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Binding-energy-distance relations for metallic systems are shown to exhibit a universal behavior

under a simple two-parameter scaling. All currently available ab initio calculations for the cohesion

and adhesion of metals, as well as the chemisorption of gas atoms on metal surfaces, are shown to be

determined by this single relation. Further, the energetics of diatomic molecules are determined by
the same relation, despite the existence of strong volume-dependent forces for metals. These find-

ings suggest a commonality of metallic bonding and a close relationship between molecular and me-

tallic bonding. The universal nature of binding-energy-distance relations implies relations between

seemingly disparate physical phenomena. As an example we show that the surface-binding-energy

relation can be approximately expressed in terms of the bulk quantities. This leads to an explanation

of the well-known empirical result that the surface energy per surface atom is proportional to the
cohesive energy per bulk atom. Also, a simple relationship between adsorbate-substrate vibrational

stretch frequencies and their desorption energies follows from the universal relationship.

I. INTRODUCTION

It has long been known that there are universal features
associated with the bonding of diatomic molecules. ' That
is, potential-energy relations involving two, or at most, a
few parameters in simple, analytic forms were found to
represent well a rather wide variety of diatomic molecules.

Such two-atom or pair-potential functions are not ap-
propriate for metals, however. For metals it is well known
that there are strong volume-dependent forces which can
never be expressed as pairwise interactions. Despite this
fact, it has recently been discovered that certain metal-
lic total ground-state energies as a function of atomic
separation obey a universal relationship. So far, this
universality has been found to extend to adhesion,
cohesion, and chemisorption on metals. In this paper we

will show that under a simple two-parameter scaling (of
the energy and the length scale) all these systems, as well

as the diatomic molecules, can be expressed in terms of a
single binding-energy-distance relation.

As a consequence of this universality, many apparently
disparate physical quantities are found to be, in fact, relat-
ed. We will show (l) that the entire surface-energy-
distance relation can be determined from bulk-metal prop-
erties and (2) that adsorbate-substrate vibrational stretch
frequencies can be approximately related in a simple way
to the local electron density, the geometry, and the desorp-
tion energy.

This paper is divided into two parts. In each we first
give general results supporting universality. Then specific
examples are given which relate the basic concept to prac-
tical problems. In the first part of the paper we identify
the length scale with the screening length. Section II re-

views our previous results which showed that with this
choice of length scale, the available, first-principles calcu-
lations for adhesion, cohesion, and chemisorption
binding-energy-distance relations could be scaled separate-
ly into universal functions. In Sec. IIIA we show that
the universal feature of the results in Sec. II imply that the
surface energy (per surface atom) is proportional to the
cohesive energy per bulk atom. A second example, in Sec.
IIB, shows that the identification of the scaling length
with the screening length leads to a simple, testable rela-
tion between the vibrational frequency of an adsorbate, its
adsorption energy, and the local electron density for each
geometry of bonding. The identification of the scaling
length with the screening length yields important results
when it is known. However, in some situations the screen-
ing length is not a mell-defined quantity, e.g., in the ener-

gies of diatomic molecules. In the second part of this pa-
per we determine the scaling length from the energy
second derivative at equilibrium, i.e., from vibrational
properties. From this we find that all binding-energy
curves for adhesion, cohesion, chemisorption, and for the
bonding energy of diatomic molecules as a function of in-
teratomic spacing have the same approximately universal
form under the two-parameter scaling. Section IV pro-
vides our evidence for this assertion, our most significant
result. In Sec. V we show how to determine the length
scale in terms of experimental quantities. %e calculate
bulk (cohesion) and surface (adhesion) scaling lengths for
the fcc, bcc, and hcp metals. These surface and bulk
lengths are shown to be proportional. The constant of
proportionality is found empirically. In Sec. VI we use
this fact to relate the energetics of cleavage to within ex-
perimental error to the properties of bulk metals. Section
VII concludes the paper with a discussion.
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II. SCALING OP METALLIC BINXHNG
ENERGIES

Recently, we have shown that metaIlic binding-energy-
distance curves can be approximately scaled into a single
universal relation in each of the following cases: (1) chem-
isorption on a metal surface', (2) metallic and bimetallic
adhesion; and (3) the cohesion of bulk metals. A similar
result was subsequently advanced by Vidali et al. for the
case of physisorption. In each case, the energy relation
can bc cxprcsscd as

E (a )=hE E'(a') . (2.1)

H«e E(&) is the total energy as a function of the intera-
tomic separation distance a, hE is the equilibrium binding

energy, while E~(a*) is an approximately universal func-
tion which describes the shape of the binding-energy
curve. The coordinate a ~ is a scaled length defined by

a» =(a —a~)/I . (2.2)

Here a~ is the equilibrium separation and t is a scaling
kngth which is to be determined. In each of the three sys-
tems we considered we found that I is reasonably well
determined by the Thomas-Fermi (TF) screening' length

' 1/6
1 24377

(2.3)
3 64

where n (a~) is the electron density at the equilibrium po-
sition of the atom. %'e note that such a choice is not ap-
propriate for the case of physisorption, which we will con-
sider no further.

