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The diffusion of particles in concentrated lattice gases is studied by Monte Carlo methods, assum-

ing a fcc lattice with repulsive nearest-neighbor interaction. Particular attention is paid to the influ-

ence of ordering on the diffusion properties, since the model has ordered superstructures at low tem-

peratures T near the stoichiometric concentrations c = 4, 2, and 4. Both the self-diffusion of

tagged particles and the collective diffusion by which concentration fluctuations decay are obtained.

In the ordered regions both diffusivities are rather small due to a strong decrease of the effective

jump rate of the particles. The correlation factor f (T,c) for self-diffusion has a pronounced non-

monotonic concentration dependence for low temperatures. This is interpreted by reducing the prob-

lem near T=0 and the limits e ~ 4 —,—, — to an effective single-vacancy problem, and

c~ 4 +, 2 + to an effective single-particle problem. Other lattices are briefly discussed.1 1

I. INTRODUCTION

In the first paper of this series' (hereafter referred to as
I) we have investigated self-diffusion in a noninteracting
fcc lattice gas at arbitrary concentration c of particles. In
the second paper (hereafter referred to as II) we then con-
sidered the effect of an attractive nearest-neighbor interac-
tion. This model has a critical point at c=c,„-„T=T„
and separates below the critical temperature into two
phases of low and high concentration, respectively. While
these static properties are dramatically reflected in the col-
lective diffusion constant, which is strongly decreased in a
broad regime of concentrations near the critical point
where it ultimately vanishes, they have relatively little ef-
fect on the self-diffusion coefficient. The main effect of
temperature on self-diffusion is a small reduction of the
vacancy availability factor V compared to the noninteract-
ing case, and a slight reduction of the effective jump rate
W with which a particle hops to an available empty neigh-
boring site. The correlation factor f which measures the
backward correlations inherent in self-diffusion was even

found temperature independent within our numerical ac-
curacy.

In the present paper we proceed to the very interesting
case of a repulsive interaction between nearest neighbors,
which leads to ordering tendency rather than clustering.
In fact, this model has been rather popular in modeling or-
dering phenomena in binary metallic alloys such as the
Cu-Au system, ' and has also been considered in the
context of models for superionic conductors. ' Of course,
it is clear that for a faithful description of ordering phe-
nomena in all these systems, more complicated interac-
tions than just nearest-neighbor repulsion will be required,
e.g., superionic conductors may be modeled instead by lat-
tice gases with Coulomb interactions. Before one can
proceed to such more complicated problems, one should
first analyze the present system as a useful starting point.
In addition, relatively simple models of this type seem to
be applicable to metal-hydrogen systems such as Pd-D.
Two-dimensional models of this type may be applicable to

study order-disorder phenomena in chemisorbed mono-

layers at surfaces and in intercalation compounds.
The effect of repulsive interactions on diffusion in lat-

tice gases has been considered in previous work by Murch
and Thorn. ' Most of their work, however, refers to
other lattices (particularly two-dimensional ones2 '; the
fcc system considered in Ref. 30 is restricted to concentra-
tions c &0.08 and a single temperature, in view of a possi-
ble application to carbon diffusion in austenite: In addi-

tion, as noted by the authors themselves, their Monte
Carlo procedures were of rather uncertain validity when
the lattice gas is in its ordered regions, and thus they have
not attempted to estimate the precise phase diagram of
these models. In the present paper we are particularly in-

terested in elucidating the effects of (long-range) order on
the diffusion properties of the model system. Making use
of the extensive studies by which the static phase diagram
has been calculated, ' ' we carefully prepare equilibrium
configurations for the conditions chosen, as described in
Sec. II, as initial states for our study of diffusion coeffi-
cients. In each region of the phase diagram where the sys-
tem is ordered, we hence ensure that we work with the sys-
tem being a monodomain of the phase with the appropri-
ate equilibrium value of the order parameter. Thus we
measure even at very low temperatures the bulk diffusivi-
ties only, and avoid getting artificial enhancement of dif-
fusivities due to antiphase boundaries or other defects in
the structure of the system.

In Sec. III we shall present our numerical results for the
effective jump rate 8', the tracer-diffusion coefficient D„
and its correlation factor f as a function of temperature
and concentration in detail. Some data for the collective
diffusion at low temperatures will also be presented. Sec-
tion IV then contains a discussion of the limiting behavior
of this system as T~O. It will be shown that near the
stoichiometric compositions —,

' and —,
'

(but not —,
'

) the

problem can be effectively reduced to the diffusion of a
single extra particle (vacancy) on the otherwise perfect lat-
tice of empty (full) sites in the respective structure. Thus
the correlation factor at these stoichiometric compositions,
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as well as 8' and D, themselves, are thereby obtained
analytically in the limit of very small T. Section V con-
tains our conclusions, as well as an outlook to other
models. A brief comparison to a recent study of surface
diffusion in ordered chemisorbed monolayers performed
along similar lines '

will also be made.

