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Justification, as extensive as is possible, is given for our previously published nonlocal ap-
proximation for exchange and correlation. Some new exact limits for atoms and interfaces
are obtained, as well as formal quantitative criteria for the validity of the local-density ap-
proximation and the gradient corrections to it. The scheme is applied to planar surface cal-
culations, as well as to extensive self-consistent calculations of energies and densities in
atoms. The results compare favorably, in every case attempted, to experimental and exact
results that are available. A method is devised for separating exchange from correlation in
atoms within the Kohn-Sham method, and is tested favorably against exact-exchange calcu-
lations. Finally, we apply these results to atoms using exact exchange plus our appropriate-
ly separated correlation expression. The results give atomic total energies to accuracies of
~+0.01 Ry, and typically reduce the local-density-approximation error in density by an or-

der of magnitude.

I. INTRODUCTION

Previously, the present authors! (this work hereaf-
ter referred to as LM) proposed a workable calcula-
tional scheme for including the effects of exchange
and correlation beyond the local-density approxima-
tion* (LDA) in nonuniform systems such as atoms,
solids, molecules, surfaces, etc. This was based on a
mode of approximation introduced to such systems
by Langreth and Perdew®~® and by others.”~° LM
was based to a large extent on the work of Langreth
and Perdew® (hereafter referred to as I) and the type
of approximation scheme introduced there. This
earlier scheme and its relation to the work of other
authors such as Gunnarsson, Jonson, and
Lundqvist,lo Alonso and Girifalco,!! Gunnarsson
and Jones,'? and Kohn and Hanke'® have been aptly
reviewed recently by Williams and von Barth'
whose work relieves us of the burden of a detailed
discussion here. More recently, Perdew and colla-
borators’*~!7 have revived, and elaborated on,
methods for correcting for self-interactions, and we
will mention aspects of this related work later.

The present work has a number of aims. The first
is to give, in Sec. II, as complete a justification as we
are able for the calculational scheme introduced in
LM. In the process, we obtain some results and
reach some conclusions that are interesting in their
own right: In Sec. IIB, we derive the long-
wavelength limit of the exchange-correlation energy
for (a) atoms and other finite systems and (b) for
planar interfaces in metals; in Sec. IIC, we develop
sufficient a priori quantitative criteria for the LDA
to be a good approximation, as well as for the first-
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order gradient approximation to give an accurate
correction to the LDA; we find that the criterion for
the former is considerably less severe than often sup-
posed and, as previously discussed,"® that the cri-
terion for the latter (gradient) is not only more
severe than previously supposed, but also consider-
ably more severe than the criterion for the former
(LDA). We find that our a priori criterion for the
LDA’s validity is roughly satisfied for a wide
variety of systems (while that for the gradient
corrections to it is generally not), thus resolving a
paradox which was the apparent motivation for oth-
ers such as Gunnarsson and Lundgqvist!® to seek
reasons other than the satisfaction of a priori criteria
for the huge success'*!%% of the LDA in practice.
Of course, we do not disagree with Gunnarsson and
Lundqvist’s reasons, i.e., that the spherical average
of the exchange-correlation hole along with its obey-
ing of the sum rule improves things: These facts are
reflected in the quantitative a priori criteria which
we give, making them less severe than they other-
wise would have been.

In Sec. ITA we discuss the true exchange-
correlation functional as a simple function of a mul-
titude of wave vectors and argue that in a qualitative
sense at least there is only one of these in addition to
kg (the local Fermi wave vector) which is most im-
portant. This notion, along with a number of exact
limits (which are added to in Sec. II B), are used in
Sec. IIC to develop and to justify as far as possible
the LM approximation scheme.

In Sec. III we apply the scheme to planar surfaces
as well as to atoms. In addition to the calculation in
LM, we calculate atomic densities and compare
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them with the exact ones for the spinless atoms
through Ar. Our approximation reproduces all the
trends in predicting the error in the LDA and goes a
long way in making the densities more like the exact
ones. We examine the exchange-correlation poten-
tial v,. for our approximation in Sec. IIIF. This
has the cusplike features at the proper positions be-
tween the orbitals and strengths similar to what the
exact-exchange potentials?' =2 have. The results for
the densities as well as for the potentials give strong
evidence that our scheme is basically correct. We
also argue that the Kohn-Sham eigenvalue differ-
ences for occupied states are very close to the exact
ones, in agreement with the recent observation of
Perdew and Norman?* that this is incontrovertibly
true for the local-density approximation to exchange
only.

In Sec. IV we propose an approximate and some-
what speculative method for separating exchange
from correlation. This method happens to work
well for all properties tested in atomic calculations,
including total energies, exchange energies, densities,
and Kohn-Sham eigenvalues; when combined with
the calculations in Sec. III, it gives excellent results
for correlation energies. It becomes clear from the
calculations in this section that the largest source of
error in the approximate LM scheme is its treatment
of exchange, and not the details of the somewhat
crude small wave-vector cutoff procedure for corre-
lation.

The motivation for separating exchange and
correlation is, of course, the longstanding one: Ex-
change alone can be computed exactly and, for lo-
calized nondegenerate systems, rather simply.?! =232
Exact exchange may then be combined with an ap-
proximate expression for correlation,?® as is done in
Sec. V, and then applied to atoms. This results in a
spectacular improvement in energies and densities
when compared with the LDA.

In summary then, we feel that the evidence is
strong that the original LM scheme is basically
correct, and should give substantial improvements in
the predicted ground-state properties of a wide
variety of systems, and we recommend its use for
calculations of energies, densities, elastic properties,
and so on, especially for bulk materials, and prob-
ably also for surfaces. It should also be expected to
give improved eigenvalue differences for occupied
states over the LDA; these changes in eigenvalues
will not be large, however—and correctly so, we
believe—since the LDA already seems to be an ex-
cellent approximation to the eigenvalue differences
of the Kohn-Sham equations using the exact poten-
tial.

It would seem important from a theoretical point
of view to investigate further the question of

separating exchange and correlation, to which the
idea introduced in Sec. IV represents a start. Of
particular importance is the question of whether
and/or how this notion can be generalized to calcu-
lations involving more delocalized states than those
of atomic orbitals. If the numerical success of Sec.
V could be extended to small molecules and clusters,
this would be a major advance indeed.

II. THE LM CALCULATIONAL SCHEME
A. The nonlocal exchange-correlation energy—
the variables on which it depends
and its behavior

We begin by writing the exchange-correlation en-
ergy of a nonuniform system in slightly unusual no-
tation, which we hope will serve to make the size of
various terms transparent:

e’ 3,14
Exc[kp]=z—3 [ d’rkiwike] . (2.1)
T

We use the local Fermi wave vector
kp=kp(T)=[37%n(7)]'"

as the basic variable, instead of n(T), so that E,,
and W are functionals of k¢(T). The quantity W de-
fined by (2.1) is then a dimensionless quantity of or-
der unity, which we write as

Wlkpl=Wipa(kp)+8W , (2.2)

where W p,, a function of kf, is the value of W in
the local-density approximation?:

WLDA(kF):_ch/exz—(1+€c/€x) , (2.3)

where €, is the sum of the exchange energy per par-
ticle €, = —3e2ky /41 and the correlation energy e,
per particle for a uniform electron gas of Fermi
wave vector kp.

The deviation from the local approximation, S W,
is a functional of kg(T), which can be thought of
alternatively—and, for our purposes, more
conveniently—as a function of a (presumably infi-
nite) number of variables q,,g5, ..., ¢,, ..., which
are determined from kp(T) as a function of T in
some prescribed way; these can, without loss in gen-
erality, be taken to be inverse lengths. One of these,
which may be taken as q;, is the local kg itself.
What are the others? In the present language the
problem of going beyond the local-density approxi-
mation is tantamount to identifying which inverse
lengths (other than kz) derivable from a density dis-
tribution have the greatest effect on the system’s
exchange-correlation energy.

Intuitively, one has the notion that if the density
is varying, then it is those lengths which define the
scale, over which the density varies, which are most
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important. For example, for a planar metallic sur-
face, it must surely be that in addition to k7' the
next important length is the width or healing length
of the surface layer. In a tightly bound orbital in an
atom, molecule, or solid it must be the size of that
orbital; in slowly varying valence states, such as in a
solid, it presumably can be related to the derivative
of the density. The main purpose of this work is to
present a quantification, albeit crude, of the above
intuitive notion.

Our first basic assumption is that, to fair approxi-
mation, there is just one length £ for each T, which
characterizes the scale over which the density varies,
as discussed in the above paragraph. In terms of the
¢’s, this means that q,=kp, q,>~q3>~q4>~"""
~&~ =g, and that all the remaining ¢’s not includ-
ed in the assumed approximate equalities above are
unimportant. We therefore rewrite (2.2) as

2

W[kplzmkp,q)sWLDA<kF>+Z<kp,q>§2~ ,
F

(2.4)

where we have factored out g2/k} to exhibit expli-
citly the trivial fact that the local-density approxi-
mation is exact when ¢g—0. The function Z (kg,q)
is a dimensionless quantity which is demonstrably of
order unity (or smaller), in many cases of interest,
and which will be assumed to be of this order in all
the cases with which we deal here. Since Wp, has
been constructed to be of order unity, then the cri-
terion for the validity of the LDA in this language is
g <<k, and the fractional correction to the LDA is
~gq?*/k}. This is in accord with our experience in
the examples of the above paragraph.