The total-energy-distance curve for a given physical sit-
uation is determined from the two scaling parameters AE
and I once the general form of E~(a ~) is established. The
choice of LE as a scaling parameter is simply a convenient
way to assure that all the curves for a given case (i.e.,
chemisorption) have a common value at the minimum.
The identification of I with the screening length is some-
what less obvious. The screening length describes the
range of the strong electronic forces created when an
external point charge is introduced into a metal. As such,
it sets the approximate scale for the distance over which
electronic forces can act. These same electronic forces
determine the cohesion of the atoms with each other.
Speaking heuristically, we can say that the screening
length defines the "size" of an atom in a metallic environ-
ment. The Thomas-Fermi approximation for the screen-
ing length was chosen due to its analytic simplicity and a
postenori due to its success in describing the data. More
accurate expressions for electron-gas screening lengths are
also inversely proportional to the —,

'
power of the electron

density. The constant of proportionality is not important
to the question of univer'sality, and so the Thomas-Fermi
approximation is as good as any for our purposes. How-
ever, it also introduces a certain arbitrariness since it de-
pends on an appropriate definition of the electron density
to bc used.

The scaling of the three classes of metallic systems pre-
viously reported will be reviewed below. First, we will
deal wi, th the binding energy of chemisorbed atoms on a
metallic surface. Then the adhesion energy of two metal
surfaces will be considered. Finally, the cohesive binding

energy of a bulk metal as a function of uniform dilatation
is given.

Binding-energy-distance relationships in chemisorption
have recently been computed for several adsorbates on jel-
lium in a self-consistent ab l'pfI', tI'0 fashion. ' Hydrogen
was first treated by Smith, Ying, and Kohns using a linear
response-gradient expansion method. Subsequently, Kahn
and Ying computed binding-energy curves for the alkalis
using the same technique. Binding-energy-distance rela-
tions for the chemisorption of H, 0, and Si on jellium sur-
faces which approximate Al and Mg have been computed
via a solution of the Kohn-Sham equations. ' ' For a re-
view of these calculations, see Ref, 13.

The variety of binding-energy-distance relationships for
the different adsorbates is exemplified in Fig. 1, where the
results of Refs. 8 and 9 are given. Here r, =(3/4mn+ )'.

where n+ is the bulk electron density of the substrate.
The alkalis show a much slower variation with separation
(distance between the adsorbate and jellium surfaces) than
does hydrogen. In combining the results of Refs. 8—12,
we take note of the fact that the authors of Refs. 8 and 9
computed ionic binding-energy curves. For the ionic case,
the desorbed particle is an ion with an electron left in the
metal, ~hereas for the atomic case the desorbed particle is
an atom. In the vicinity of the equilibrium position, elec-
tron exchange between adsorbate and substrate is rapid.
Therefore one might expect that in this region the ionic
curve would be essentially identical to the atomic curve.
%e will see that this is, in fact, the case, as evidenced by
the result that the ionic and atomic curves can be scaled
onto a single, universal curve. In order to make a proper
comparison, we computed the atomic-desorption energies
E(a ) from the ionic-desorption energies of Refs. 8 and 9
as follows. For the alkali results of Ref. 9, E(,a~) was ob-
tained by adding I—y, to the values at the respective
minima of thc curves in Fig 1 i c to the negative of
ion-desorption energies. I is the ionization potential of the
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FIG. 1. Total energy of the adion plus substrate plotted
against adion separation from the jellium surface. The (bulk) jel-
lium r, =1.S a.u. The hydrogen results are from Ref. 8 and the
alkali results are from Ref. 9.
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adsorbate atom and (p, is the electron work function of the
substrate. For r, =1.5, which is appropriate for the jelli-
um density used in the ionic binding-energy calculations
of Refs. 8 and 9, we took y, =3.88 eV. ' The hydrogen-
ion curve of Fig. 1 indicates an ion-desorption energy of 9
eV, over 2 eV too low. Thus an accurate value of E(a )

could not be obtained by adding I—(p, to —9 eV. In-
stead, we set E(a )=3 eV. The E(a ) value was chosen
to agree with the experimental atomic-desorption energy
(Ref. 15).

The inputs to the scaling relation Eq. (2.1) are given by
a~ =(a —a )/lTF and E=E(a ). Figure 2 shows the re-
sults of scaling. As can be seen, all the first-principles
chemisorption energy-distance curves currently available
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FIG. 3. Adhesive binding energy vs the separation a between
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FIG. 2. Atomic-binding-energy curves for chemisorption on
jellium surfaces scaled as described in the text. The jellium bulk
densities are denoted by the corresponding r, values listed in the
figure. The 0 results are from ref. 12, the H results on r, =2.07
(Al) and 2.65 (Mg) are from Ref. 11, the Si results are from Ref.
10, the H results on r, =1.5 are from Ref. 8, and the alkali re-
sults are from Ref. 9,
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FIG. 4. Adhcslvc-cncrgy results from Flg. 3 (above) and Flg.
4 of Ref. 17 scaled as described in the text.

describe a single universal energy-distance relation.
Two of the authors have recently computed' the elec-

tronic structure and adhesive energetics for contacts be-
tween all combinations of Al(ill), Zn(0001), Mg(0001),
and Na(110). The Kohn-Sham equations were solved
self-consistently using methods similar to those discussed
in Ref. 17. Computed binding energies agreed well with
experimental surface energies, and agreement was obtained
between computed elastic constants and experiment. In
Fig. 3 are plotted the adhesive binding energies as a func-
tion of separation in bimetallic contacts made between all
combinations of the four metals. The adhesive energy is
defined as

E~(a)= [E(a) E( oo )]/2A, —

where E is the total energy, A is the cross-sectional area,
and a is the distance between the surfaces of the metals
(a =0 when surface atoms of the two half-spaces are
separated by the average of the two bulk lattice spacings).