II. STATIC PROPERTIES OF THE FCC
LATTICE GAS MODEL %'ITH NEAREST-NEIGHBOR

REPULSION AND THE APPROPRIATE
PREPARATION OF INITIAL STATES

As usual (see II or Ref. 25, for instance}, we use the
transcription of the lattice gas to the equivalent problem
of a system of Ising spins p;=+1 [the plus sign corre-
sponds to either an empty site (lattice gas) or an A atom
(binary-alloy terminology) while the minus sign corre-
sponds to either a full site (lattice gas) or a 8 atom], when-

ever this is convenient. The problem then corresponds to
an antiferromagnet (nearest-neighbor exchange constant

JNN negative) on the fcc lattice in a magnetic field H
The phase diagram' ' as shown in Fig. 1 involves at

Q
A3B (a)

nonzero temperature then the three ordered structures
shown in Fig. 2.

As in I and II, we always start the calculation with a
simulation in the (T,H) ensemble (or grand-canonical en-

semble of the lattice gas), because its equilibration is
quicker than in the (T,c) ensemble (canonical ensemble of
the lattice gas) where the convergence is slowed down due
to the conservation law. At high temperatures above all
transitions (e.g., Fig. 3) it does not matter whether we start
this simulation with a state of all spins up (for H p0) or
all spins down (for H gO), or whether we use one of the
perfectly ordered spin arrangments or a randomly chosen
spin configuration: After a short time both magnetization
m, internal energy U, etc., obtain their equilibrium values.

By comparing our data to previous work on the same
model' ' we check the program. Within the statistical
scatter the results for m, U, etc., do not depend on the lat-
tice size X (as usual we use periodic boundary conditions
throughout) ~ A further check is provided by the symme-

try properties m ( —H) = —m (H), U( —H) = U(H), which
are fulfilled within the statistical error [Figs. 3(a} and

3(b)]. As noted in II the vacancy availability factor V

[Fig. 3(c)] is simply related to the nearest-neighbor Cowley
short-range order parameter a& (Ref. 36) via

V =(1—c)(1—ai)

In our model a& is symmetric around c = —,', and related to

(

0.25
}

0.50 0.75 (:B 1.0

2Q

Q
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Q

'0 1 2

ks T/I J NNI

FIG. 1. Phase diagram of the nearest-neighbor face-
centered-cubic lattice in the temperature-concentration plane (a)
and in the temperature-magnetic field plane (b). Ordered struc-
tures are indicated. All transitions are found to be of first order;
therefore, in the T-c plane the transition lines are split into two-
phase coexistence regions: utmost to the left the disordered
phase and 338 coexist, etc. Solid and open circles are Monte
Carlo results obtained as described in Ref. 17, while the curves
are only guides to the eye. Varying the field at fixed (low) tem-
per'ature one crosses phase boundaries at the three critical fields
Hc 1 I +c 1I and Hc 2 ~

AB3 (c)

FIG. 2. Unit cells of the ordered structures occurring in the
nearest-neighbor face-centered-cubic lattice gas. The lattice is
divided into four simple-cubic sublattices 1,2,3,4 in (a). In the
structure at c =

~ one sublattice is full, the others are empty (a),

at c= 2 two sublattices are full (b) and at c =
~ three sublattices

are full (c). The structure notation used in Fig. 1 is also indicat-
ed.
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FIG. 3. (a) Magnetization plotted vs field at ksT/
i JNN i

=4. Time is given in units of Monte Carlo steps (MCS) per site. Solid
symbols denote present data, other symbols denote previous work (Refs. 16 and 17). The solid squares actually represent the result for
—m, obtained for negative fields which must coincide with the result for m at the respective positive fields. Note that in addition to
the runs in the grand-canonical ensemble the present data were also averaged over 4000 additional MCS per particle in the canonic en-
semble. (b) Internal energy U plotted vs field at ksT/i JNN i

=4. Solid squares representing U taken at negative fields are only
shown where they not exactly coincided with the data for positive H. (c) Vacancy availability factor plotted vs concentration. The
straight line is the result for the noninteracting case, V = 1 —c.
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FIG. 3. (Continued. )

the internal energy U(H) by'

24c (1—c)JNN(1 —a)) = U(H)+ mH +6JNN

At high temperatures V is only slightly enhanced over its
noninteracting value (a, is negative in our model, rather
than positive as it was in the attractive case, and hence re-
flects an ordering rather than clustering tendency).