Next we need a measure of ¢ =¢(T) for a given
density distribution. If our assumption that there is
only one important length £ (aside from k7 ') associ-
ated with each T point is sufficiently accurate, then
it should not be of much consequence which of
many possible physically reasonable schemes is used
to evaluate it. As in our earlier preliminary report,1
we choose the simplest reasonable possibility:

g(V)=1/E=| Vkp(T) | /2kp(T) . (2.5)

This scheme has the advantage that is exact for suf-
ficiently slowly varying disturbances when substitut-
ed into (2.4). In the latter case one may set ¢ =0 in
Z(kp,q) and Z may be evaluated according to the
gradient expansion®”2%%¢, the factor of 2 in the
denominator of (2.5) was chosen to make Z (kg,0)
agree with previous definitions.>?® Note that®?"2}
Z(0,0)=1.198 and calculations based on the
random-phase approximation (RPA) and beyond do
not show substantial deviation from this for any kg
of interest. The most important variation in

Z (kp,q) comes from its dependence on q. As shown
previously,® Eq. (2.5) also gives reasonable results
for surfaces, where it predicts that £ is on the order
of the surface healing length when T is in the sur-
face layer. It is also clear that (2.5) gives a & rough-
ly equal to the radius of an atomic orbital when T is
such that the density is dominated by that orbital.

Generally speaking, we feel that our success with
using the simple equation (2.5), as well as the as-
sumption of a single &, results in large degree from
the fact that we are dealing with systems in equili-
brium, or nearly in equilibrium, under their own
internal forces resulting from the Coulomb interac-
tion. Density variations with length scales grossly
inconsistent with (2.5) probably do not occur in such
systems.

The determination of the variation of Z with q is
facilitated by making a wave-vector decomposition
of E,., as used by Noziéres and Pines® for the uni-
form case and by Langreth and Perdew®~® plus a
number of others’~° for the nonuniform case. This
may, as in our previous work, be defined in terms
of the coupling-constant integral of the exact struc-
ture factor S; (k) in the presence of an external po-
tential whose coupling-constant dependence is such
as to keep the spatial density variation independent
of the coupling constant®* 1830

1 —
E\ (k)= [ dA2me®/kDN[Sy(K)—1]. (2.6)

We introduce the particle number N to make our
normalization of [S;(k)—1] agree with that com-
monly used by others. Then we define z(kp,q;k),
the wave-vector decomposition of Z (kg,q), by the
equation

2 (ke (k)
PRE (=" [ d'rk} Lalia: Ll

€x

2
+2<kp,q;k)-zy

b

F
2.7)
where the phase-space factor
p(k)=4mxk?/(27)}
and
ek)= [ dx @me?/kD[SE(k;kp(EN—1],
(2.8)

where S2(k ;kp(T)) is the structure factor for a uni-
form (bulk) electron gas with wave vector kp. Of
course, for ¢ =0, Eq. (2.7) reduces to just p (k)E >4
the value of p(k)E, (k) in the local-density approxi-
mation. Although z in (2.7) is dependent on the
direction of k, this property does not affect the en-
ergy, so that

b
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Z(kpg)= [ dkz(kp,g;k) . 2.9

Note that the k integral of either z or pe,(k)/&
taken separately is of order unity, at least for small
g, and the degree of nonlocality is expressed by the
g%/k} factor in (2.7).

To find a viable approximation scheme for z, we
begin by looking at special cases that we can solve
exactly. There exists one system where there
rigorously exists only one g (other than kg) charac-
terizing the density, and that is an otherwise uni-
form electronic system perturbed by a weak
sinusoidal potential of wave vector g. Unfortunate-
ly, Eq. (2.5) would not provide a reasonable measure
of ¢ in this case unless the amplitude were large, and
that could vitiate our assumption that treating the
disturbance by perturbation theory is a valid pro-
cedure. Nevertheless, we are going to be forced to
extrapolate anyway, because in practice it is always
large disturbances from uniformity which we wish
to treat by the methods developed here. Further-
more, Eq. (2.5), when combined with (2.4), gives a
rigorous result for small g; then it is just the gradient
expansion, which in turn may be rigorously obtained
by the perturbation expansion of this paragraph.
We will argue that this small-g case represents the
most important contribution to z over a substantial
part of the k range.

The behavior of z(kp,q;k) for small g has been
implicitly derived for this model by Langreth and
Perdew® (I) and discussed explicitly more recently.’!
Essentially, z varies with k over three wave-vector
scales: The first is set by kp, the second by the
Fermi-Thomas wave vector kgr, and the third by g.
The Fermi-Thomas wave vector kgr is not a
separate “‘q” in the sense of the discussion following
Eq. (2.3), since it is a simple function of kg
[(kpr/2kp)~*=magkg] for all points T. Although
there is cancellation at small wave vectors between
correlation and exchange, this is less important than
for the local approximation, and it makes more
sense to discuss these pieces separately when consid-
ering the nonlocal contributions to z, especially since
the way each of them scales with the kg, kgt, and g
is different. Thus we let z =z, +z.. We show a
sketch of z, vs k in Fig. 1(a) to illustrate this scaling.
Here, as elsewhere in this paper, we take the as-
sumption g <<kr to be a reasonable starting point,
even though it may not be rigorously satisfied every-
where. Therefore, the large-k parts of Fig. 1(a) are
just those of the second-order gradient approxima-
tion and could be obtained from combining the
longitudinal and transverse parts of Fig. 6 in I. For
k smaller than ~ g, however, the result (exact for the
linear-response case) differs greatly from the gra-
dient approximation, according to Eqs. (4.16) and
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FIG. 1. Nonlocal contribution z to the exchange-
correlation energy. (a) The nominal correlation contribu-
tion; the dashed line (continuing as solid) is the RPA cal-
culation (Ref. 6) for ¢ =0. The solid line for g0 exhi-
bits the correct scaling features and small-g behavior, but
its exact form for intermediate k is not known. (b) The
nominal exchange contribution. The curve shown is exact
for ¢ =0 and is expected to be a reasonable approximation
for 0 < q <<2kp.

(2.43) of 1. For this small-k region we see that z.(k)
becomes small (ok?) rather than continuing up-
ward as the dashed line in Fig. 1(a), which
represents the contribution of the lowest-order gra-
dient approximation. Effectively then the contribu-
tion at small k is cut off when k <g. This feature is
rather general. Specifically,

(2kp)z <k?/q* (2.10)

at small ¢ in the normal case, and at worst
z,. <k /q. This is important because we will later
make the (fairly crude) approximation that z is ef-
fectively zero for k <gq.

In Fig. 1(b) we show the form of z,(k). Essential-
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ly, we have just replotted the results for the second
gradient approximation [see Eq. (3.55) of I}, which
is valid when our working assumption g <<2ky is
satisfied. The extra variable g has little effect in this
case: It broadens the structure for k ~2kg. It also
affects the curve near k ~0, but since z, is small
there anyway, we neglect this. We note also that the
correlation piece z.(k) has a piece which exactly
cancels the nonanalytic (< |k |) exchange piece at
very small k. This too is an effect which is finer
than the level of approximation which we ultimately
make, and so we neglect it too. For practical pur-
poses then the nonlocal exchange is nearly indepen-
dent of ¢ and equal to the area under the curve in
Fig. 1(b), which is — %, in agreement with the calcu-
lation of Sham.*? On the other hand, the area under
the correlation curve z.(k) of Fig. 1(a) is heavily
dependent on the value of ¢ relative to the intrinsic
screening length kgr. For high densities such as in
the inner shells of the atoms, one has kgp <<2kp, so
that ¢ > kg1, leading to a very small nonlocal corre-
lation energy, relative to the nonlocal exchange con-
tribution; this is just what one expects. On the other
hand, at lower densities, as in the valence states of
atoms and solids, one has kgpr~(2kg)/3 and
q ~kgr, so that although the nonlocal correlation
energy is still substantially reduced from what the
lowest-order gradient approximation would predict,
it is still comparable to the nonlocal exchange ener-
gy. Again, this is in accord with our experience and
expectations.

B. Exact results at small k

The discussion of the preceding section suggests
that there is a cutoff behavior in z,.(k) at small k,
where for k <g, the contribution is much smaller
than, for example, the lowest gradient approxima-
tion would suggest. Here we give examples where
we can prove that this view is exact.

The first example is an atom or other system of
finite extent. Instead of z, in this case it is simpler
to discuss the quantity

p(K)[E (k) +2me?/k?]

[see (2.7)]. If at small k it is « k2, then z must also
be « kz/qz, because the quantity

k)€ (k) +2me?/k?]

is always «k? The term 2me?/k? is just the in-
teraction of a point particle with itself; it always
occurs in the same manner in the local and nonlocal
theory and is properly subtracted off in the defini-
tions (2.5) and (2.7). Here we add it back again to
isolate the leading terms at small k which are ap-

proximation dependent.
To evaluate E, (k) at small kK we use (2.6) along
with

NS(K)=(8npdn_3), (2.11a)
where
—iK T, —iK T
dnp=123 (e i—(e 7)) (2.11b)

Here T} is the position operator for the jth particle.
For a finite system (2.11a) can simply be expanded
in a power series at small k. Therefore,

S(k)—>k-(dd)k, (2.12)
where

d=3(r;— ()=

J

[d*r T [n()—n (D]

(2.13)

is the first moment of the density operator measured
from the center of charge. Since only the spherical
average enters the final result we replace the right-
hand side of (2.12) by 7k*(d?) and use (2.6), ob-

taining

2me’N

p (k) Exc(k)+_k'2_“ ‘=(e2/31r)«d2»k2 )

(2.14)

where (d?)) = f dA{d?). The quantity {d?)) is
related to the exact polarizability, specifically

(@) =(3/me?) [~ 0o,

where a,(w) is the dissipative part of the dipole po-
larizability. This may be expressed as an integral up
the imaginary axis of the analytic polarizability
function in the usual way. Using standard exact re-

sults®3® we have also in the local-density approxima-
tion
2 2
p(k) E}?A(k>+2”%1! =—k—2—fd3rﬁm,,('r’) ,
(. g