The inputs to the scaling relation are given by (1) setting
hE equal to the adhesion energy at a =a, and (2) using

(lTF ~+lTF 2)j2 as the scaling length. Here lTF &
and lTF, 2

are the Thomas-Fermi screening lengths of the two
separate metals. Figure 4 shows the results of scaling the
calculated energies. The closeness of the scaled results is
truly remarkable.

Recently theoretical binding-energy curves have become
available for several bulk metals (Carlsson et al. ' (Mo,
K, and Cu) and Herbst' (Sm + [4f (5d, 6s) ], Sm'+
[4f2(5d, 6s )3], and Ba). These total cohesive-energy
curves were calculated as a function of the separation be-
tween atoms for a uniformly dilated lattice. %e charac-
terize the separation between atoms in terms of the
Wigner-Seitz radius rws=(3/4mn„)'~, where nq is the
atom density. As input to scaling relation, we choose
~*=(rws —rws )/lTF where rws~ is the equilibrium
VA'gner-Seitz radius. The Thomas-Fermi screening length
is evaluated using the equilibrium interstitial electron den-
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sity. ' ' hE is the energy per atom needed to separate the
atoms to infinity while keeping them in the ground-state
configuration. Thus EE is not quite the cohesive energy
although it is closely related to it. Figure 5 shows the
scaled results. The binding energy of Mo, K, Ba, Sm +,
and Sm + falls closely on a single curve. The results for
Cu have the same shape but lie somewhat off the common
curve. Note that this agreement is not as good as we
found earlier for chemisorption and adhesion.

The cohesive-energy calculations of Carlsson et al.
[augmented spherical wave (ASW} density-functional
theory] and Herbst (relativistic Hartree-Fock) are quite
different from each other and from the perturbative
density-functional results of Refs. 16 and 17 for E~. The
nature of cohesive bonding in these metals is quite varied.
Ba is a divalent band overlap metal, Sm is an f-electron
metal, Mo and Cu have important d-band interactions,
while K is a simple metal. That such different metals cal-
culated in quite different ways fall on a single curve indi-
cates the generality of the scaling relations.

Finally, we note that thc charge densities for a well-

known zero-order model of the simple metal surfaces scale
with the Thomas-Fermi screening length, as do total ener-

gies. %'e have calculated the electron densities at the sur-
face of a jellium half-space for r, =2—4. Then those re-
sults were scaled assuming

n( z=}n+ ~n(z~)

arid

z~ =z/ITF .
Here n (z) is the physical density as a function of the dis-
tance from the jelliurn edge z. The bulk density is given
by n+, z~ is a scaled distance, and n~(z*) is the universal
form for the electron density. Figure 6 shows the result of
scaling these curves. The densities are rather accurately
given by a common relation except for the Friedel oscilla-
tions. This is to be expected since the Friedel oscillations
arc characterized by the Fermi wave vector. The scaling
of the density with /TF was anticipated in a variational an-

satz for the surface density introduced by Perdew. ' A
rough charge conserving fit which ignores Friedel oscilla-
tions is given by

{1 054~"" ) z ~0n*(z') = .
0 46~ 1.02z z )0

(2.7)

The quality of this fit could presumably be further irn-

proved by including a second term which includes thc os-
cillation in the electron density and which is scaled with
the Fermi wave vector. Thc fact that these surface-density
profiles scale can be used in a plausibility argument for
the existence of universality in adhesion (Ref. 3}.

III. RELATiONSHIPS BETWEEN DIFFERENT
ENERGIES

A. Re1ation of surface and cohesive energies

As an example of relationships that can be derived from
the knowledge that universality exists, we look for a rela-
tionship between surface energies o and cohesive energies
E„„.From Eqs. (2.1)—(2.3),

d E(a) hE d E~(a*)
da a =a I da

For adhesion, the above expression can be approximated in
terms of the elastic stiffness constant associated with the
direction perpendicular to the interface C'» as

d E~(a~)
(3.2)

I da' a'=p

where d is the interplanar sparing.
Similarly, for uniform dilation of a bulk metal,

Ecoh d E (a ) =12w8rws,I, da a» P

0—
I I I I

-6 -4 -2 0 2 4
SCALED DISTANCE a"

FIG. 6. Electron number density at a jellium surface as a
function of a scaled coordinate perpendicular to the surface
where a =a/ITF and ITF is determined from the corresponding
r, value shown in the figure. The number-density amplitudes
are divided by the bulk density.
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where B is the bulk modulus. Combining Eqs. (3.2) and
(3.3},

d E*(a*)
da

d E',d(a*)

da

C11 1
X

2d 12@Brws
(3A)