At low temperatures, however, the behavior is rather
different. The magnetization curve m(H) is split into
seven distinct branches, which do not join up smoothly
but are separated from each other by jump discontinuities
occurring at the critical fields +H, 2, +H,'i, +H,"i [Fig.
4(a)]. These jump discontinuities correspond to the two-

phase regions of Fig. 1. In this case it is absolutely essen-
tial to start the system with the appropriate initial condi-
tion: either random spin configurations or all spins up for
H & H, 2,

' A 3B structure for fields in the range
H,"i &H &H, 2,

' either random spin configurations or all
spins up for H,

'
& &H & H,"&, AB structure for fields

—H,'i &H &H,'~, etc. In this case the system very quickly
relaxes to its appropriate thermal equilibrium, and obser-
vation times of a few hundred Monte Carlo steps (MCS)
per site are sufficient. If one starts with a "wrong" initial
condition, one sometimes also manages to relax the system
to the same equilibrium state (but one needs "aging times"
of several thousand MCS per site), while in other cases the
system gets "frozen in" (within the accessible observation
times) in metastable states. Inspection of their spin con-
figurations shows that the system then has not reached a
uniformly ordered state, but rather several ordered regions
separated by domain walls (which sometimes run from one
boundary of the system to the opposite one, thus utilizing

the periodic boundary conditions). Size and number of
domains greatly varies from one run to the next, and
hence with such "wrong" initial conditions one gets rather
erratic and ill-defined results. Thus such inhomogeneous
states are not suitable as initial states for the subsequent
diffusion runs, as typically the mobility in the domain
walls is largely enhanced, and one hence does not measure
bulk behavior even if there are only a few walls in the sys-
tem. Without characterizing the precise domain arrange-
ment such results would be meaningless.

Of course, the precise values of the critical fields are not
known beforehand and must themselves be estimated from
the Monte Carlo calculation. This is not straightforward
at low temperatures where pronounced hysteresis
occurs. ' ' A reliable method to estimate the critical
fields involves estimating the free energies which belong to
the various branches in Figs. 4(a) and 4(b), see Ref. 16.
The critical fields are then found from the intersection
points of the various branches. We think that the uncer-
tainty involved in all these procedures should not exceed
the size of the dots shown in Fig. 1.

In the short-range order parameter a& the ordered struc-
tures show up as rather pronounced peaks [Fig. 5(a)]. As
expected, the vacancy availability factor [Fig. 5(b)] is rem-
iniscent of this peak structure. As expected from Fig.
2(a), V stays close to unity for c & 4 and falls off; it al-

ways exceeds the result for the noninteracting case
(V=1—c) due to the ordering tendency of the particles.
Similar data, as shown in Figs. 3, 4, 5(a), and 5(b), have
also been obtained at the temperatures
ks T/

~
JNN

~

=20,6,5 (disordered phase) and 1.8, 1.6, 0.8
(displaying ordering behavior) ~ One more example is
given in Fig. 5(c).
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FIG. 4. (a) Magnetization plotted vs field at kqT/ I JNN I
=1.2, for lattices of size E =16384. Crosses are taken from Ref. 16,

sohd circles are present data. (b) Internal energy U plotted vs field at ks T/ I JtiN I
= 1.2. Data for U at negative fields coincide exact-

ly ~ith those for positive ones and hence are not sholem. Note thai in addition to the runs in the grand-canonical ensemMe the present
data were also averaged over 1600 MCS per particle in the canonic ensemble.
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III. MONTE CARLO SIMULATION OF JUMP
RATES, TRACER, AND COLLECTIVE

DIFFUSION CONSTANTS
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A. General remarks

As in II, we then store some typical equilibrium config-
urations of the system thus obtained as initial states for a
simulation of diffusion. In this second part of the simula-
tion, a particle at site i is chosen at random and then a
jump to a randomly selected neighboring site (t;) is at-
tempted. The attempted jump is actually performed only
if a random number g, with 0 & g & 1, is less than the tran-
sition probability W(p; ~pI. ),

W(p; ~pl )= —,[1—tanh(5P /2ks T)]

x5(p;+1)5(p& 1) .— (2)

00 1 l 1 i 1 I I I I

0.0 0.1 0.2 0.3 0.L 0.5 0.6 0.7 0.8 0.9 1.0 c
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FIG. 5. (a) Short-range order parameter a~ plotted vs concen-

tration at ksT/~ JNN
~

=1.2. (b) Vacancy availability factor V

plotted vs concentration at ksT/~ JNN
~

=1.2. (c) Vacancy
availability factor V plotted vs concentration at
ksT/~ JNN

~

=0.8.

