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Reconstruction of the density of states from its moments
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The problem of the reconstruction of a non-negative spectral density from its low-order power
moments is reexamined. Kith the assumption that the parameters of the continued-fraction repre-

sentation of the Green s function obey a certain analytic expression, we derive an extrapolation pro-
cedure for them. This procedure leads to significantly improved results and is simple to implement.

Several relevant examples of its application are provided and show the advantages of our method,
which works adequately both for the translationally invariant case (i.e., when Van Hove singularities

are present) and also in the general disordered situation. The method is particularly useful in trying
to estimate the position of the effective band edges (Lifshitz limits), for which it yields quite accurate
values.

I. INTRODUCTION

The problem of obtaining a reliable reconstruction of a
non-negative spectral density from a finite number of its
low-order power moments has been investigated since the
last century. ' In spite of its long history there are many
aspects of it that remain without a unique answer. On the
other hand, methods of moments have found a wide range
of applications in several branches of physics and
chemistry, "' mainly related to the widespread use of fast
computers.

In particular in solid-state theory power moments can
be related to the geometry and composition of the crystal
structure. ' This reduces their evaluation to a problem
of counting paths on a lattice. In fact, the number of all
possible paths which start and end at a lattice point after n

steps is related to the nth power moment.
However, the problem which remains open is that once

a finite number of moments is known, no unique most ef-
ficient procedure to reconstruct the density of states does
exist. A good number of authors" ' have addressed this
question within the context of solid-state theory, each time
refining the available methods.

In this paper we formulate a new procedure which takes
as its starting point a conjecture of Gaspard and Cyrot-
Lackmann, ' later proved by Hodges. ' In fact, for the
translationally invariant case, the parameters associated
with the continued-fraction representation of the Green's
function follow a simple damped oscillatory behavior in
the asymptotic region, where their index becomes large.
Our conjecture is that these parameters can be fitted by an
analytic expression in most possible cases, that is, from the
translationally invariant extreme {which implies the pres-
ence of Van Hove singularities) to the fully disordered sit-
uation.

This way, we proceed to obtain the density of states
from the moments without a preconception about its
features. %hen Van Hove singularities are present they do
appear as a natural consequence of our procedure, which
contains the conjecture of Gaspard and Cyrot-Lackmann'
as a special case. %hen there is no translational invari-
ance our method works just as well.

This follows the lines of what we denominate a "fair
fit." That is, a fit which yields the density of states on the

basis of a gcncral proccdurc, which. is totally fice of as-

sumptions about characteristics of the results and which
works adequately in all possible circumstances.

Our method is particularly useful in providing the posi-
tion of the effective band edges (Lifshitz limits), that is,
the values of the energies below and above which the den-

sity of states becomes negligibly small. This information
turns out to be quite relevant, since a wrong value of the
bandwidth leads to the appearance of spurious peaks when

the density of states is obtained from its power moments.
The remainder of this paper is organized as follows: In

Sec. II the analytic derivation of the procedure is present-
ed in precise detaH. In Sec. III our method is applied to
several illustrative cases and its results are discussed. Fi-
nally, Sec. IV closes this paper with a summary and
relevant conclusions are drawn.

II. ANALYTIC FORMULATION

The density of states is obtained * from the Green's
function G (z) with the use of

D(x)= ——ImG(x +i 0+) .
1

(2.1)

In turn, G(z) is related to the power moments of D(x)
through the expansion

G(z)= f
n=0

(2.2)

6{z)= (2.4)

Z —02—
Z —a3—

iia =&ze-i+&2n (2.5a)

where the elements in the moment sequence Ip„Iare de-

fined as

p„=I D(x)x"dx . (2.3)

For computation purposes it is convenient to use the
continued-fraction form of G (z) given by
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b„=a2„a2„+I,
and a

&

——u2. The set Ia„jis obtained from

2n =

&2n+l =

and hn ana 6„'are related to the moments through

P2
' Pn+l

P3 ' Pn+2

~n —=det P3 Pc On+3

Pn+ t An+2
' ' P2n+1

(2.5b)

(2.6a)

of (2.5) and (2.6).
When this procedure is applied, and all z s turn out to

be real and smaller than unity, the limit n ~ (x) is reached
monotonically, which is the observed behavior of densities
of states of systems with no translational invariance. Qn
the contrary, if D(E}shows a Van Hove singularity a pair
of 8' and z's are complex conjugate and thus

~z"+II"z'"=2
I
II'

I I
z

I
"cos(&~+4),

which is the damped oscillatory behavior obtained by
Hodgcs.

In consequence, our ansatz (2.10) is apphcable in most
circumstances, from the translationally invariant to the
fully disordered cases, without any preconception about
characteristic behavior of D(E). This way, the informa-
tion contained in the moment sequence fp,„jis processed
satisfying the criteria of a "fair fit," as enunciated in Sec.
I.