Because of the universality, the ratio of the second deriva-
tive in the large parentheses is independent of the metal
considered. From Figs. 4 and 5 one csn evaluate them,
and

2 I«P'wso C11 ~ws=1.7
E,,h 2d 38

(3.5)

B. Chemisorption on transition metals

A further example of the utility of the relations given in
the preceding section deals with chemisorption. Given the
perhaps surprising accuracy of the relation described in
Fig. 2 for sdsorbates on jellium, one might well ask if a
similar relation exists for adsorbates on crystalline transi-
tion metals. In this case a number of complexities arise
with respect to the results shown for the jellium surface.
First, in the relatively open structure of the crystalline
solid an adsorbate in, e.g., the fourfold symmetric site may
penetrate between the surface atoms. It is hard to imagine
that a scaling length simply related to local electron densi-
ty as in Eq. (2.3} would describe the binding of an adsor-
bate in that case as well as sn adsorbate located far from
the surface. Second, the nature of the bonding is rather
different depending on the surface geoInetry at the
adsorbate's site (e.g., the on-top, the twofold, or the four-
fold symmetric site).

We have met the first difficulty by considering only ad-
sorbates which bond in the exponential tail region of the
substrate electron density. Those adsorbates which
penetrate so far into the metal surface as to lie between
surface atoms are neglected. The fact that the relationship
between the electron density and the scaling length varies
from site to site can be used to advantage. Here the varia-
tion will aid in deciding on the site for a given observed
adsorbate.

In order to test this extension of the universal scaling

As will be discussed in Sec. VI, the term

(Ct t /2d)(rws/3B) is a constant within +20% for a wide
range of metals. Thus, we find

(4rrr ws )a cc E„h .

This is a well-known empirical result. We see now that s
simple proportionality relation between a metal's cohesive
and surface energies per atom is due to universal behavior
exhibited by the binding-energy relations.

It is difficult to obtain an accurate constant of propor-
tionality from first-principles and, in fact, the constant in

Eq. (3.5) is too small by a factor of approximately 2.
This is presumably due to approximations made in the cal-
culations discussed earlier. In Sec. VI an empirical ap-
proach will be taken which leads to s more accurate con-
stant.

TABLE I. Comparison of adsorbate-substrate vibrational-

stretch mode frequencies computed from Eq. (3.8} with those of
Ref. 22 for the onefold site on Ni(100).

Vibrational frequencies (meV)
Ref. 22 Eq. (3.8)

H
Cl
Na

283
43.6
19.3

hypothesis, we will derive the simple relation which it im-
plies between the adsorbate-substrate vibrational stretch
excitation energy ~ and its desorption energy hE. Then
we will test this relation for a variety of adsorbates on
Ni(100). From Eqs. (2.1) and (2.2),

1/2 1/2
1 d E(a}

da2 a=a
fit

TABLE II. Comparison of adsorbate-substrate vibrational-
stretch mode frequencies computed from Eq. (3.8) with those of
Ref. 22 for the twofold site on Ni(100).

Adsorbate
Vibrational frequencies (meV)

Ref. 22 Eq. (3.8}

Gl
Na
S
0
0

32.4
16.9
48
65
68

59.9
22.9

56.1

72.9

We ignore modes in which the vibration of the substrate
atoms is 1IIlportant, .

Here M is the mass of the adsorbate. One Inight hope
to determine (d E~/da' ).. . by scaling E(a) as in

Figs. 1 and 2. In fact, no such curves of E(a) are avail-
able for transition-metal surfaces. However, one can elim-
inate [d'Es(a~)/da' ].. . by considering only ratios of
vibrational stretch frequencies for different atomic adsor-
bates, all at the same site. The vibrational energy of one
adsorbate, m2, given that of another adsorbate is

' 1/2EEt Mt nt (a )

/ (3.8)
ftE, M, n, (a )

Here we have used the local-density result for the screen-
ing length Eq. (2.3). The densities, as in Sec. II, are given
by the bare-metal surface. Equation (3.8) follows immedi-
ately from Eqs. (2.3) and (3.7).

One can test Eq. (3.8) in the following way. Upton and
Goddard have used the generalized valence-bond method
to treat chemisorption of gss atoms on a 20-atom Ni clus-
ter, yielding values of ~ snd hE for various adsorption
sites on the cluster. The clean-surface electron densities
n (a~ }are obtained from a self-consistent local-orbital cal-
culation for a Ni(100) film. While there are expected to
be some differences between the cluster and film sub-
strates, this provides an approximate test. For the onefold
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TABLE III. Comparison of adsorbate-substrate vibrational-
stretch mode frequencies computed from Eq. (3.8) with those of
Ref. 22 for the fourfold site on Ni(100).