Only occupied lattice sites (p; = —1) are considered for a
jump, and a jump is possible only to a neighboring empty
site ()M( = +1); these restrictions are taken into account by

l

the two 5 functions in (2). The factor in square brackets
depends on the energy change 5P involved by this jump
and ensures the detailed balance condition. For more de-

tails about the master equation describing the hopping
process see II; here we only recall that the choice for 8'
given in (2) is not at all unique, and differs, in fact, from
choices made in related work. ' We have used here the
same choice as in our other studies, ' which is con-
venient as the effective rate 8' at which possible jumps on
the average are performed,

W:r, '{W()u—;~tu())/V (3)

becomes symmetric around c = —,, and moreover 7 8 ~—,

for both c~0, c~1, independent of temperature. Hence
in the dilute case (or the case of dilute vacancies) the mo-
bility is never very small, in contrast to other possible
choices instead of Eq. (2).

The inverse time-scale factor ~, has been introduced in
Eq. (3) to convert probabilities into rates. Of course, as is
well known for all Monte Carlo simulations of dynamic
processes, there is no intrinsic time scale defined by the
Monte Carlo process itself; hence we take as a time unit
one MCS per particle. During one MCS per particle each
particle attempts once, on the average, to perform a hop.
Since there are z =12 nearest-neighbor sites on the fcc lat-
tice, the rate of attempted jumps between two specific sites
is 1/z= »', i.e., 7 =z in these units. In the simulations

z(W(tu;~p()) is estimated from the quotient of the

number of performed jumps to the number of all attempt-
ed jumps. Hence z( W) r is estimated from a time average
over all successful hopping attempts.

The hopping dynamics described by Eq. (2) obviously
conserves the concentration [or magnetization in the mag-
netic analog, note c =(1—m)/2], while other quantities
like the internal energy, order parameters, etc., fluctuate.
It is one more check on the selection of initial conditions
(and the correctness of the program code) that neither of
these quantities changes substantially during the simula-
tion of diffusion, and we actually find that within our sta-
tistical errors results obtained from runs in the grand-
canonical and canonical ensemble are indistinguishable (cf.
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Figs. 3—5}. This also implies that finite size effects are
not important.

B. Results

We start by discussing the case ~here the system stays
disordered at a11 compositions, cf. Fig. 3 for corresponding
static properties. Figure 6 shows that the effective jump
rate 8' decreases considerably, even at temperatures more
than twice the maximal ordering temperature. This is an
effect of the nearest-neighbor repulsive interaction, which
is much more drastic than corresponding properties in the
case of attractive forces (Fig. 6 of II). The total jump rate
VIV is displayed in Fig. 7, as well as the tracer diffusion
constant D, This. quantity is estimated from studying the
mean-square displacement of all the (labeled) particles as a
function of time, as explained in I in more detail. The re-
sulting correlation factor f, defined via (a is the lattice
constant of the fcc lattice)

2T.sW

1.0

n oninterac ting case

p~~p~p ~p~p~p p~p p~p~ p

(4)

is then shown in Fig. 8. One sees that for small concen-
trations (c=0.2}f is slightly smaller and for large con-
centrations (c=0.7) f is slightly larger than its corre-
sponding value in the noninteracting case (see I and Ref.
37). The deviations hardly exceed the inaccuracy of our
estimates for f.

The situation changes drastically in the temperature re-

gion where the system may order, Figs. 9—13. It is seen
that at the ordered structures near the stoichiometric com-
positions the mobility of the atoms is nearly zero (Fig. 9}.
This "freezing out" of the motions is also seen in the total
jump rate VR'and the tracer diffusion constant (Fig. 10}.