(2.15)
where w,(T) is the local-plasma frequency
=(4me?/3r’mk} .
Combining (2.14) and (2.15) clearly implies that
2kpZ <k?/q%,

in agreement with (2.10). Thus it is clear that for
k <g, the quantity 2krz becomes much smaller than
its average value (of ~1 if ¢ <kgr), thus reconfirm-
ing the picture presented in Fig. 1.
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Another case where one can derive an exact result
is when the nonuniformity is produced by a planar
potential [ ¥ (T) depending only on z, for example] of
arbitrary strength applied to a uniform electron
gas. This could represent an interface between
two metals [V(z=ow)#V(z=— )], a surface
[V(iz=w)—>x], or simply an “impurity” of
infinite extent in the x and y directions
[V(z=w)=V(z=—w)]. The derivation is simi-
lar to that of Ref. 4 and the details will be presented
in a planned future paper. The result is that for the
change, 8E, (k) in E, (k) is

P (K)ISE (k)=(4 /8m)[0; — 7 (0, +o_)]k
+0(kY), (2.16)

where A is the cross-sectional area of the material.
Here
4re?

m

a)zi = n(tfw)

are the bulk-plasma frequencies for the densities n at
z =1 w0, respectively, and w; is the frequency (at
long wavelength) of the interface mode

wi=(0% +0%)/2. (2.17)
Equation (2.16) may be interpreted physically in the
same way as the analogous results for a planar sur-
face,* that is, as a shift in zero-point energies. In the
most general case, (2.16) is an exception to (2.10), as
it implies that z « k rather than k2. Nevertheless, it
is still greatly reduced from the finite value of z im-
plied by the dashed curve in Fig. 1(a), and qualita-
tively closer numerically to the solid curve. Notice,
however, that it takes a rather extreme nonuniformi-
ty to produce even this deviation, that is to say, a
nonuniformity which has infinite extent in all three
spatial directions. The interface (w,#w_) and the
surface (w_=0) are of this type. However, a
nonuniformity of infinite extent only in two spatial
directions corresponds to (2.16) with w , =w_. In
this case the quantity in the square brackets in (2.16)
vanishes so that

p(k)SE,.(k)—>O(k?) ,

and so that (2.10) holds.

In summary then we have shown that z < k? at
small k for (a) any finite system, (b) a weak periodic
nonuniformity in an infinite system (and we suspect
any periodic nonuniformity), and (c) a planar nonun-
iformity in an infinite system which does not extend
an infinite distance in the z direction (in a non-
periodic manner). This means that for any finite
nonuniformity, z < k2 as well. For a planar surface
or interface, (2.10) fails, but in a rather innocuous
way for our purposes, z < k.

C. Development of a viable approximation
scheme that is simple enough to apply
in practical situations

Within the context of our single-g approximation
discussed earlier, it is clear from (2.4) or (2.7) that
the criterion for the validity of the local-density ap-
proximation is g <<kp, since €,./€, and Z are each
of order unity by construction. For constructing
this criterion we may clearly use then g of (2.5) since
it is rigorously this g above that determines the lead-
ing correction to the LDA. Then the fractional
correction to the LDA [see (2.4)] is expected to be of
order

¢(r)__ | VkelD) (2.18)
[ke(D)] ' '

5=

As an example, consider the 1s state in Be which has
a mean radius of ~0.41 a.u. At this radius the elec-
tron density n~1.5 a.u. and |Vn(r)|~11 au.
This leads to § ~ 12%. On the other hand, the LDA
for Be gives a total energy which is in error by
~0.3—0.4 Ry depending on the precise form of the
LDA used. However, the exchange-correlation ener-
gy (E,) of Be is around 5 Ry. Therefore,
AE, /E,. ~6—8 %, which is consistent with the &
of ~12% calculated from (2.18) (this comparison is
a reasonable one because most of the absolute error
in the total energy as well as most of E,. comes
from the 1s orbital).

Equation (2.18) thus provides a quantitative esti-
mate of when the LDA is valid. On the one hand, it
is remarkable that one can extrapolate to situations
different from that (a nearly uniform electron gas)
where the equations were derived, but on the other
hand, one should note that (2.18) is less severe by a
numerical factor than criteria often seen in the
literature. We assume it to be valid or on the verge
of being valid for s of consequence in all that fol-
lows. Thus we deal here only with the question of
how to improve things when the LDA is a reason-
able starting point, as it seems to be de facto in a
large number of atoms, molecules, and solids.

The next question is when does the lowest gra-
dient approximation [dashed curve in Fig. 1(a)] pro-
vide a reasonable approximation to the exact correc-
tion to the LDA? The approximation of a single ¢
is of course not exact, but is physically reasonable
and should be thought of more globally than as a
derivative at a point, even though we use (2.5) as a
measure of it. Technically of course, one must con-
sider higher derivatives of the density, especially if
one insists on viewing the density only on a semilo-
cal basis. It is not expected or even physically
reasonable in most cases that these should introduce
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q’s vastly different from (2.5), at least if one is wil-
ling to smooth over rapid charges in the potential as
the Schrodinger equation automatically does. In
any case, higher derivatives would be of no use un-
less one could calculate the next term in the gradient
series, a feat which is currently way out of reach. In
any case we prefer to think of the single-g approxi-
mation, as given by (2.5), as a crude, but nevertheless
physically reasonable, approximation to a truly glo-
bally nonlocal functional rather than as a term in a
“semilocal” expansion of derivatives. It is an ap-
proximation, however, whose error we cannot quan-
tify, except by comparing our results with experi-
ment or with virtually exact numerical solutions in
certain cases.

Assuming now that the single-g approximation is
acceptable, we can then get back to the originally
posed question of when the dashed curve in Fig. 1(a)
is a good approximation. Obviously, one must have
g <<kp, but there are now more k’s with which to
compare g. In particular, one must have g <<k it-
self, or else, as our previous discussion concluded,
the easily calculated dashed curve must be replaced
by the solid curve whose general behavior is known,
but for which exact calculations exist only for very
small k. It is obvious that the area under the two
curves is substantially different unless g is very
small indeed, that is, very much smaller than kgt.
For example, in I g <<kpr/6 was estimated to be
the criterion. This is generally not satisfied in real
systems of interest.

Therefore, one is forced to consider the difference
between the two curves in Fig. 1(a), and in particular
to use the solid one. In particular, it is not a viable
procedure to put ¢—0 in the z(kg,q;k) of Eq. (2.7)
even though g <<kr and the LDA is a reasonable
first approximation. This is of course why attempts
to apply lowest-order a priori gradient expansions
for exchange and correlation to physical systems are
bound to fail, and often even fail to get the right
sign for the correction.

We now are in a position to describe our approxi-
mation procedure for z. It is in a sense crude, but
because it contains what we feel is the correct phys-
ics as described above, we feel it is a viable one; and
we find that it gives a substantial improvement over
the LDA.

The procedure is as follows. First, for k >k,
where k,~gq, we simply set ¢ =0 in z, (kp,q;k).
This procedure is valid for k >>¢q because of our as-
sumption that q2 << k,2~. We are, nevertheless, extra-
polating when k ~q. We make a more extreme ap-
proximation for k <k., that is, we take
z.(kp,q;k)=0 for k <k.. This is correct at k—0
according to Fig. 1 and also according to the exact
results in Sec. IIB. For O0<k <k, this represents

the obvious fact that z.(kp,q;k) <<z.(kfp,0;k), but
of course fails to give its precise value. Indeed, to
do better is probably not possible in our single-g ap-
proximation, because the exact form as a function of
k depends on the type of system (a surface is dif-
ferent from an atom); this is not a failure of univer-
sality but rather just an indication that more g’s are
necessary to describe the system precisely in this re-
gion.
We therefore state our approximation to z, as

z.(kp,q;k)=2z.(kg,0;k)O(k —k.) , (2.19)

where O is the unit step function. This presumably
provides an overestimate of z, for k slightly larger
than k. and an underestimate for k slightly smaller
than k., so that the proper behavior (2.9) can be
mimicked in the simple cutoff approximation by
choosing k. properly. To be consistent with our ear-
ly notation in LM we let k. =6fq, where f is adjust-
able. In LM we gave a short and crude argument
that f 2% was the approximate value to be expected,
that is, k. =q exactly. We still agree with this value
and preliminary tests where f was stepped in incre-
ments of 0.05 led us to choose f =0.15, which is
very close to % More extensive tests revealed that
slightly smaller values of f (such as f~0.13) were
better for surfaces while slightly larger ones (such as
f~0.17) were better for atoms. This is to be ex-
pected because for surfaces a smaller value provides
a mock-up (however crude) of the z « k dependence
at small k£ which is completely wiped out by the cut-
off approximation (2.9). In any case we present our
results here with the same value f =0.15, which we
adopted over two years ago. To summarize them we
take

k.=6fq =3f | Vkp(D)/kp(T) | =f | Vn(F)/n(F)|

. (2.20)
with f=0.15.

In making the approximation (2.19) we have made
a little mistake, in principle, which we have not yet
discussed. The vast difference between the two
curves in Fig. 1(a) at small k occurs from the differ-
ing small-k behaviors of the “fluctuation” contribu-
tion to z as displayed in Eqs. (4.8) and (4.16) of 1.
The quantity z also has two other sections [see (3.53)
of I] which do not have a large small-k contribution
even if ¢—0. The Hartree-Fock—type section has a
section which exactly cancels out the nonanalytic
dependence of z, at small k (z, < | k | ). By subject-
ing the Hartree-Fock—type piece to the cutoff pro-
cedure on the same grounds as the fluctuation term,
we have destroyed the former’s ability to cancel this
dependence (« |k |) in the exchange term. This is
a small error, however, (because it occurs in a small
term which vanishes as k—0 in addition) and we
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neglect it. This presumably leads to an error much
smaller than the step-function cutoff on the much
larger fluctuation terms. To do otherwise leads to
technical problems that are very cumbersome to
handle (involving preserving cancellations of diver-
gences at 2ky as well as finding analytical approxi-
mations to the more complicated expressions that
result). Alternatively, one could put some sort of
cutoff on small k in the exchange term; but this,
aside from questions of principle, leads to cumber-
some expressions. In summary, attempts to elim-
inate this error have been abandoned as not worth
the small improvement they might make.
Thus we approximate

2, (kp,q;k)~z, (kp,0;k) (2.21)

for all g, where z,(kg,0;k) was calculated in Eq.
(3.55) of I and given in the point form by Eq. (9) of
LM:

2kpz, (kp,0;k)= —4xO(1—x)+ +-8(x —-1)

+58(x—1), (2.22)

where x =k /2kp. Since this is independent of g, we
find from (2.9), for exchange only,
7

Z(kp,q)=—7, (2.23)

independent of g and kp. This is just the value from
the lowest-order gradient approximation and agrees
with Sham’s*? calculation. Its kr and g indepen-
dence means that according to (2.1) the exchange
contribution has the scaling property that if all
lengths are increased by a factor of a, then this con-
tribution decreases by a factor of a~!, that is, it is
proportional to e2/a, which is to be expected of ex-
change involving the Coulomb interaction.