Adsorbate
Vibrational frequencies (meV)

Ref. 22 Eq. (3.8)

Cl
Na
S
0

30.4
16.9
37
46

31.8
13.8

50.7

While Eq. (3.9) is not as accurate as Eq. (3.8), it may
nevertheless be useful in correlating experimental data.
The vibrational-frequency trends listed in Tables I—III are
preserved when Eq. (3.9) is used.

or on-top site of Ni(100), the results are given in Table I.
The reference adsorbate was taken to be Cl, although the
choice is arbitrary and does not affect the test. The agree-
ment on adsorbate vibrational frequencies is rather good,
considering the large range between H and Na. For this
site the adsorbate equilibrium positions are relatively far
from the surface. For the twofold and fourfold sites, the
H equilibrium positions are quite close to the surface, and
the penetration problem discussed above is severe. Vibra-
tional frequencies for H from Eq. (3.8) are two to three
times too large for these sites. For the other adsorbates,
the results are generally good, however, as shown in
Tables II and III. Here the reference adsorbate was taken
to be S. For 0 there are two chemisorbed states in the
twofold site and only one for the fourfold site. In every
case, there is reasonably good agreement, with the lone ex-
ception of Cl on the Ni(100) twofold site. We have no ex-
planation for the one Cl result at this time. The results
for the other sites and adsorbates do suggest that univer-

sality approximately extends to chemisorption on crystal-
line transition metals, provided that the adsorbate does not
penetrate the surface atomic layer.

We suspect that Eq. (3.8) may be of use to experimental-
ists who are looking for a rough check of their vibrational
and/or desorption-energy results. In that connection, it is
perhaps important to note that Eq. (3.8) applies only to ad-
sorbates on the same symmetry site. That is, one gets
quite inaccurate results if adsorbate 1 of Eq. (3.8) is on,
e.g., a onefold site and adsorbate 2 is on, e.g. , a fourfold
site. This difference may be useful in experimentally
determining the adsorption site. For example, if a set of
measured desorption energies and vibrational frequencies
scales nicely using Eq. (3.8) for one particular site (e.g. , the
onefold site) but not for the others, then one has some in-
dication that the site is, in fact, onefold symmetric. The
determination of relative vibrational frequencies depends
on knowing the electron number density for the clean sub-
strate and the adsorbate's position. Such clean-substrate
densities may be either obtained from the overlapping
atom approximation or from a first-principles calcula-
tion as in our example.

Since the dependence on the density is weak (n '
), Eq,

(3.8) can be roughly approximated as

EE2 M
602 N i (3.9)

1 2

IV. SINGLE RELATION FOR DIATOMICS,
ADHESION, COHESION, AND CHEMISORPTION

Scaling interatomic separation by a screening length has
an intuitive appeal because of the effective atomic-size
picture discussed earlier. While it is quite successful for
chemisorption and adhesion (Figs. 2 and 4), the universali-

ty was a little less apparent for cohesion (Fig. 5). More
importantly, it would be highly desirable to relate the me-
tallic universality to the energetics of diatomic molecules.
Screening lengths have little meaning for molecules, how-
ever.

Thus we must take a somewhat different approach. We
will see that it will lead not only to the desired relationship
between universality in diatomic molecules and metals, but
also will help to explain how a universal binding-energy
relation can exist for metals despite the inadequacies of a
pairwise-interaction picture.

The theory of cohesion and structure for simple metals
has been successfully carried out in terms of perturbation
theory. In that theory, the difference between the free-
electron potential and that of a crystalline array is treated
as a small perturbation. This perturbing potential is typi-
cally chosen to be a pseudopotential. From that theory, it
is possible to separate the total-energy —atomic-separation
relation into so-called volume-dependent (structure-
independent) terms and terms which can be expressed as
pairwise interactions. It will be seen below that both the
pairwise and the volume-interaction terms can be treated
on the same footing.

The pairwise-interaction terms can be expressed in
terms of a spherically symmetric potential. This potential
is, in turn, specified in terms of the pseudopotential. A
class of pseudopotentials which has been rather good for
studies of cohesion and structure is due to Ashcroft. It
depends on only two parameters, the net charge of the ion
core and an ion-core radius. Thus the pairwise-interaction
part of the total-energy —interatomic-separation relation
for a range of simple metals can be written in terms of
these two parameters. As such, it has a universal form not
unlike that found in diatomic molecules. This result is
perhaps not surprising in that pairwise-interaction terms
are reminiscent of potential-energy —atomic-separation
distance relations for diatomic molecules.

There is no apparent similarity between the volume or
structure-independent part of the total-energy —atomic-
separation relation and diatomic interaction potentials,
however. These volume terms also can be specified in
terms of the perturbing pseudopotential. If one again uses
the Ashcroft pseudopotential, one finds that even these
volume-dependent terms can be written as a function cf
the two parameters, the net charge of the ion core, and an
ion-core radius. Thus both the structure-independent and
pairwise-interaction parts of the total energy can be writ-
ten in terms of the same two parameters. Thus it is plau-
sible that one could find a total-energy —atomic-separation
relation of universal form —even for metals.

Further, the above argument suggests that the universal
form could be a two-parameter family. As such, these pa-
rameters can be determined in a variety of ways. This
suggests a way to bridge the gap between diatomic mole-
cules and metals. We choose to specify AE through the
equilibrium binding energy as before. Because screening
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FIG. 7. Atomic-binding-energy curves for chemisorption jelli-
um surfaces with distances scaled via Eqs. (4.1), (2.1), and (2.2).
The jellium bulk densities are denoted by the corresponding r,
values listed in the figure. The unscaled E(a) was taken from

Fig. 2.

lengths are ill defined for diatomic molecules, we choose
instead to specify the second parameter I by requiring that
the second derivative of the total energy with respect to
atomic separation at the equilibrium separation is equal to
1.0. That is [see Eqs. (2.1) and (2.2)],
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FIG. 9. Bulk energies of various metals scaled using Eqs.
(4.1), (2.1), and (2.2}.