Particularly interesting is the behavior of the tracer
correlation factor f when ordered structures appear (Figs.
11 and 12}. At low temperatures the correlation factor ex-
hibits typical minima below and at the stoichiometric
compositions c =

4 and —,
' of the ordered phases, followed

by values near unity slightly above these compositions. In

2z,VW D)

Do

1.0 — 1.6

1,4

0.50 — 0.8

0.6

0.2

l I I I I

0.0 0.1 02 0.3 0.4 05 06 07 08 09 1.0 c

FIG. 7. Total jump rate VR' and tracer diffusion coefficient

D, plotted vs concentration at ksT/I JNN
l

=4 (solid circles,
crosses) and ksT/

~
INN

~

=20 (open circles, squares), using the

data from the same runs on which Figs. 3 and 6 were based. In
a few cases two points are shown for the same concentration to
indicate the uncertainty resulting from different ways of es-

timating D, . D, is normalized by its value in the noninteracting

case as c~0. Straight lines indicate corresponding "mean-field"

prediction 1 —c in both cases.

the next section we will discuss the behavior of the corre-
lation factor at low temperatures near the stoichiometric
ordered phases c = —, and c= —,

' .
Finally we will present some data on the collective dif-

fusion constant at low temperature. While in the disor-
dered region the collective diffusion D is maximal at
c =—,', at least in the temperature region far above all tran-

sitions, where mean-field approximations are valid as
given in II, the small mobility at the stoichiometric con-
centrations at low temperatures (Fig. 9) also leads to rath-
er small values of D at these concentrations (Fig. 13}. In
the concentration regions where the system is still disor-
dered, D has pronounced maxima and is larger than its
value in the noninteracting case. The results in Fig. 13 are
obtained with the "linear-response" technique of II and
are somewhat tentative, since better statistics and more
concentration values would be required to show the precise
behavior near the maxima and minima.

IV. TRACER DIFFUSION NEAR
THE STOICHIOMETRIC CONCENTRATIONS

~ AND 2 AT I.O% TEMPERATURES

I I l l I l l l I l

0.0 0.1 0.2 0.3 0.4 O,S 0.6 0.7 0.8 0.9 1.0 t:

FIG. 6. Effective jump rate W per available empty nearest-

neighbor site plotted vs concentration at temperatures

ksT/
~
INN

~

=4.0 (solid circles, data points being based on aver-

ages over 4000 MCS per particle in a lattice of 4000 sites) and

ksT/ ) J ~

=20 (open circles, based on averages over 1600 MCS

per particle in a lattice of 16384 sites).

In this section we will relate the observed correlation
factor at low temperatures for c slightly less than 4

(c =
4
—) or —,

' (c =—,
' —) to a vacancy diffusion process

in the ordered structures, and for c slightly larger than —,
'

(c= ~+) or —,
' (c=—,'+) to a single-particle diffusion

process in the empty positions of the lattice. We begin
with c = —,'. According to Sec. II and Fig. 1, the ordered
structure at c = —,

' and very low temperature consists of al-

ternativdy filled and empty planes, perpendicular to a
[100] direction. The excitation of a particle out of the
plane and the concomitant creation of a vacancy requires
an extra energy of 3

~

J ~, the separation of the particle-
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIG. 8. Tracer correlation factor f (T,c) plotted vs concentration at ksT/I J» I

=4 (squares), 6 (dots), and 20 (crosses). The
"mean-field" prediction f(T,c)= 1 as weH as the result of Sankey and Fedders (Ref. 37) (dashed curve), which is an accurate theory
for the noninteracting case (see I), are included for comparison. The exactly known limit f ( T,c~1) is indicated also. The solid curve
is a guide to the eye only.

noninteracting case

0.75-

0.50-

0.25—

l0 ~Q~ ~WOa
6 y y 1'

~-~
I 1 QI l 1 ~~~1 i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIG. 9. Effective jump rate 8' per available empty nearest-neighbor site plotted vs concentration at temperatures

ksT/ I JNN I
=1.2 (solid circles, data being based on averages over at least 1600 MCS per particle in a lattice of 16384 sites) and

ks?'/
I JNN I

=0.8 (open circles). For simplicity the smaH two-phase regions (where jump singularities occur from one phase to the
next) are ignored in drawing a unique smooth curve through all points to guide the eye.
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2l:,VW Dt

DO

'l.O
— 1.6
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0 QQ Q Q
) y/go ( ( wya /g» g g~~g ~~ ~

g Oeh/IJ
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2xsVW Dt

D',

1.0 — 1.6
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0.50- 0.8
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I ZI ~ I oWg gIh~i I s&~g L
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FIG. 10. Total jump rate VW and tracer diffusion coefficient I), plotted vs concentration at ksT/
~
JNN

~

= 1.2 (a) and 0.8 (b). D, is

normalized by its value in the noninteracting case as c~0. Straight lines indicate corresponding mean-field predictions 1 —e in both
cases.