Return now to the discussion of z, according to
(2.19). The necessary quantity z.(kp,0;k) has been
calculated in lowest-order RPA by Langreth and
Perdew.>® A similar calculation has been made in
the same approximation by Rasolt and Geldart.’
The results of the calculation by the two groups
agree in their general features but differ in quantita-
tive detail. We believe that this difference is due to
a difference in definition of the wave vector k be-
tween the two groups, as discussed in Ref. 31. The
integrated z.’s agree almost exactly. The arguments
in the present paper are crucially dependent on the
wave vector k being identical to the wave vector in
the structure factor [see Eq. (2.6)]. This correspon-
dence was rigorously maintained in the Langreth-
Perdew calculation and this is what we adopt here.

An important simplifying result is that the in-
tegrated z, has a value very close to 2 almost in-
dependent of density (at least for kz>0.5 a.u.).
This is in agreement with Ma and Brueckner’s value

of 1.976, which corresponds to kr— . In this con-
nection the question of higher-order contributions
within the RPA is still not completely settled.
Langreth and Perdew”® included these terms in
principle but argued that to a good approximation
they cancelled exactly. Rasolt and Geldart?® had
previously also found approximate cancellation, but
it was not complete, and therefore the resulting z,
had a stronger density dependence (although still
rather weak). This would lead to a change which is
perceivable, although slight, in the results which we
present later using the Langreth-Perdew™® expres-
sions (I).

The analytic expressions in I for z.(kg,0;k) are
lengthy and require an additional integration before
the final wave-vector decomposition is obtained.
Therefore, in order to implement (2.19) in a practi-
cal density-functional scheme it was necessary to
have an analytic parametrization of it. We were
guided by the near constancy of z, with density (we
take z, =2 at all densities) in addition to the fact, de-
rived in I, that

,linz 2.(kp,0;k)=4V3 /kgr . (2.24)

Since the dashed curve in Fig. 1(a) appears similar
to an exponential (for k <2kr) we simply tried that
exponential consistent with the above two facts:

2o (kg,0;k)~(4V3 /kgr) exp( —2V 3k /kpr) .
(2.25)

The first try turned out to fit z, reasonably well as a
function of density as illustrated in Fig. 2. For
0.75<k/2kp <0.95 it does not provide a good-
percentage fit to z, alone, but this does not matter
since z, is so small here that z is dominated by z,,
which takes on its largest magnitudes in this region.
It also does not reproduce any of the structure near
k ~2kg. Since this structure only produces a small
change in the total area giving z,, this feature is ac-
tually an improvement over the approximation
(2.19): We only effectively use (2.25) for k <k, <q
(and for the total area which it predicts correctly); if
k is as large as 2k, then g > 2kp, so that the struc-
ture at 2ky in the true z(kg,q;k) is so broad that it
is effectively nonexistent. Thus our parametrization
(2.25) probably rectifies the problems with the origi-
nal approximation (2.19) in the region k ~2kp. In
Figs. 2(a)—2(c) the upper curves marked “integral”
show the area under the z curves. It is clear that if
we use them from the small k& end, no appreciable
errors will be introduced. Therefore, we write the
integral of (2.9) as

k
Z, (kp,q)=2Z,(k,0)— foczc(kp,o;k)dk, (2.26)
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FIG. 2. Contribution Z, to the nonlocal exchange-
correlation energy for g =0 for (a) r,=0.5 and (b) r;=2.0.
The solid curves represent the RPA calculation of I, while
the broken curves are the fit (2.27). The curves marked
“integral” are the areas under the respective z curves mul-
tiplied by 10 and may be used to obtain the error in the in-
tegral in (2.26) due to the fitting procedure.

and take Z.(kp,0)~2 and use (2.25) for z,(kf,0;k),
and find

Z.(kp,q)=2exp(—2V 3k, /kgr) , (2.27)

where the ¢ dependence occurs only through k..
The total Z is given according to (2.23) by

Z(kp,@)=Z.(kp,q)— 5 - (2.28)

Then according to (2.7) and (2.9) the nonlocal (NL)
part of E,. is given by

2
E§L=f~3 J & e (D) PLg (D) PZ (k£ (7),q(T)) .
T

(2.29)
Using (2.27), (2.28), and (2.5) gives
2
ENY =S [ @3 [ Tke(D)]?
o [ k(D))
2V73k 7
X (2 — < ==
L - 9 }

(2.30)

Finally, using (2.20) and restoring » as a variable in-
stead of kr, we find [Eq. (12) of LM]

(2.31)
where
F=b|Vn(D)|/[n(D)]. (2.32)

Taking rydbergs and bohrs to be the units of energy
and length, respectively, the constants a and b are
given by

a=m/[8(37%)*3]=4.287x 1073, (2.33)
b =(9m)/¢f =1.745f =0.2618 , (2.34)

where the final equality incorporates the value
f=0.15. The quantity (ELba ) is the local-density
approximation for E*® in the random-phase approxi-
mation (RPA), for which we have found in all appli-
cations reported here that the von Barth—Hedin**
parametrization is adequate. We emphasize that
since the nonlocal part is based on the RPA, it is not
consistent to use any other approximation than the
RPA for the local part; otherwise, the large cancel-
lation between these terms will be partially lost. We
have discussed this point previously, and will again
later in a planned future paper.

To apply (2.31) to real systems one would general-
ly use the Kohn-Sham? method for which we need
the functional derivative

V¥(T)=8E*°/8n(T) .

This is straightforwardly worked out, and one finds
[Eq. (13) of LM]
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9

where K= Vn (7).

We now estimate the sizes of various terms. Con-
sider the example of the Be atom discussed earlier at
the 1s radius ( ~0.4 bohr); one has

F~0.26(11/1.5)(1.5)"1/6=1.8 .

This gives e F=0.17. Therefore, Z,=2Xx0.17
=0.34 and Z,=-—0.78, leading to Z =—0.44.
Note that the nonlocal correlation energy has been
reduced by more than a factor of 5 so that the nega-
tive nonlocal exchange is dominant. The quantity
|Z8| [see (2.18)] gives an even closer estimate of
the error in the LDA than is present in & alone:
|Z8| ~(0.12)(0.44)~ 5%, which is very close to
the actual error of 6%. We also can repeat the
above estimate for r ~2.6 bohr correspondmg to the
2s orbital. In this case n~0.008, | Vn(F)/n(F)|
~1.2 giving 6=9%, or a value not much different
in fractional terms from that for the ls orbital.
However, from (2.20) we get F=0.72, so that
Z,~098, Z,~—0.78, and so ‘that Z~ +0.20.
Therefore, in this case nonlocal correlation dom-
inates nonlocal exchange, as might be expected.

One would certainly expect from inspecting Fig.
1(a) that our most basic approximation g <<kp
breaks down completely when ¢ =2kr. This occurs
only in the extreme low-density tails of atoms, mole-
cules, or surfaces. For atoms one has
| Va(F)/n(F)| ~1, or somewhat greater in the tail,
so that ¢ =2k corresponds to a density n ~ 107>, or
somewhat greater. This occurs a long way out in
the tail and has no noticeable effect on the energies,
densities, or potentials in the bulk of an atom. How-
ever, out in the tail v*° [Eq. (2.35)] is affected, and
after beginning to increase, as required to simulate
the fact that the attractive force is too weak at large
distances in the LDA, it continues to increase in-
stead of approaching a constant. Although this
asymptotic failure has virtually no effect on any-
thing we would want to calculate, it is troublesome
numerically, and we chose to cut it off following the
method of Herman et al.,’® who applied empirical
potentials of forms similar to (2.35) to atoms.
Hence in all the self-consistent calculations reported
here both the nonlocal contribution to v*® [Eq.
(2.35)] and the nonlocal contribution to E*¢ [Eq.
(2.31)] were multiplied by
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—2e

_r|U=F/2)V-K |2 1F 7F |K*
n 3 6 12 n2
FIF-3RV K] |1 (2.35)
2n | K|
[
exp{ —h[Vn(D)/n(D)P[n (D],

where h =107%. This value of 4 is 1—2 orders of
magnitude smaller than those typically used by Her-
man et al.,’® so that our cutoff occurs at a larger
distance. It was found that starting from this value
h could normally be changed by an order of magni-
tude without affecting the results for energies, eigen-
values, and densities at reasonable distances. Just as
for the potential of Herman et al,, if the external po-
tential is singular, introducing cusps in the density
as occur near atomic nuclei, then these cusps cause a
very weak singularity whose form is to change the
1/r divergence of the “nuclear” Coulomb potential
by ~1%. The fact that v* is large and negative is a
real physical effect, as the electronic densities near
atomic nuclei are too low in the LDA. Of course,
the persistence of this v*° to remain a constant frac-
tion of the nuclear potential all the way to the nu-
cleus is spurious and is a result of the failure of the
single-g approximation with g represented by (2.5).
Fortunately, the effect of this inaccuracy seems al-
most imperceptible both because it is so weak and
because the fraction of the electron number in the
spurious potential region is small.