(4.1)

%e first apply this procedure to adhesion, cohesion, and
chemisorption on metals, and the results are shown in
Figs. 7—9. One can see that the excellent scaling found
earlier (Figs. 2 and 4) for adhesion and chemisorption is
again found here. The scabng of cohesive energies is con-
siderably improved over earlier screening-length scaling.
This is presumably because of the difficulty of defining a
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FIG. 8. Adhesive-energy results from Fig. 3 and Fig. 4 of

Ref. 17 scaled using Eqs. (4.1), (2.1), and (2.2).
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FIG. 10. Binding energy as a function of interatomic separa-
tion for four systems as noted, scaled using Eqs. (4.1), (2.1), and
(2.2).
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sufficiently accurate screening length for a bulk metal.

Finally, we compare in Fig. 10 the universal binding-

energy relations for diatomic molecules and metallic

cohesion, adhesion, and chemisorption. The molecule
H2+ was chosen because it is a member of a broad family
of diatomic molecules whose binding-energy relations are
well represented by Morse or Rydberg functions and hence

all have the universal relation sho~n in Fig. 10, The three

other examples of Fig. 10 are quite representative as well,

as shown in Figs. 7—9.
One can see that all the universal rdations fall on top of

each other. Thus there is a single universal relation for all

these seemingly diverse systems. This is perhaps our most

significant result. It shows that the metallic bond at an
interface or in the bulk maintains a common dependence
on interatomic spacing. This commonality extends to gas
atoms interacting with metals and to the diatomic molecu-

lar bond. The degree to which these points Rll fall on a
common curve in Fig. 10 is rather astounding. It tells us

that there is an underlying simplicity in nature that was

not recognized heretofore. Note that the ground-state en-

ergy of H2+ has been solved exactly and that, together
with the variety of approximations used for the three oth-
er systems in Fig. 10, argues that this universality is not
due to any theoretical approximation.

IV. DETERMINING hE AND I EMPIRICALLY

The universal scaling described in Eqs. (2.1) and (2.2)
depends only on the two parameters AE and I. These pa-
rameters can be fixed by choosing any two physical mea-
surements which depend on the total-energy curve. We
assume that the equilibrium binding energy can be mea-

sured, thus establishing EE directly. We choose the length
scale so that 1t car1 be measured also. We choose to f1x I
from a measurement of (d2E/da ), , as in Eq. (4.1).

For a bulk solid this quantity can be inferred from the
elastic constant or the bulk modulus. For chemisorbed
atoms and dimers, (d E/da ), , is directly related to a

vibrational frequency. The complete energy versus dis-
tance curve can be found by deteITIllnlng the brndrng ener-

gy and its second derivative evaluated at the equilibrium
position.

The length scales appropriate to the surface and bulk
binding energies of a metal are expected to be closely relat-
ed given the screening arguments of Sec. II. First, consid-
er the surface-energy relation. When the metal is cleaved
the change in energy per unit area is twice the surface en-

ergy EE=2o. On the other hand, the corresponding
(d E/da ), , for cleavage is somewhat complicated and

depends on the precise way cleavage is defined (see Refs.
25 and 26). We have expressed it in our calculations
below Rs

dg a =a~2

Here C&& is the elastic constant appropriate to strain nor-
rnal to the surface, while d is the interplanar separation in
this direction. Thus

Here the subscript s denotes a surface quantity. The cor-
responding length scale for a uniform dilatation of the
bulk metal is

12m.Brws
(5.3)

TABLE IV. Surface and bulk length scales Ib and I, in A, and

their ratios are calculated from Eqs. (5.2) and (5.3) using experi-

mental data.

(fcc)
Ir
Ni
Pd
pt
Cu

Ag
Au
Al
Pb
Average

0.23
0.27
0.24
0.24
0.27
0.27
0.24
0.34
0.30

0.43
0.52
0.56
0.54
0.55
0.58
0.54
0.66
0.67

0.53
0.52
0.43
0.44
0.50
0.47
0,43
0.51
0.45
0.48

(bcc)
Li
Na
K
Rb
Cs
V
Nb
Ta
Cr
Mo
W
Fe
Average

0.55
0.56
0.65
0.66
0.71
0.31
0.34
0.33
0.25
0.27
0.27
0.27

1.03
1.09
1.28
1.32
1.44
0.72
0.75
0.68
0.53
0.55
0.53
0.56

0.54
0.52
0.51
0.50
0.50
0.43
0.45
0.49
0.48
0.48
0.49
0.48
0.49

(hcp)
Be
Co
Hf
Mg
Re
Ru
Tl
T1
Zr
Average
(Neglecting Be)