The next step in our linc of reasoning is to observe that
(2.10) can be interpreted as the solution of a homogeneous
linear difference equation. And since Eqs. (2.5} and (2.6}
provide a relation between 6„/5„1 and the parameters

an and bn, we postulate the existence of a recurrence rela-
tion for the Ia; 3 and I b; 3 sequences, both of them of the
form

withe t ——1=6' l and 5 2 ———1=5' 2.
The asymptotic values of a„and b„yield important

physical information; ln fact, a ls thc posltloQ of thc
center of the energy band, while the bandwidth is obtained
from b

„

through

b.+k+ l+&kbn+k+&k- ibn+k-1+

+c)b„+I+cpb„=0, (2.12)

valid for n = 1,2,3, . . . .
Since according to Eqs. (2.8) and (2.10) b„tends asymp-

totically to a constant value for n gal, it is important to
realize that some z; must equal 1 and thus

k

gc;= —1. (2.13)

(2.8)

The implementation of the method is now very simple.
Let us assume for convenience that (4k +3}moments are
known: pp, p&, . . . , p4k+2. Use of Eqs. (2.5)—(2.7) allows
one to evaluate the first (2k+1) values of the sequences
Ia; 3 and I b; j. To obtain the (@+1)coefficients c; of Eq.
(2.12) we have to solve the linear system

1 1

bl b2

bz
Eu lnD (x)dx

Xexp
m zi [(E„—x)(x EI)]'i'—

Gaspard and Cyrot-I. ackmann' observed that in the
presence of Van Hove singularities (i.e., when the system
is translationally invariant), the parameters Ib2„3 and

Ibz„+& 3
coincide with the values that two damped oscilla-

tory functions (which are out of phase by m } take for in-

teger values of their arguments. This observation was for-
mally proved to hold by Hodgcs.

(On the other hand, Baker gives the following expres-
sion for the asymptotic value of 5n/5n

2n+ I

~ 2m
An l n++1 4

(2.9)
where E~ and E„arethe lower and upper band edges of
D(E), respectively. An identical expression holds for the
ratio b, '„/b'„~',both are valid provided D(E) has no gaps
in the (EI,E„)domain.

Our conjecture, based on the observation of Gaspard
and Cyrot-Lackmann, ' the results of Hodges, '" and Eq.
(2.9) is that the asymptotic behavior of 4„/A„I, and,
consequently, because of Eqs. (2.5), (2.6), and (2.7), of an
and bn, can always be adequately fitted by

b pg/4~ )
——Wpzp + 8')z) + . + W~z~", (2.10)

where the I W;,z; 3 are arbitrary complex variables. They
can be obtained from the sequence Ip„jthrough the use

bk bk+1 b2k+l

The set Ic; 3
thus obtained is substituted back in Eq. (2.12)

to generate recursively the extrapolated values of the pa-
rameters b;. A perfectly analogous procedure is carried
out to obtain the set Ia;j.

Thc density of states is obtained nuQ1erically froITl Eqs.
(2.1) and (2.4) by setting b~ =b~+ &

—— b„and-—
az ——a~+1——. . ——a„.The criterion to determine p is that
within the precision one is working with, both a&

——a&+I
and bp

——bp+l. The value of p when computing with 16
digit accuracy, is typically of the order of 50. This pro-
cedure leads to a quadratic equation, as was shown by
Haydock et aI. For example, if 15 exact moments
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{po,pi, . . . , p, 4} of the density of states are known [i.e.,
a&,a2, . . . , a7 and bi, b2, . . . , bz are obtained using Eqs.
(2.5)—(2.7)], we only have to solve two linear systems of
four equations with four unknowns each to obtain the [c; j
coefficients of Eqs. (2.12)—(2.14).

After the set [c;I is known the recurrence relations
(2.12) are used to generate as, a9, . . . , az and

bs, b9, . . . , bz. This constitutes an extremely simple pro-
cedure and in most cases it leads to significant improve-
ments in the densities of states. At the same time taking

az
——a„and bz b„——provides [with the aid of Eq. (2.8)

and the fact that a „gives the position of the band center]
accurate estimates of the values of the effective band

edges, as will be shown in the next section.

D(E)

III. REPRESENTATIVE NUMERICAL EXAMPLES

D(E) (1 E)
(4E +5)(1—8E'/9)

(3.1}

In spite of its smooth form, polynomial reconstruction
yields poor results, while using extrapolation of the
continued-fraction parameters allows to obtain D (E) from
only eleven moments with and accuracy of better than 1

part in 10 .

In this section we present some illustrative numerical
results of the extrapolation procedure outlined above.

Emphasis is placed on the difference in values obtained by
continuing recursively the (a;I and (b; I sequences, as
compared with those obtained following the usual pro-
cedure of setting azk+„——a „andb2k+„——b„,where 2k is
the index of the last given element in the sequence and
n =0, 1,2, . . . .

