below the grating but also inside the modulated re-

gion, in terms of all the diffracted orders at frequen-
cies co] and to2, whatever their nature, radiated or
evanescent, may be.

(3) The expressions (18a) and (26a) of the non-
linear polarization at frequency a]3 then act as
source terms in the nonlinear diffraction problem at
frequency a]3.

6. Comparison with the resuits ofpap« I
Contrary to what occurs ln I, the nonlinear polan-

zation at frequency to3 depends on the groove depth
5. This allows us to account for an enhancement of
the a]3 EM field through electromagnetic resonance
at the pump frequencies.

Among these EM resonances is the well-known
surface-plasm on or surface-polariton resonance.
But, the theory of nonlinear diffraction presented



28 ELECTROMAGNETIC THEORY OF DIFFRACTION IN. . . 1883

theory of linear
diffraction

at frequency

theory of linear
diffraction

at frequency td} 2

the l the

modulated ) modulated

region ) region

I

HL
l

HL

(~3,6) (~3.g
l

INSIDE ) BELOM
Theory of
Nonlinear

Diffraction
at frequency
4l 4)l y ttl

I I
hll the diffracted

l orders, radiated or )
evanescent, at f re-

i qnenctes &
y and to2 i

All the nonlinear )
polarixations at"I+ "2l
arising from the
diffraction of

the two pump
beams

) hll the diffrac- )
ted orders, ra-

) diated or eva-
nescent, at fre-

) quency

FIG. 5. Successive steps of the theory of diffraction in nonlinear optics. 8 "(co3,5): nonlinear polarization at fre-

quency co3 —coi+ N2

here, since it also applies to coated gratings, allows
us to predict that nonlinear effects can be enhanced

by using, at least, another kind of EM resonance,
i.e., the guided wave one.

This is demonstrated in Fig. 6 where we consider
SHG in a silver grating (d =5556 A, 5= 150 A)
coated by a dielectric layer of thickness e; the pump
wave coi is TE polarized. In that case, the optimal
thickness, e,~, is equal to 5700 A and

(ui |,ej ' ' " +"(MM ——186 (MM denotes max-
imum maximorum) Conseq. uently, the square
modulus of the nonlinear polarization at 2coi is in-

creased by a factor of the order of 2100 as compared

(a(„'

200.

150.

100.

50.

0
0.4 0.5 0.6 0.7'

((Wm}

FIG. 6. Peak value,
~ Q ~

~, Of Q
=

i
ui |,e "' i', as a function of the thickness e of

the dielectric layer. A,
&
——1.06 JMm, index of the layer, 1.49,

d=5556 A, 5=150A.

to the case where a TM incident beam of frequency

ro& acts as a pump for SHG in a bare Ag medium

with flat interface. "
This result has to be compared with the enhance-

ment factor corresponding to a bare silver grating
(i.e., the situation of Fig. 2) with d=5556 A. Com-
puter calculations show that 5,~,= 114 A and

i Ti & ( MM ——67.05 leading to an enhancement factor
of the square modulus of the nonlinear polarization
at frequency 2coi of the order of 300 (the compar-
ison is still performed with a flat air-Ag interface).

Thus the guided wave resonance leads to a
stronger enhancement than the surface plasmon-
polariton does. With the numerical values of Fig. 6,
the enhancement factor corresponding to the
guided-wave resonance is 7 times greater than that
due to the surface-plasmon resonance.

We also see that the surface-plasmon resonance
contribution depends on d. Indeed, in Fig. 2(b),
d=6174 A, 5,~, =150 A, and

i
T, 1 ( MM ——110

whereas for a bare silver grating for which d =5556
A, 5=5,&,

——114 A, we get
i

T& i ~ MM ——67.05. This
result has been already pointed out in Ref. 12 where
it has been shown that, in the low modulation range,
the highest modulation 5/d leads to the strongest
EM resonance.