vacancy pair another energy unit
~
J

~

. Hence this process
is unlikely at low temperatures. For concentrations slight-

ly less than —,', we have vacancies in the otherwise filled
planes and no extra particles in the empty planes at low T.
No energy change is involved in the exchange processes of
a vacancy with particles within the planes, at low vacancy
concentrations. The diffusion of tagged particles, which

are restricted to the planes, is effected by the vacancy pro-
cess, i.e., the exchange of vacancies with the tagged parti-
cles. %e have verified in our simulations that at r = —,—
and 4T/I/ I

=0.8 the diffusion is indeed two dimen-

sional to a very good approximation. The value of the
correlation factor for tracer diffusion in a simple-square
lattice is exactly known in the hmit of vanishing vacancy
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FIG. 11. Tracer correlation factor f(T,c) plotted vs concen-
tration at ksT/

~
JNN

~

=1.8 (solid circles) and ksT/
~
JNN

~= 1.6 (open circles). For further explanations see Fig. 12.
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concentration, "f=0.466942. . . . Our simulations show
a value of approximately 0.5 at ks T/

~

J
~

=0.8 [cf. Fig.
12(b)], in agreement with this consideration. At lower
concentrations f increases. In the noninteracting two-
dimensional lattice gas f(c) increases approximately
linearly with vacancy concentration towards f= 1 at
c =0. The measured behavior below c = —,

'
is consistent

with this, although we cannot clearly resolve the precise
behavior. Also, near c =

4 + other effects come into play.
Slightly above c = —,

'
we expect the diffusion to be pro-

duced by the extra particles which are found between the
planes. Again we have checked the two-dimensional na-
ture of diffusion at c = —,'+. The correlation factor for
self-diffusion of tagged particles at low concentration is
unity, in agreement with the findings of the simulation
[cf. Fig. 12(b)).

The situation around c = —,
'

is more difficult to analyze.
At c =

4 and very low temperatures we have an ordered

structure which forms a simple cubic (sc) lattice with lat-
tice constant a. The creation of' a vacancy-particle pair re-

quires 3
~

J ~, the separation of the extra particle, and the
vacancy requires another

~

J
~

. Hence both processes be-

come extremely improbable at very low temperatures and
we can neglect them in the limit T~O. For c slightly less
than —,

' (c = —,
' —) we have permanent vacancies in the sc

lattice at T =0. In this case, and at very low tempera-
tures, a vacancy-mediated diffusion process will take place
in the sc lattice, with apparent nearest-neighbor and
second-neighbor transitions of the vacancy of equal rates.
As indicated in Fig. 14 a particle which is either a first or
second neighbor of the vacancy (counted in the sc lattice)
can first jurnp to an interstitial site of the sc lattice (empty
site of the fcc lattice) and then into the vacant site. The
first step of this process requires an activation energy of
2~ J ~, the second step occurs without activation. Of
course, the second step can also lead the particle back to
its original site.

We now consider the effective rate (W)r resulting
from this two-step process. As mentioned in the preced-
ing section r, ( W)T is determined from the average of

000 I [ I I I

0.0 O.l 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 c

FIG. 12. Tracer correlation factor f(T,c) plotted vs concen-
tration at ksT/ [ JNN

~

=1.2 (a) and ksT/
~
JNN

~

=0.8 (b). The
mean-field prediction f(T,c)=1 as well as the result of Sankey
and Fedders (Ref. 37) (broken curve) for the noninteracting case
are included. The exactly known limit f(T,c +I) is indicated—
also. In a few cases several points are shown for the same con-
centration to indicate that the data are quite accurate at off-
stoichiometric compositions, while the larger scatter at or close
to stoichiometry reflects the singular behavior which occurs
there for T~o (Sec. IV).

the waiting times between the jumps of the particles. The
mean waiting time of a two-step Poisson process with
rates I

&
and I 2 is t =I

&

'+ I 2
'. Since the two steps are

counted as two events,

In our case I i
——I exp( —2

~
J

~
/kz T) and I 2

——I, hence

W
2I

exp(2
i
J

i /knT)+ I

VILpp is the apparent vacancy availability factor in the sc
lattice which determines the probability that a chosen par-
ticle can actually perform the two-step process under con-
sideration. In the limit of very low temperatures,

(II')T=2I tV,~~. The same results can be derived
from the ensemble average of the rates by taking the con-