Finally, we conclude this section by a more accu-
rate estimate for the validity of the gradient expan-
sion than was possible hitherto. This is easily done,
since the gradient approximation is nearly exactly
given by (2.31) with F =0. The fractional correc-
tion to the gradient approximation is, therefore
(1—e™F) : , which could be replaced by ~F if
this is to be much less than 1. This may be written
altematlvely using (2.33), (2.27), and (2.5) as (assum-

ing f~¢)
0.43|Vn(¥)| _ 69(1) _
[n()])® kep(T)

(2.36)

where the leftmost equality assumes atomic units.
The simple gradient expansion is expected to be
valid when the inequality in (2.36) is satisfied. In
terms of g (or k.) this is what was derived in Appen-
dix C of I, that is, the middle equality in (2.36) was
obtained correctly from the explicit calculation
there. On the other hand, g was overestimated to be
~ | Vn(F)| /n(T), while our present estimate which
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has been verified by trials in many systems gives
g ~f[| Vn(P)| /n(F)]~ | Vn(P)| /6n(F) .

Therefore, the first and third quantities on the left
of the inequality in (2.36) differ from I, being less
severe by a factor of 6. (In LM the criteria
ker&>>36 is also too severe by a factor of 6.) We
note also that the criterion (2.18) for the LDA is
good.

2

Vn(T)

2 n
kp(T)n(T)

b~

= (2.37)
ki

<«<1

is also less severe than we had previously supposed,
so that the situation where (2.37) is well satisfied
and (2.36) is badly violated is still a most prevalent
one. For example evaluating (2.36) at the s radius
in Be gives | Vn(T)/kpp(T)n(T) | ~2.5, while as be-
fore (2.37) gives 6~0.12. Similarly, evaluating
(2.36) at the 2s radius in Be gives
| Va(T)/kgp(T)n(T) | ~1.2, while as before (2.36)
gives 0.09.

Unfortunately, we are unable to derive the precise
criteria for our new expression (2.31) to be valid. It
was designed to get around the poorly satisfied cri-
terion (2.36) and this it does do. Given that a single
q is reasonable or effectively so, then we believe the
basic physics of our approximation to be valid when
q <<2kp, which is a criterion similar to (2.37).
However, in addition we have made the additional
approximation of replacing a smooth cutoff with a
sharp one and using the gradient expansion all the
way down to the cutoff, and we know of no way of
quantifying the error in this procedure a priori in
the absence of a calculation of the exact curve over
the whole range for realistic physical situations. On
the other hand, we will access the error a posteriori
in the tests in the following sections, and we defer
the remainder of this discussion until then.
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III. APPLICATIONS OF THE METHOD

A. Ground-state energies of atoms

Here we compare self-consistent nonrelativistic
calculations using (2.21) and (2.25) with the “exact”
nonrelativistic results for the spinless atoms through
argon. The “exact” results were determined by the
same method used recently by Perdew and Zunger!’
based on the work of Veillard and Clementi*® and
consisted of subtracting the Hartree-Fock relativistic
correction®’ from the experimental ionization poten-
tial sum,’® with no attempt to make quantum-
electrodynamic (QED) corrections. The error in the
ordinary relativistic correction may be estimated by
comparing the results of Ref. 37 with full Dirac-
Fock calculations,*® while Ref. 37 lists values for the
latter correction. In any case the error is less than
0.01 Ry, except for Mg and Ar where we estimate
the respective errors as +0.02 and +0.1 Ry. Even
these are unimportant for the comparisons made in
this section, but later on when we consider a more
accurate functional, these errors become significant.
Of course the “exact” results obtained in this way
also agree with numerical (multiparameter variation-
al and configuration interaction) calculations for the
lightest atoms to 0.01 Ry or better. The latter calcu-
lations are of course also “exact” by virtue of their
size.

Our results are displayed in Table I, which for the
most part has already been published,’ but to less ac-
curacy. As before, we show the results of calcula-
tions based on several other local and nonlocal ap-
proximations as well. All the local approximations
give energies too high (magnitude too low). The
values in the row marked ‘“local (Ceperley)” were
calculated assuming that the approximate analytic
form given in Ceperley’s paper® to fit his data was
valid at all densities. Vosko et al.** and Perdew and

TABLE I. Atomic ground-state energies in various approximations (Ry).

He Be Ne Mg Ar
Local (Ceperly)? —5.67 —28.88 —256.39 —398.17 —1051.70
Local (RPA)® —5.74 —29.03 —256.82 —398.69 —1053.51
Hartree-Fock® —5.72 —29.15 —257.09 —399.23 —1053.64
Present nonlocal (f=0.15) —5.80 —29.21 —257.36 —399.36 —1053.66
Present nonlocal (f=0.20) —5.84 —29.28 —257.54 —399.57 —1053.98
Exactd —5.81 —29.33 —257.84 —400.08 —1055.08
Self-interaction corrected® —5.84 —29.39 —258.55 —401.06 —1056.84

2Reference 39.

®von Barth—Hedin parametrization, Ref. 34.
‘Reference 44.

9See text.

‘Reference 17.
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Zunger!” have suggested procedures for matching
Ceperley’s, or preferably still, Ceperley and Adler’s*!
results at small r; to the exact power-series expan-
sion, but these improvements do not have much af-
fect on the calculations made here, giving only
slightly lower energies. Similarly, in the column
marked “local (RPA),” we have found in this spin-
independent calculation that the von Barth—Hedin**
parametrization was adequate, and all RPA num-
bers in this paper have been calculated using this
parametrization, and although we have heeded the
warning of Vosko et al.,* it has been found*? that
in this case the error involved is negligible. We have
also tried other local approximations*>!® and find
that these are generally bracketed by the given
Ceperley and RPA values. Also included in the
table are the Hartree-Fock* values, which almost al-
ways represent an improvement over any local ap-
proximation. We have also reproduced the results
of the self-interaction-corrected (SIC) calculation of
Perdew and Zunger,!” which generally exaggerates
the nonlocal correction, but nevertheless gives values
closer to the exact energies than the Hartree-Fock
method gives. The energies were calculated by our
present nonlocal method both with the value of
f=0.15 [Eq. (2.34)], which is the value we have
adopted for the bulk of our calculations, and for
f=0.20, for the purposes of comparison. General-
ly, these calculations represent a substantial im-
provement over all local approximations, as well as
over the Hartree-Fock approximation, and are for
the most part even better than the SIC calculations
of Perdew and collaborators.'> !’

We believe that it is highly inappropriate to adjust
f to obtain a best fit for a particular calculation, at
least if this value differs much from 0.15. Using
this latter value, which is physically based both for
surfaces and atomic orbitals, we have found substan-
tial improvements in all physical systems we have

tried it on. Increasing f in order to get, for example,
a better fit to the total energy of the neon atom, not
only would make the helium results worse, but also
begins to distort the predicted densities in the
valence shells in an unphysical way; it also makes
the results for surface energies worse. We hope to
give convincing evidence later in this paper that the
main source of error in our nonlocal approximation,
at least so far as total energies of atoms goes, has
nothing to do with the sharp cutoff [Eq. (2.19)] or
the method of determining it [i.e., Eq. (2.20) and the
choice of f], but rather with our approximation to
the exchange. To try to correct this latter error ar-
tificially by adjusting f is not only physically in-
correct, but also bound to be unsuccessful, at least
when a variety of properties are considered.

B. Removal energies in atoms

Here we summarize our results for the removal
energies of outer atomic electrons. The calculations
were done by expressing these energies as differences
between the ground-state energies of two different
systems. Because our approximations here apply
only to the case of no spin density, we calculate
these energies only for the removal of complete an-
gular momentum shells.

The results of our nonrelativistic calculations are
given in Table II. These are essentially the same
numbers as contained in LM, except that we have
added LDA calculations according to the Ceperley
approximation. The Cu* and Zn?* results were
omitted because of our fear that relativistic effects
could influence the results for removing ten elec-
trons from ions this heavy and because the
presumed inaccuracies in the experimental results
preclude a precise comparison anyway.

As opposed to the case for the ground-state ener-
gy, the addition of beyond-RPA corrections im-
proves the removal energies in the LDA, as ap-

TABLE II. Removal energies of outer shells of electrons in atoms (Ry).

Local® Local® Nonlocal®
Atom Subshell (Ceperley) (RPA) (present) Experiment?
He Is 5.67 5.74 5.80 5.81
Be 2s 2.00 2.07 2.00 2.02
Mg 3s 1.69 1.76 1.66 1.67
Ca 4s 1.35 1.41 1.31 1.32
Zn 4s 2.08 2.14 2.04 2.01
Ne 2p 37.46 37.71 37.44 37.28
Ar 3p 22.76 22.99 22.82 22.78

2Reference 39.

®von Barth—Hedin parametrization, Ref. 34.

°f =0.15.
dReference 38.
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parently first noticed by Vosko et al.** As will be
discussed in a planned future paper, we believe this
improvement is due at least partially to a spurious
self-interaction effect which is present in the
beyond-RPA corrections. In any case our nonlocal
functional gives an improvement over either local
approximation and also correctly predicts a positive
correction for He and a negative correction for the
other elements when referred to the RPA. As for
sensitivity to f, we find that increasing f from 0.15
to 0.16 increases the removal energy per electron
generally less than 2 or 3 mRy.