Certainly moment methods are not well suited to treat
translationally invariant configurations, where Bloch's
theorem provides a more powerful tool. However, the
simple cubic structure density of states has become a sort
of "acid test" for the performance' of a reconstruction
procedure. Thus in Fig. 1 we display plots of D{E},ob-
tained without and with extrapolation, based on knowing
15 and 39 exact moments of the simple cubic structure,
respectively. It is apparent that the spurious oscillations
near the kink are strongly quenched, while the Van Hove
singularity is reproduced with greater accuracy. More-
over, the bandwidth, which is obtained with an accuracy
of 0.3 and 0.2' without extrapolation, is obtained with a
precision of 1 part in 10 and 2 parts in 10 using our pro-
cedure with 15 and 39 exact moments, respectively.

A requirement that a valid reconstruction procedure
also must satisfy is to accurately simulate narrow peaks of
the density of states. The two-dimensional simple qua-
dratic lattice provides such an example, since it has a
divergent Van Hove singularity located at the center of the
band. In Fig. 2 we display the results obtained using only
11 moments. While without extrapolation a qualitatively
incorrect picture does emerge, our procedure manages to
strongly suppress spurious oscillations near the band edges
and provides a basically correct general picture.

We also applied the extrapolation method to a Bethe lat-
tice' with coordination c =3 and with first- and second-
nearest-neighbor interactions V, = 1/v 2 and V2 ——0.1,
respectively. The density of states is given' by

E

(0)

D(E)

We have studied an academic example which exhibits
some relevant features of an alloy electron density of
states, but which has the advantage of allowing to contrast
our results with the exact ones. In fact, we have chosen

D (E)=EJ(1—E) sin (m m.E), (3.2)

for which the exact moments are easily evaluated analyti-
cally when j, k, and m are integers and it has maxima and
band-edge behavior similar to typical metallic alloys. The
results for the case j =k =m =2, again obtained with
only eleven moments, are displayed in Fig. 3. Once more
we observe a very substantial improvement when the ex-
trapolation procedure is employed.

This last example was chosen because the exact result is
available to compare with. Real disordered binary alloys
are more difficult to study, not only because exact densi-
ties of states are not available, but also because the exact

E

(b)

FIG. 1. (a) Density of states of the simple cubic structure for
the upper half of its energy domain. The bold lines depict the
calculated results, obtained without (upper figure) and with
(lower figure) extrapolation, on the basis of 15 given moments.
The thin lines are the exact values. (b) Same as (a), but obtained
on the basis of 39 exact moments.
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FIG. 2. Density of states of the simple quadratic structure.
The bold lines depict the calculated results, obtained without (a)

and ~ith (b} extrapolation on the basis of 11 moments. The thin

lines are the exact values,

moments are hard to obtain. ' On the other hand, for the
simpler problem of a one-dimensional binary disordered
alloy (where in principle exact' densities of states can be
obtained numerically), it is well known that the density of
states presents a large number of peaks. ' Obviously,
these peaks will not be resolved through an extrapolation
procedure based on a few moments of the density of
states. Our present method in addition is useful to obtain
b, and thus the effective bandwidth, which is not known
a priori in the case of disordered alloys. Use of an incorret
value of b in the termination of the continued fraction
yields spurious oscillations of the density of states, which
might be confused with its real features.

IV. SUMMARY AND CONCLUSIONS

A method to improve the reconstruction of the density
of states from a finite number of its low-order power mo-
ments, has been presented. It is based on the assumption
that the parameters a„and b„ofthe continued-fraction
representation for the Green's function (2.4) are analytic
functions of n, when n is continued to all positive and real
values. This assumption allows one to establish a recur-

FIG. 3. Reconstruction of the function E (1—E) sin (2mE).
The bold lines depict the calculated results, obtained without (a)
and with (b) extrapolation and obtained from 11 given moments.

The thin lines are the exact values.

sion relation, which in turn allows one to obtain extrapo-
lated values of the a, 's and b„'sbeyond the given ones.
With these extrapolated parameters included in Eq. (2.4),
we obtain using (2.1) significantly improved results for the
density of states. The procedure was tested for several
representative situations, showing noticeable advantages
over the commonly used method, at a cost of modest addi-
tional numerical labor.

We have found no problems of numerical stability with
the extrapolation procedure proper, provided sufficiently
precise values of the given (nonextrapolated) a„andb„pa-
rameters are fed in. Since, as it is well known, ' the pro-
cedure which generates the latter [Eqs. (2.5)—(2.7)] is ill
conditioned, we had to resort to infinite precision arith-
metic (i.e., algebraic manipulation) in some instances to
obtain these input parameters.

The performance of our procedure when gaps or local-
ized (discrete) states are present in the spectral density has
not been examined in this paper. In addition, it also
would be interesting to carry out a detailed numerical
comparison with the methods of reconstruction of the
density of states developed by Corcoran and Langhoff s

and by Wheeler et al. ,
' in order to accurately assess the

relative merits of each of these procedures as well as their
shortcomings.

The main successes of our method are to quench spuri-
ous oscillations around the exact results; to simulate Van
Hove singularities whenever they are present, which no
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truncation procedure is capable of doing; to provide an ex-
cellent estimate of the position of the band edges, and in
general, to improve the results of the reconstruction pro-
cedure at the cost of very little additional computation ef-
fort. It is most convenient and effective when only few
exact moments of the density of states are known.
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