0.31
0.26
0.37
0.32
0.25
0.25
0.33
0.34
0.40

0.41
0.52
0.74
0.78
0.48
0.45
0.74
0.70
0.76

0.76
0.50
0.50
0.40
0.52
0.54
0.45
0.49
0.52

The length scales Ib and I, can be estimated from Eqs.
(5.2) and (5.3) using experimental data. We take the
cohesive energy and lattice properties from Kittel, the
elastic properties from Simmons and Wang, and surface
energies from Tyson and Miller. We will estimate the
length scale for the most densely packed face of each met-

al. This will, in fact, introduce a certain error since the
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surface energies of Tyson and Miller represent an un-

known average over many crystal faces, and not just the
most densely packed face. For the bulk cohesion,
(d 8/da ), , has been expressed in terms of the bulk

modulus and r~s. AE is defined as the energy to separate
the atoms to infinity while maintaining the equihbrium
ground-state electronic configuration. Thus AE is not
necessarily equal to the cohesive energy E h due to the
possibility of electronic phase transitions, such as the
metal-insulator transition at low densities. Nonetheless,
lacking a more accurate determination of AE, we will ap-
proximate it by E„h in the calculations presented below.

%C have seen that both cohesive- and adhesive-energy
separation relations could be successfully scaled by the
bulk screening length (Figs. 2 and 4). They were also suc-
cessfully scaled by relations (5.2) and (5.3) (Figs. 8 and 9}.
Thus I, and Ib must each be proportional to the bulk scal-

ing length for each metal. In turn, Ib must be proportion-
al to I, for each metal. This consequence of univer'sality

can not bc tested by experiment,
Table IV shows the results of evaluating the length

scales l~ and I, froIn experimental data for the closely
packed fcc, hcp, and bcc metals. With the exception of
Be, the ratio of I~/I, for all these metals is nearly 1/2.
For all the metals except Mg ( which is slightly too low)
and Be (which is completely anomalous}, the ratio of the
bulk scaling length to the surface scaling length can be ex-
pressed to within +10% by its average value

lb 0.48(5)I, .

The deviations of Ib/I, from constancy are consistent with

(1) the approximately +20% uncertainties in the zero-
tcmpcraturc surface cncrgics and (2) thc similarly sized er-
rors introduced by our approximations of hE for the bulk.
Improvements in the evaluation of these quantities are
needed to determine if /~ and I, can be related more exact-
ly in a simple way. The proportionality between Ib and I,
seems quite plausible given their interpretation in terms of
the screening length as discussed in Sec. II.

4n.r wso 0.48 E„h . (6.2}

For the hcp's the c/a ratio is variable and d is not
uniquely related to r~s. For the hcp close-packed metals
(excepting Be), we find

res C'»
4m'russo

=0.71 E,oh, . (6.3)

Zn and Ga were not considered since they are not close
packed. Their c/a ratio is Inuch larger than ideal. Other
elements such as the rare earths have been excluded since
the experimental data needed to evaluate the relevant ex-
pressions were not available.

For the (111) face of an fcc metal, Eq. (6.1) can be
rewritten as

(C»+2ci2+«~) E...
0 025

»+ 12

For the (110) face of a bcc metal,

~c» +C12+2C44) Ecoh
0 =0.24

11 + 12

(6.4)

(6.5)

For the (0001) face of a close-packed hcp metal we find,

E.oh

Q
(6.6)o =0.17

11 + 12

Here the C's are the elastic constants and a is the lattice
parameter for the fcc and bcc metals. Equations (S.6} and
(6.1)—(6.6) show that the energetics of cleavage are entire-

ly controlled by the energetics of the bulk solid within the
approximations to universality which we have made.

Below we will test the accuracy of our expressions for
the surface energy. In Pig. 11 we plot the left-hand side of
Eq. (6.2) against the right-hand side and obtain a 45'
straight line. This represents the theoretical predictions.
%e have also plotted the experimental values of the same
quantities. Deviations of experimental values from the

VI. RELATIONS SET%EEN SURFACE
AND SULK PROPERTIES

(e V/atom)

2.5
I

2 fC» ~ms

lg 2d 38
(6.1)

The surface energy, the surface scaling length, and, con-
sequently, the surface-binding-energy curve can be approx-
imately determined from (1) the approximations made in
the evaluation of ls and I„and (2) the consequent
discovery of an approximate proportionality between
them. Combining Eqs. (5.2) and (5.3) we obtain

100—
E
O

la
4l

bJ

5Q—
Ag x

XA

V
X

Fe Cr
X

XNi

Equation (6.1) is the same as Eq. (3.5) except that the con-
stant (I, /ls) replaces 1.7 in that equation. The ratio I, /I&
has been evaluated approximately in the preceding section
[see Eq. (5.6)]. We will substitute this eplplll'COIL deter
mined value into the following equations. Replacing I, /I~
by its average value, Eq. (S.6},and noting that for the cu-
bic metals d is simply expressed in terms of rws, we find
for' the cubic metals,

xx xga

5A) los

~ ~ E noh (IQ eries/atom)2

FIG. 11. Plot of the left-hand side of Eq. (6.2) vs the right-
hand side yielding the straight line. The X's show the results of
plotting the experimental data.
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FKr. 12. Plot of the left-hand side of Eq. (6.3) vs the right-
hand side yielding the straight line. The x's show the results of
plotting the experimental data.

FIG. 13. Plot of the left-hand side of Eq. {6.7} vs the right-
hand side yielding the straight line. The experimental data are
shown by the g's.