1856 R. KUTNER, K. BINDER, AND K. %. KEHR 28

1.0-
120

09- I &

I
0.7—

l
0.6-,

0

OS'
&&&~intel acting case

t
/ o

I
e

0
~l

0.1—

)0
03-

0.2—

I 1es I l f I I I I I

00 0.1 0.2 0.3 0.4 0.5 0.6 07 OS 0.9 1.0c
FIG. 13. Collective diffusion constant plotted vs concentra-

tion at kzT/
~
INN

~

=1.2. (Since D is symmetric around c =
z

in our case, only data for c & 2 were taken. ) Each point is an

average over four independent runs where the decay of a concen-
tration wave was watched over 80 MCS per particle. At some
concentrations several such averages have been taken and are
shown separately to give a feeling of the statistical accuracy.

steps either directly to the vacant site, or after the first
step it makes one or several returns to the starting site be-
fore it performs the final transition. Resummation of the
resulting series leads to a distribution of waiting times
with mean value t =(I

&
'+2I'2 '). Using the expressions

for I &, I 2 given above we have the apparent rate

In the limit of very low temperatures, r, '( W,~~ )
=I,V, „. This result is physically plausible, since I, is
the rate-limiting step for the apparent transitions near
T =0.

The correlation factor for self-diffusion of tagged parti-
cles at c=-,' —cannot be taken from the literature, since
the vacancy jumps include first- and second-neighbor
transitions. It is straightforward to extend existing deriva-
tions to this case, and we follow the formulation of Mon-
tet. For small apparent vacancy concentration on the sc
lattice, f is given by correlations of consecutive jumps
only,

1+ (cos() )
1 —(cos8)

and

rt' rt+1

(cos8)= hm
'

dition of detailed balance into account. The question of'

whether the process discussed above only contributes to
r, '( W) r or whether other processes are also important,
can be examined by comparing the simulations of
r, '( W) art c = —,—with Eq. (6).

Since Eqs, (5) and (6) include return processes of the
particle to the original site, the apparent transition rate of
the vacancy to first and second neighbors in the sc lattice
must be considered separately. The particle jumps in two

where r; is the jump vector of jump number i of a tagged
particle. The denominator of Eq. (8) includes contribu-
tions from nearest- and next-nearest-neighbor jumps. In
the numerator of Eq. (8) the four contributions from suc-
cessive first-to-first, second-to-second, first-to-second, and
second-to-first neighbor jumps must be considered
separately. The average of the cosine is determined by the
expectation to find the vacancy at one of the final sites
after two successive steps, combined with elementary
geometrical considerations. The expectation of finding the
vacancy is given by the Green s function P(ij,k) for dif-
fusion on a sc lattice, cf. Montet for its definition. The
final expression is

(cos8) =—„[P(2,2,0)+2P(2, 1, 1)+8P(2,1,0)

+4P(2,0,0)—2P ( 1,1,0)—8P (1,0,0)

—5P(0,0,0)] (9)

A numerical evaluation of the combination of the Green's
functions appearing in Eq. (9) yields

(cos8) = —0. 105 586. . .

FIG. 14. Two-step processes of particles in the sc lattice at
c =

4
—leading to effective nearest- and second-neighbor jumps

of a vacancy.

f=0.808 996. . . .

Finally we compare the results of these derivations with
the simulations. Figure 12(b) shows that the correlation
factor approaches a value of about 0.4 at the lowest tem-
perature investigated and c= —,

' —;hereby f has been
determined by using the formula Eq. (4) D,
=r, '( W) za f. For apparent diffusion on the sc lattice,
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the appropriate expression is

Dt =rs & Wapp)u fapp

Since at low temperatures (W,pp) = —,(W)r, we have

f, =2f, or from the results of the simulations, f,pp
-0.8.

There is good agreement with the derivations given above.
At c =—,+ and low temperatures the correlation factor

approaches 1, in agreement with a dominant single-
particle diffusion process. %e have also checked at both
c =

4
—and at c=

4 + that the diffusion process was tru-

ly three dimensional.

V. CONCLUSIONS

In this paper we have complemented our previous stud-
ies of self-diffusion (and collective diffusion) in fcc lattice
gases with no interactions (I) or attractive interactions (II}
by now also considering repulsive interactions. From
these studies the following general conclusions emerge.