C. Surface energies

As mentioned in LM, we have also calculated the
exchange-correlation contribution to the surface en-
ergies for a planar surface. These were not self-
consistent calculations, and we have used the linear
potential model* with yp=3.5 to simulate a jellium
surface with a bulk r,=2.07, and yp=2 for r;=4.
Unfortunately, there exist no exact results with
which to compare. We could not use the exact re-
sults*® for the infinite barrier model (yp=0) be-
cause, as yp becomes small, the criterion which we
always assume, g << 2k, is badly violated, as the re-
cent work of Sahni et al.*’ clearly shows. Thus we
were forced to compare with other approximate cal-
culations, and since the average slope model>® is
really an approximation to which one supposes our
present cutoff approximation represents an addition-
al approximation, we compare with average slope re-
sults. This is shown in Table III, where the sensi-
tivity to f is also indicated. The results are more
sensitive to f than our atomic results (except for He)
because nonlocal correlation and nonlocal exchange
are in this case both large in magnitude and nearly
cancelling, so that a small change in the correlation
component can make a relatively large fractional
change in the total. This is especially true as yg is
decreased.

In any case the value f=0.15 which we have
adopted yields qualitatively correct predictions.
Note especially that the sign of the nonlocal com-
ponent is positive, while for ground states of atoms it
is negative, and that our approximation correctly
predicts this feature.

D. Densities of heliumlike atomic species
and beryllium

The species of the He isoelectronic series are sim-
ple enough to be solved as accurately as anyone
could conceivably wish by multiparameter variation-
al techniques, for the energy E as well as the elec-
tronic density n(r). In this single-orbital case n(T)
can be reasonably characterized by its moments

(r™)= fd3rr"'n(f’)

and by its value at the nucleus n(0). We compare
the exact*® values with our nonlocal approximation
and with various other approximations in Tables
IV(a), IV(b), and IV(c) for He, Li*, and Be’*. As
opposed to the energy, the densities show virtually
no sensitivity to which a local approximation is
used; the values in the table were calculated with the
von Barth—Hedin** parametrization. Nor are the
nonlocal values very sensitive to f. The ones shown
were calculated with f=0.15.

We see that the present nonlocal method gives
substantial improvements over the LDA in every
case tried, although for most cases our results are
not superior to the Hartree-Fock results, especially
as the ionization state increases and the Hartree-
Fock method becomes more nearly exact.

The case of the beryllium atom is more interesting
because it has both valence and core electrons. The
configuration-interaction calculations*® for the den-
sity seem fairly well converged for the density in
this atom and we take them to be exact.

In Fig. 3 we compare our results for the radial
density 47r2n(r) in various approximations with the
exact results. Since the LDA gives densities which
are quite close to the exact ones, we always plot the
difference between the density in a given approxima-
tion with that of the LDA with the von
Barth—Hedin parametrization of the RPA.

First consider the Hartree-Fock (HF) approxima-
tion as a nonlocal correction to the LDA. In the
tightly bound region of the 1s orbital where ex-
change dominates correlation we expect a priori the
HF approximation to be valid and the figure con-
firms this. Similarly, in the region between the orbi-
tals the density is lowered due to exchange repul-
sion; the figure shows that the HF approximation

TABLE III. The nonlocal exchange-correlation component of surface energies in various

approximation (ergs/cm?).

Average® Present Present Present

7 slope f=0.12 f=0.15 f=0.17
2.07 117 140 85 57
4.00 22 19 14

2References 5 and 6.
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TABLE IV. Density moments (a.u.) for (a) He, in (b) Li*, and (c) Be** in various approxi-
mations, and ground-state energy (Ry). n(0) is the density at the origin, and
(rm)= fd’r n(THrm.
Local HF Present Exact
(a)
n(0) 3.53 3.60 3.61 3.62
(r=2) 11.7 12.0 11.9 12.0
(r=1 3.31 3.37 3.35 3.38
(r) 1.92 1.85 1.88 1.86
(r?) 2.56 2.37 2.44 2.39
—E 5.67 5.73 5.80 5.81
(b)
n(0) 13.43 13.67 13.68 13.70
(r-2) 29.3 29.8 29.7 29.9
(r=1) 5.30 5.38 5.35 5.38
(r) 1.169 1.145 1.155 1.146
(r?) 0.936 0.891 0.909 0.893
—E 14.36 14.47 14.51 14.56
(c)
n(0) 339 34.4 34.4 34.4
(r=%) 54.8 55.7 55.5 55.7
(r=1 7.30 7.37 7.35 7.38
(r) 0.842 0.828 0.834 0.829
(r?) 0.481 0.464 0.471 0.464
—E 26.96 27.22 27.21 27.31
r/a, exaggerates this; in reality, this effect is partially
0092 0J5 0.25 04l 0f8 1j2 185 305 502 screened out as a result of correlation. Finally, in
oL I . '::ESENT ] the region of the 2s state, where correlation is im-
- L /,/// N\ ———= EXACT _ portant, one sees that the HF approximation is
§ at Al much worse than the LDA and even gets the sign of
s = 2 the correction wrong through most of this region.
£ 207 Now turning to our present nonlocal correction
N o_ we see that it correctly predicts a depletion in densi-
<§ L ty between the orbitals, and this depletion is correct-
Q -2 ly predicted to be weaker than that of the HF ap-
B proximation, although displaced to slightly larger
“C L radius than it should be. The electrons from this
-1

In(4r/a)

FIG. 3. Radial density different (X 100) between the
prediction of a given theory and the local-density approxi-
mation (in RPA). The solid curve is the present approxi-
mation calculated from Eq. (2.35), while the broken line is
the Hartree-Fock approximation. The ‘“exchange-only”
densities of Sec. IV are virtually indistinguishable from
the Hartree-Fock ones. The dashed line labeled “exact” is
the configuration interaction calculation of Ref. 49.

depleted region must appear in the 1s or 2s regions,
and the present scheme, although correctly predict-
ing a rise in both regions, slightly miscalculates the
balance, with too small an increase in the ls region
and too large an increase in the 2s region. Neverthe-
less, all the qualitative corrections to the LDA are
given correctly, including the sign of the correction
in the outer region which the HF approximation
gets wrong. We argue, therefore, that the present
functional does include most of the important phys-
ics.
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For comparison, we show in Fig. 4 the density
difference between a given approximation and the
RPA in the local-density approximation, using vari-
ous commonly used correlation-energy expressions.
Notice that all of these give only very small correc-
tions to the density, much smaller than our nonlocal
theory and much smaller than needed. Notice also
that they all predict a correction in the wrong direc-
tion. This latter fact may be a true prediction
within the LDA, that is, beyond-RPA effects within
the LDA may indeed make the density worse. On
the other hand, one cannot entirely rule out the hy-
pothesis that the electron-gas calculations incorrect-
ly predict the density dependence of the correlation
energy in the density region crucial to these calcula-
tions. In any case it should be absolutely clear that
no local approximation can give the correct atomic
densities.

Be
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FIG. 4. Radial densities in Be implied by local vs non-
local approximations. The solid curve is our nonlocal ap-
proximation as shown in Fig. 3. As before, all curves are
subtracted from the value in the von Barth—Hedin (Ref.
34) parmetrizations of the RPA in the LDA, which is
plotted using the right vertical scale at the bottom of the
figure. The broken line represents the LDA in the
Gunnarsson-Lundqvist approximation (Ref. 18) while the
dashed line is the Hedin-Lundqvist approximation (Ref.
43).

E. Eigenvalues

The eigenvalues of the Kohn-Sham Schrdodinger
equations, except in certain special cases, do not
have a known physical meaning. It is also clear that
the difference (i.e., subtract one from another) be-
tween these eigenvalues must be given very accurate-
ly by the LDA, and still more accurately by our
nonlocal correction, relative to the eigenvalues of the
exact Kohn-Sham potential. This follows because
the LDA densities are close to the exact ones and
our nonlocal ones are much closer. Thus the exact
Kohn-Sham potential could differ substantially
from ours only by a constant additive term or in a
region where the density is virtually zero (large r), or
a combination of the two. The above changes in the
potential affect only the absolute level of the eigen-
values and not the differences between them. The
above conclusion was first obtained by Perdew and
Norman?* by a different argument: They made a
direct comparison of the eigenvalues in the LDA for
exchange only with the exact Kohn-Sham eigen-
values for exchange only.

Therefore, it is not surprising that the corrections
to the LDA eigenvalue differences which we find
are small. For example, for Be we find (nonlocal)
| €3 —€1| =7.34 Ry, while in LDA (RPA) this
difference is 7.30 Ry. On the other hand, the
highest eigenvalue (for an atom) in an exact Kohn-
Sham theory presumably does have direct physical
meaning since it controls the asymptotic density,
and should be at least an approximation to a re-
moval energy.”” On the other hand, the top LDA
eigenvalues are not equal to approximate ionization
energies, and our nonlocal correction does not im-
prove the situation. This is probably because our as-
sumption g <<k fails drastically as the density van-
ishes at large r, as discussed earlier. The exact
Kohn-Sham potential is probably similar to ours but
is shifted by a constant over the region where the
density has a non-negligible magnitude and varies as
—e?/r way outside this region. For reference, in Be
the 2s eigenvalue has a magnitude —0.44 Ry in the
LDA (RPA) and —0.43 Ry in our nonlocal approxi-
mation, while the experimental ionization energy is
0.69 Ry.

F. The potential

The properties of our self-consistent exchange-
correlation potential are discussed here. In Fig. 5 we
show for Be the difference between the self-
consistent potentials for our nonlocal scheme
(f=0.15) and the LDA multiplied by the radius r.
We denote this by rdv,.. Thus the plot gives some
idea of the fractional change in potential associated
with nonlocal effects.
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FIG. 5. Difference in the total self-consistent Be poten-
tial dv,., with and without the nonlocal contribution of
Eq. (2.35), multiplied by r.