4mr so-=0 82Eoo (6.7)

Figure 13 shows a plot of the left-hand side of Eq. (6.7)
versus the right-hand side. The experimental quantities
aic also plotted. As can bc scen, thc scatter in thc data is
reduced compared to Figs. 11 and 12. This suggests that
the face dependence represented by C/8 is somewhat in-
consistent with the averaged values of the surface energies
obtained by Tyson and Miller. For these averaged quan-
tities, Eq. (6.7) is to be preferred. Equation (6.7) is very
similar to a well-known empirical relation for the surface
energy. For example, Tyson discusses this relation and

theoretical estimate indicate either experimental error or
inaccuracies in the theoretical prediction. In Fig. 11 we
see that the experimental values for the cubic metals agree
with the theory to within 20%, which is comparable to
the accuracy to which the surface energy of the densest
faces are known for these metals. Figure 12 shows a simi-
lar treatment for the hcp metals in terms of Eq. (6.3). The
equation (6.3) scatter in this case is considerably greater
than the cubic metals. However, except for Mg, the agree-
ment is within +25%%.

In developing the relationship I~ and I, we used the sur-
face energies proposed by Tyson and Miller. As men-
tioned before, they represent an average over many crystal
faces and are not an entirely adequate representation of
the surface energy of the most densely packed face of a
metal. Let us consider how this might enter a relationship
such as Eq. (6.2) for the surface energy. Here we would
take an average over crystal face for both sides of the
equation. On the right-hand side this means averaging the
face-dependent elastic constant. Already C/8 for the cu-
bic metals is approximately the constant 1.70 within a
+20% variation. After C is averaged over the various
low-index crystal faces, we might expect to find that C/8
is even closer to a constant for the cubic metals. The aver-

age value of C will be more isotropic and closer to the
bulk modulus. Replacing C/8 with its average value of
1.70, we obtain

gives empirically

E„h——4A o. . (6.8)

Here A is an appropriately defined surface area exposed
per surface atom in the cleavage process. When 3 is ex-
pressed in terms of rws„Eqs. (6.7) and (6.8) are essentially
identical. Tyson and others have justified Eq. (6.8) on
the basis of a pair-potential model for the solid. Our
theory gives a similar relation while treating the strong
volume-dependent forces and the pair-potential forces in a
unified manner.

VII. DISCUSSION

As it appears, the occurrence of a universal form for the
binding-energy-distance relation appears to have many im-
plications. For example, we have used universality in
demonstrating that the energetics for cleavage of metals
carj be determined from bulk properties. The well-known

empirical relation between bulk and cohesive energies was
also derived in this manner. As a further example, we
have shown that for an adsorbed gas atom on a metal sur-
face the (1) desorption energy, (2) the vibrational frequen-
cy, and (3) the bare-metal density at the position of the ad-
sorbate are related via a simple expression. Other works
which support the validity of the universal relationship are
as follows. Rose and Dobson ' have explored the implica-
tion of the scaling results for the surface energy in terms
of the Thomas-Fermi screening length. McMullen, Pcr-
dew, and Rose have used those results to discuss the
stripping of surface atoms from a metal surface by an in-
tense electric field. Other rdationships are currently being
considered by the authors including the thermophysical
properties of metals. The fruitfulness of these studies will
depend on how exactly the various systems can, in fact, be
mapped into a single universal relationship. The answer
to this question for metals is perhaps best approached for
the cohesive-energy calculations which are the best under-
stood and most realistic of those discussed. This suggests
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the need for accurate calculations of the cohesive-energy
curves over a wide range of lattice parameters and for
many different metals.

Perhaps the most surprising result of universality is that
the universal binding-energy relations for certain types of
diatomic bonding, as well as adhesion, cohesion, and
chemisorption in solids are one and the same. How could
that be? It is apparently not due to a theoretical approxi-
mation, since exact H2+ as well as local-density, general-
ized valence-bond, and Hartree-Fock' results were con-
sidered. We have up to now only provided plausibility ar-
guments for the existence of separate, universal binding-

energy relations for individual phenomena, e.g., adhesion
or cohesion. If the energetics of all the phenomena can be
well represented by a two-parameter function, then the
scaling described in Eqs. {4.1) and (4.2) leads to a single
universal curve for each function. It has long been known
that Morse or Rydberg functions work well for diatomics,
but one cannot assume that they might accurately
represent total-energy variations for metallic adhesion,
cohesion, and chemisorption because of the presence of
strong volume-dependent forces in metals.

One might well ask whether our findings of universality
for diatomics and metals could serve as a justification for
the use of pair potentials in physical metallurgy (Ref. 33).

The answer is, unfortunately, no. The pair potential
leaves out the strong volume-dependent terms. The latter
are included in the total energy, which we argued does
have a universal form. But, because the total energy is
typically different from the pairwise contribution, our
findings relative to the total energy do not speak to the va-
lidity of pair potentials.

Finally, the connection between diatomic and metallic
energetics which evolved from the discovery of universali-

ty is perhaps significant. We saw earlier that there was a
good analogy between molecular bonding and bonding be-
tween metal surfaces. The kind of agreement exhibited in
Fig. 10 strengthens and broadens this conclusion to in-
clude a rather close relationship between the general me-
tallic bond and molecular bonds.
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