(i) At high enough temperatures where the system is
distinctly above any phase transitions at all concentra-
tions, the tracer correlation factor f is not very different
from the noninteracting case. The effective jurnp rate 8'
of atoms per available empty nearest-neighbor site de-

creases both for repulsive and attractive interactions. In
our model 8' is symmetric around c = —,', and hence this

decrease is most pronounced for this composition; the de-

crease is also more drastic for the repulsive interaction
case, since there the regime of the disordered phase ex-

tends to much lower temperatures (on the scale of the in-

teraction strength
~

J
~

} than for the case of attractive in-

teractions. In contrast, the vacancy availability factor
behaves quite differently in both cases, since
V =(1—c)(1—a&) and already the sign of the short-range
order parameter o:~ is different. %hile V then decreases
rather quickly with increasing concentration for attractive
interactions where a» 0, we find that V is nearly unity up
to the concentration where (at low temperatures) the first
stc}ichiometric structure appears in the model with repul-
sive interactions. The self-diffusion constant
(D, = VWa f) then decreases rather rapidly with concen-
tration, both in the repulsive and attractive case, but it
stays finite and nonzero even at phase transition points.
In contrast, the collective diffusion constant decreases
with concentration in the attractive case (and even van-

ishes at the critical point), while it becomes enhanced over
its noninteracting value in the repulsive case.

(ii) At low temperatures, for attractive interactions most
concentrations would fall in the forbidden region of
two-phase coexistence. Outside of the coexistence curve,
one is then either in the dilute regime (c ~g 1) or in the re-
gime where vacancies are very dilute (1—c ((1),and then
the situation is not so different from the case described
above, since W(c ~0)~1, W(c~ 1 )~ 1, a, (c~0)~0,
a~(c~ 1)~0, f(c~0)=1, f(c~ I)=0.78146, indepen-
dent of temperature, and hence the effects of the interac-
tions are not very important.

For low temperatures and repulsive nearest-neighbor in-
teractions, the situation is quite different. In the fcc lat-
tice, three ordered structures appear at the stoichiometric
concentrations e= 4, —,', 4, and there at low temperatures

8' vanishes exponentially fast, while in the disordered re-

g1ons around c 8 8 as well as for c & 6, c & 6, pro-
nounced atomic mobility persists down to very low tem-
peratures. As a consequence, while observing W' as func-
tion of c at a fixed low temperature, we see that pro-
nounced minima of 8' occur at the stoichiometric compo-
sitions. These minima are also seen in the self-diffusion
constant and the collective diffusion constant; while the
latter has rather sharp maxima in the disordered regions
(c (—,', c= —,', c= —', , c & —', }, the height of these peaks

exceeding even the diffusion in the noninteracting case,
the self-diffusion constant is also nonmonotomic but stays
very small at all compositions exceeding e & —,'.

(iii} A particular interesting behavior occurs at low tem-
peratures in the ordered structures at slightly off-
stoichiometric compositions; e.g., for e =—, the perfectly
ordered crystal is an array where completely fi.lied and
completely empty planes (parallel to each other and orient-
ed in a cubic lattice direction} alternate. For c =—,+ the

excess concentration is due to a few excess particles in the
otherwise empty planes, and hence the correlation factor
tends to unity and the self-diffusion is dominated by the
free motion of these excess atoms in their planes. As a
consequence, the diffusion is very anisotropic; directions
parallel and perpendicular to the planes are not equivalent.
Such an anisotropy of diffusion due to symmetry-breaking
of an ordered structure was also found in studies of
models for surface diffusion in ordered monolayers. In
the limit of vanishing temperature the space dimensionali-

ty in which self-diffusion takes place is reduced by 1. For
c = 4 +, on the other hand, although the mobility is again
due to the excess atoms, and f~1, the different character
of the ordered structure still allows a truly three-
dimensional diffusion, there is neither anisotropy nor
dimensionality reduction. At c = —,+, finally, the mobili-

ty of excess particles is not better than the mobility of the
atoms in the stoichiometric structure, and indeed there is
no numerical evidence that f~ 1 there. These comments
already indicate that there is no completely general rule
for what happens near stoichiometric structures; rather
each structure has to be considered separately. But note
that we do expect similar anisotropy of diffusion and ef-
fective lowering of dimensionality for all layered struc-
tures where n full and m empty planes alternate with n, m

integers &1, i.e., also for other lattices (simple cubic,
body-centered-cubic, etc.), and we expect this to occur for
much wider classes of interactions than the present
nearest-neighbor repulsion (the only restriction is that the
interactions must have a layered structure in the ground
state; on the square lattice, for instance, this requires
nearest- and next-nearest-neighbor interaction to be suffi-
ciently repulsive, a nearest-neighbor repulsive interaction
alone would not do}.

Similar to this reduction to an effective one-particle
problem, the cases c = —, —and e =

4
—could be reduced

to a one-vacancy problem, for which the correlation factor
then has also been obtained exactly in terms of' lattice
Green's functions. Again we expect that reasoning along
similar lines as presented in our case will be possible for
other ordered structures as well.
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