Before discussing the large peak, we mention
some less prominent features in rdv,.. First, it be-
comes negative for small r. This is correct because
the LDA has too low a density in this region and
more electrons need to be pulled in. On the other
hand, the intercept at r=0 should rigorously be
zero; the fact that the above negativity persists all
the way to r =0 (i.e., a finite intercept) is a flaw (but
a numerically almost negligible flaw) in our method
which we have discussed earlier. At large r the
curve rises slowly; this happens off the r scale of
Fig. 4, but may be seen in Fig. 5. This tightens the
density at large r as required. However, the rise be-
comes more rapid as the density vanishes; this
represents a breakdown of our assumption g <<kp
as discussed earlier.

The most prominent feature is the large positive
peak near r~1 a.u. This is at the interface region
between where the density is dominated by 1s states
and where it is dominated by 2s states. Such peaks
in v,, occurring between shells were evident (al-
though greatly exaggerated) in the earlier work of
Herman et al.’> who used an empirical v, of a type
similar to (2.35); more importantly such peaks are
also evident in the work of Talman and collabora-
tors,?>* who provide an exact implementation of
what we like to call “exchange only”; these peaks
are also evident in the preliminary results of von
Barth,’> who has provided an exact calculation of
the Kohn-Sham v,. corresponding to the Hartree-
Fock approximation. A discussion of these calcula-
tions is most appropriately postponed until the next
section. The important point here is that the peak is

a real exchange effect. In the Hartree-Fock—type
schemes one uses a nonlocal potential, or alternately
and equivalently, a different local potential for each
orbital. In the Kohn-Sham scheme, an equally valid
formulation of the problem, the effect of the nonlo-
cal potential of the former scheme is produced by a
spike between each of the orbitals. In our case the
spike presumably represents the ‘“‘exchange repul-
sion” (screened in this case by correlation effects) be-
tween electrons of like spin. It is this spike that
causes the depletion in density in the interorbital re-
gion discussed in the last subsection.

In Fig. 6 we show the exchange-correlation poten-
tial Be as computed in the LDA and our nonlocal
approximation [Eq. (2.35)], as well as the exact re-
sults for exchange only which we calculated from
the data given in Ref. 23. The prominent feature of
the two nonlocal results is the peak which occurs at
the same position and has roughly the same strength
and shape both for our approximation and for exact
exchange. This gives clear and unambiguous confir-
mation to our conjecture earlier in this section that
the peak was a true exchange effect. It also provides
striking evidence that our nonlocal functional is giv-
ing a good approximation to physical reality.

In fact, the largest difference between our v, and
the exact one for exchange only would be removed if
a constant of ~0.2 Ry were subtracted from our po-
tential. This is just about the difference in highest
eigenvalues between the two approximations. As

-1.0F
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FIG. 6. Total self-consistent exchange-correlation po-
tential in Be in the cusplike region. The solid curve is our
approximation of Eq. (2.35), the dashed curve is the
local-density approximation (Ref. 34) while the broken
curve represents the “exchange-only” calculation, using
the potential of Ref. 23.
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discussed earlier, our potential is in error by an addi-
tive constant in the region where the density is non-
vanishing (and by an undetermined nonconstant
amount in the very-large-r region where the density
is, for all practical purposes, zero). Correcting the
constant error of course has no affect on any calcu-
lated property except the level of all eigenvalues.
The nonconstant error in the region of asymptotical-
ly vanishing density affects only the calculation of
this asymptotically vanishing density; it affects only
negligibly the calculated density in other regions, the
total energy, and the eigenvalues of occupied states.

G. Application to solids

We have not attempted to apply our method to
solids (except for our jellium surface case). Howev-
er, our success with atoms suggests that the use of
our functional would substantially improve the
LDA results for ground-state properties of solids
such as cohesive energy, lattice constant, and elastic
constants. Indeed preliminary calculations by von
Barth et al.° show substantial improvements for
the above quantities in crystalline bulk silicon.

It has been argued®! that the eigenvalues of the
exact Kohn-Sham potential should give the
minimum (possibly indirect) gap correctly in semi-
conductors. The LDA calculation of this gap is
often in serious error. Will our nonlocal potential
improve the situation? The problem, in principle,
with this sort of application is that our method only
gives correctly the eigenvalue differences for occu-
pied states; there is no guarantee that the difference
in eigenvalue between an unoccupied state and an
occupied state be given correctly (i.e., equal to what
the exact Kohn-Sham potential would give) because
our potential is in error in regions of very low densi-
ty, and the unoccupied states of interest may well
have non-negligible components in these regions (the
LDA has the same defect). Therefore, a
traditional-style calculation of semiconductor
bandstructure using our scheme may well fail to
show any improvement over the LDA; indeed, this
is what is indicated by the preliminary result of von
Barth et al.™ for silicon.

A possible solution to this defect in our scheme
would be to do the calculation with the states above
the gap occupied. This would presumably remove
the error in our potential for all states which deter-
mine the gap. On the other hand, it would no longer
be a calculation of a pure semiconductor, but rather
one ‘“highly doped” with a uniform positive back-
ground of charge. Whether this fictitious system
with a good exchange-correlation potential has a gap
more representative of a real semiconductor than the
real semiconductor with a bad exchange-correlation

potential is a question which we cannot answer, but
by varying the “doping” one could probably get a
good indication.

IV. EXCHANGE AND CORRELATION
SEPARATELY

A. Motivation and definitions

The reason for attempting to separate exchange
and correlation is, of course, that the latter may be
calculated exactly, although often not trivially, in
many cases. Applications of this sort to atoms have
been made for example by Wilk,*? and more recently
by von Barth?® using the functional of the present
paper.

There are two obvious ways to define what one
means by the inclusion only of exchange and the ex-
clusion of correlation, which coincide in the case of
a uniform system. Since their difference has led to
confusion in the past, we will discuss them carefully.
Consider a system of N electrons with a nondegen-
erate  ground state and  density n,(T):
N= f d’r ng(t). We might generate an approxi-
mation to this density, n(T), from the ground state
of a noninteracting system with a local potential
v (r), that is,

n(F)= (P, | n(F) ¥ ) , @.1)

where |y, ) is the ground state (assumed nondegen-
erate) of

N

Hy= 3 [P//2m +u ()] . (4.2)
i=1

We assume n(T) to be such that this is possible. In

the cases considered here of surfaces and closed-

shell atoms, the problem raised by Lieb*> and by

Levy>* never arises. By the exchange energy for the

density n(r’) here we mean

E,=(¢ |V |t¢)—Ecou » 4.3)

where E,, is the Coulomb energy

2 —- -
e 3. 3., n(Dn(T”)
ECoul“z fdrdr———————lr_r,l )
and
?
1 e
V=22_"" (4.4)
ij i

i

Note that our definition (4.3) differs from the usual
one, because | ) is not a HF eigenfunction. If v
is chosen properly, then n(r)=ng(r). For the Ham-
iltonian of the problem to be solved,

H= Z[P,-z/2m+v(r,-)]+V, 4.5)

1
one minimizes {¢; | H |¢;) according to Hohen-
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berg and Kohn,> with respect to vy (r) [or with
respect to n(r), which is the same thing]. Requiring
(¢ |H |¥.) to be a local extremum leads to the
set of equations derived by Talman and Shadwick,?!
which are equivalent to solving the Kohn-Sham
equations with

v,o(F) =0, (F)=8E, /6n(T) , (4.6)

where E, is given by (4.3). This gives what we call
the “exchange-only” approximation, and we label
the approximate value of ground-state total energy
E,; obtained this way as E, and the approximate
ground-state density n,(T") [corresponding to vy =v,
according to (4.6)] as ng, (T).

We emphasize that this is not the Hartree-Fock
(HF) approximation, and E, is not, in principle,
equal to the conventional exchange energy of HF
theory. However, at least for atoms the differences
are very small indeed. This was pointed out by the
original developers?! ~23 of the method, and more re-
cently by Sahni, Gruenebaum, and Perdew*”>® who
were apparently among the first to recognize the im-
portance of the earlier work?’ =2 as a density-
functional realization of exchange. In addition, we
have calculated the density of the Be atom, which
we study extensively in this paper, using the data of
Ref. 23; we found it to be virtually indistinguishable
from the HF density, at least in plots on the scale of
Fig. 3. The ground-state energy is also identical to
+0.01 Ry.

The second obvious method for defining what one
means by exchange is the more conventional or
Hartree-Fock method. In referring to it we will use
the subscript F for Fock instead of the subscript x
for exchange. This approximation is defined simi-
larly, except the local potential v, (T) is replaced by
a nonlocal potential vy (T) in Eq. (4.2) so that
| ¥, ) is replaced by | ¥ni ), the ground state corre-
sponding to a nonlocal potential. However, the fact
that n(r) is given by the analog of (4.1) is now not
sufficient to define vyr, as presumably many such
potentials give a particular density. For the ground
state the ambiguity is resolved in the usual way, by
minimizing (¢¥ni | H | ¥n) [see Eq. (4.5)], thus de-
fining vnp, the ground-state energy E,p, and the
ground-state density ngr(T). To make a density-
functional theory, one needs (in principle) to alter
the ground-state densities. One would presumably
do this by using a value of v(T) in (4.5), which no
longer corresponds to the physical problem to be
solved, but which has the desired n(T) correspond-
ing to its HF ground state. Then |¥np) and vnp
would be known and the exchange energy would be
defined as a functional of density, analogously to
(4.3) as

Er=(¢n| V| ¥nL) —Ecou+ <¢NL ‘/’NL)

> P}/2m

—<wL ng/Zm ¢L>. 4.7

The Kohn-Sham potential is thus given by

Vyo(T)=vp(T)=08Er/6n(T7) . 4.8)
Of course, taking

UL(?)=U(?)+UC0‘,](—I?)+UF(?)

in (4.2) gives a | ¢ ) which is not the conventional
HF wave function, but which gives Er (not E,)
when substituted into (4.3) and also gives the
Hartree-Fock density exactly. A density-functional
implementation of the Hartree-Fock approximation
has recently been developed by von Barth.>

In making a separation between exchange and
correlation, one must decide which of the above def-
initions to use. In a variational sense the Hartree-
Fock definition gives slightly better energies than
the definition we described first and will call “ex-
change only.” Using a nonlocal potential allows

more variational freedom, giving lower total ener-
gies and presumably better densities. However, we

have seen that this difference is very, very slight,
and indeed much smaller than the scale of differ-
ences between HF approximations, various local and
nonlocal approximations, and the exact results.