This guided-wave resonance at frequencies roi and

co2 is associated with guided EM waves in a dielec-
tric wave guide (the associated smooth structure is a
high index coated plane interface). Consequently,
most of the pump energy is stored into the dielectric
layer. If, in addition, this layer is constituted by a
nonlinear medium, then, with regard to the non-
linear efficiency at frequency co3, guided-wave reso-
nance should lead to a greater enhancement of non-
linear optical effects than does surface-
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plasmon —polariton resonance. Indeed, the enhance-
ment due to the guided-wave resonance is stronger
than that corresponding to the surface-plasmon one,
and in the case of bare metallic gratings most of the

pump fields lie above the grating, i.e., in the linear
region.

One may wonder if surface-plasmon —polariton
resonance can occur simultaneously at the three fre-

quencies coi, to2, and to3 In. this case, the EM reso-
nance contribution to the enhancement of the signal
at frequency co3 would be the greatest.

If this happens, one has

where Ps (co„) is the surface-plasmon —polariton
dispersion relation at frequency to„(v=1,2,3) corre-

sponding to a flat interface ei, ei.
For the sake of simplicity, we neglect the small

depression of the surface-plasmon dispersion curve
when 5 is different from zero (see Refs. 7 and 10).

From Eqs. (3c), (3d), (16), and (40), we get

k&(co&)sin8t i+ltr=gs(to&),

k i (co2)sin8 z+ mtr =Ps(co2),

ki(Ni)sin8t i+ki(N2)sine 2+ntr=Ps(C03) .

Thus

Ps(cot )+Ps(co2)+qtr =Ps(to, + top) . (56)

From this equation, we see that if the law Ps(to) is
linear (for example, metal when to « co&, where co& is
the plasma frequency), then it is the Fourier com-
ponent q=Q of P"z t, (x,y) which leads to the possi-
bility of a simultaneous resonant excitation of the
diffracted orders I at cot, m at co2, and I +m at co3.

If Ps(co) is not a linear function of co (which is
usually the case), then, for a given integer value of q,
there exists a value of d such that Eq. (56) is ful-
filled. In that case, the diffracted orders I at co&, m

at toz, and I+m +q at to3 are simultaneously
resonantly excited.

It is worth noticing that the EM resonance at fre-

quencies toi and toq leads to an increase of the non-

linear polarization at frequency to3 and, therefore, to
an enhancement of the whole EM field at frequency

to3 (radiated diffracted orders included).

III. CONCLUSION

We have presented in this paper the first rigorous
electromagnetic theory of diffraction in nonlinear

optics. This formalism is quite general. It applies
to any type of gratings, whatever the profile and the

groove depth of the grating and coatings may be.
The coatings themselves can be made with either a
linear or nonlinear material.

This new theory has a wide range of applications.
When no EM resonance takes place at to„(v=1,2,3),
we are concerned with what we may call the usual

nonlinear diffraction. When coi ———co i (co2 ——0,
tot&0), we deal with optical rectification (Pockels
effect) in a nonlinear medium whose entrance face is

constituted by a periodic rough surface. When to„
(v=1 and/or 2 and/or 3) is chosen such that

Re[@2(to„)]& Q, we study the surface-

plasmon —polariton resonance contribution, at these

frequencies, to Raman effect if to» 0, co2 & Q, and to
SHG if to& ——to2. In the case of a coated grating, we

evaluate the guided wave resonance contribution to
enhanced nonlinear effects.

Two important and new results must be em-

phasized:
(1) Each time the associated smooth structure

supports guided normal modes, then, through a
modulation of this structure, the possible EM reso-
nances will lead to the enhancement of nonlinear ef-
fects taking place in this structure. In other words,
depending on the structure which is used, the
enhancement of nonlinear effects can be achieved by
using surface plasmon-polariton or guided waves.
Thus the surface-plasmon resonance is not the only
one and, as pointed out previously, probably not the
more suitable EM resonance to be used when one is
interested in enhanced nonlinear effects.

(2) The contribution of these EM resonances to
the enhancement of nonlinear effects can be opti

mized when 5=5,~,. It is worth noticing that this
optimization is achieved for low modulation, i.e.,
5,p, /d =0.02.
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