Of course, the exchange energy E, (exchange
only) is a simpler quantity than the Fock energy Er
(Hartree-Fock). As pointed out in Ref. (47) the
former contains only terms of order e?, because the
| ¥, )’s of (4.3) for a given n(r) are functions only
of that n(r) through (4.1) and (4.2), with the single
factor of e? coming through V [Eq. (4.4)]. However,
in order to determine for HF exchange which of the
many possible vy ’s that give the density n(r) one
should use, a separate minimization must be done
for each n(T), so that |y ) is explicitly dependent
on e2. Therefore, Er [Eq. (4.7)] has terms to all or-
ders in the electron-electron interaction.

What is worse from our point of view, however, is
that the gradient series for the Fock exchange term,
Eq. (4.7), does not exist,’’ that is to say, it has
small-k divergences, and though these are canceled
by corresponding terms of the same order in e?
when correlation is taken into account, it would
cause additional problems for us to make an
exchange-correlation separation based on Fock ex-
change. The second-order gradient coefficient for
“exchange only” [Eq. (4.3)] not only exists but is
given exactly by Sham’s original calculation.’? This
is in effect proved in I, where the wave-vector
analysis of this coefficient was derived under the as-
sumption that the exchange potential v, was local.
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The relationship of this coefficient to the work of
Talman et al.?!~2 was apparently first realized by
Sahni, Gruenebaum, and Perdew.*” In the present
paper the term exchange will always mean the ap-
proximation based on Egs. (4.1)—(4.6), and not on
Hartree-Fock exchange. Similarly, correlation ener-
gy will refer to the difference E,.—E,. This will
not prevent us from making numerical comparisons
with calculations based on HF however, because we
know from the previous works of others,2! =347 a5
well as from our own calculations, that the differ-
ence between the two approximations is numerically
negligible, at least for ground states of the atoms
with which we shall deal (although obviously not for
larger, nearly uniform systems).

B. Method

The problem with achieving a separation of ex-
change and correlation is that the local-density ap-
proximation, which generally makes a more impor-
tant contribution to E,. than the nonlocal correc-
tions, does not make this separation accurately.
This is most obviously true for atoms from the
well-known fact that the LDA often gives a correla-
tion energy which is several hundred percent off,
even though E,. is given fairly accurately.

The reason for this inaccurate separation is obvi-
ous and well appreciated by many, and stems from
the long range of the Coulomb interaction which ap-
pears unscreened in either exchange or correlation
alone. For our purposes it is best to express the
problem in terms of a wave-vector decomposition,
which leads us to the behavior of the small-k struc-
ture factor S for the uniform system [see

(2.6)—(2.8)]. The latter has the rigorous small-k lim-
1433

S(k)—k?/2mo, , (4.9)

where w, is the plasma frequency. On the other
hand, for exchange only (which is the same as HF
exchange for a uniform system), one has

Sy(k)— 3k /4kp . (4.10)
The contribution to the exchange energy AE, corre-
sponding to (4.10) is
37NZ 1

k)= .
AE, (k) 2k, k

(4.11)

Similarly, since the correlation energy
E . (k)=E,(k)—E,(k),

there is a small-k contribution E, to the correlation
energy
37N? 1

2%, e (4.12)

AE, (k)= —

so as to cancel (4.11) in the sum E,.. Thus both ex-
change and correlation energies separately have a
large and nonanalytic contribution at small k. They
are both real and in fact (4.12) corresponds to the
modification of the energy due to the emission and
reabsorption of a virtual plasmon; however, this
latter effect is rigorously and exactly canceled at
small k by the exchange energy (4.11). For a non-
uniform system in the LDA these contributions be-
come

AE, (k)= —AE (k)=a/k (4.13)
where
2
e —
a=—— [ d*rkpe(D] . (4.14)

For an infinite system covering all of space the
existence of large contributions at small k presents
no problem, and if the system has some spacial
nonuniformity, then to a good approximation the
exchange energy is given by the LDA for exchange
energy plus the nonlocal exchange contribution of
(2.30) (i.e., set kpr=0, so that only the —% term
contributes). On the other hand, for a finite system,
or a system whose states under consideration are lo-
calized within a certain region, of linear size /, it is
clear that there must exist a k;, ~ 1// such that for
k <kqin the structure factor is effectively zero, or
small. In the LDA for exchange and correlation to-
gether the structure factor S(k) is automatically
small [Eq. (4.9)]. On the other hand, for exchange
only, S, [Eq. (4.10)] makes a more substantial con-
tribution at small k; it is obvious that any contribu-
tion S (k) in the form (4.10) for k <k, is com-
pletely spurious. It is also an error that cannot be
corrected by any finite-order gradient series. The
quantity kg, represents a new ¢ (and perhaps a
large number of new ¢’s) in the sense of Sec. II. For
exchange and correlation together, screening ensures
that all lengths longer than the Fermi-Thomas
length are irrelevant, but for exchange only this is
no longer true, so that the single-q assumption
breaks down.

We can correct this error in a crude, zeroth-order
manner, but one which we find gives very good nu-
merical results. The approximation we propose is
simply to subtract off the spurious contribution
coming from the region k < kp;,, where S (k) is ef-
fectively zero, approximating the S,(k) in the sub-
traction term by its small-k form of (4.10). There-
fore, E, is replaced by

E.—~E, — fo

kmin

AE, (k)p(k)dk , (4.15)
which on using (4.13) becomes

E,— E,—akZ,, /47" . (4.16)
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Obviously, the correlation energy must be modified
in a complementary way,

E,—E.+akZ,, /4% . 4.17)

The question now is what is k;,? It is obviously
an extremely nonlocal functional of the density. We
speculate that it is a sort of inverse localization
length, which is of course different for different
types of siates in the same system. It would seem
obvious that for an infinite system it is zero, at least
for regions where the density is dominated by ex-
tended free-electron-like states. On the other hand,
for single atoms, or for regions in larger systems
dominated by single localized atomic orbitals, it is
difficult to see how kg, could be much different
from the k. of (2.20) and we will assume that
Kk min=kK. exactly. Then using (2.20) in (4.16) one

ts. _
8 By Eo—18af? [ 3 [Tn(PIn(@]*

(4.18)
where a is given by (2.33) and f~0.15. We em-
phasize that although k;, must be a universal func-
tional of n(Tr), the quantity k. can only be a good
measure of it when T is sampling a density distribu-
tion typical of a localized atomiclike state. If we are
correct that k., is the inverse of some sort of local-
ization or quantization length, then as the states be-
come more extended, k., becomes smaller than k..
We do not know how to quantify this, or even for
sure that this somewhat speculative idea is correct,
but we certainly expect (4.17) to apply to densities in
the interior of atoms, whether or not the atom is iso-
lated or part of a solid or molecule, and also to den-
sities that sample the valence electrons in isolated
atoms. On the other hand, it is absolutely clear in
principle that in the limit of slowly varying densities
in an infinite system k,;, vanishes in this limit, and
vanishes faster than k. so that the correction term in
(4.18) does not appear in this limit, and there exist

exactly solvable models that demonstrate this unam-
biguously.*’ It seems equally clear in principle, as
we have noted earlier in this section, that a correc-
tion such as (4.18) is necessary in the localized limit.
We test this numerically later.

Combining (4.18) with the exchange part of (2.31)
gives

E,=EPA_a(5+18f?)
X [ @[ Vn(@P a4 (@19

for localized orbitals. Similarly (2.35) for exchange

only is to be replaced by

VK 3K?

vx(f’)zu,cLDA(f')+Za(%+l8f2) 34
n

’

(4.20)

where a is given by (2.33), K=Vn(F), and f~0.15.
Equations (4.19) and (4.20) are analogous to (2.31)
and (2.35) for exchange only in atomiclike states.

C. Application to atoms

We have applied Egs. (4.19) and (4.20) to the self-
consistent solution in the spinless atoms through ar-
gon. We compare the ground-state energies in Table
V with the exact exchange-only numbers of Ref. 23
and other approximations. Notice first that the
differences between the LDA for exchange only
(first line) have somewhat larger errors when com-
pared with the exact form than the values shown in
Table I for exchange and correlation together. This
is presumably because of the incorrect division be-
tween exchange and correlation that we have been
discussing. The second row of Table V represents
what we would calculate in a nonlocal approxima-
tion if this error were not corrected, that is, using
(4.19) and (4.20) without the 18f2 term. This yields

TABLE V. Atomic ground energies in the “exchange-only” approximation (Ry). The
Hartree-Fock values have been appended for comparison.

He Be Ne Mg Ar
Local® —5.45 —28.45 —254.98 —396.50 —1049.04
Nonocal® (f =0) —5.61 —28.82 —256.01 —397.74 —1051.02
Nonlocal® (f =0.15) —5.70 —29.01 —256.54 —398.40 —1052.06
Exact® (exchange only) —5.72 —29.14 —257.09 —399.22 —1053.62
Hartree-Fock! —5.72 —29.15 —257.09 —399.23 —1053.64

%, =0 in Eq. (2.3) and 8W =0 in Eq. (2.2).
"Equations (4.19) and (4.20).

‘Reference 23.

dReference 44.



28 BEYOND THE LOCAL-DENSITY APPROXIMATION IN . .. 1829

TABLE VI. Atomic exchange energies in the “exchange-only” approximation (Ry). The
Hartree-Fock values have been appended for comparison.

He Ne Ar
Local® —1.71 —21.87 —55.55
Nonlocal® (f =0) —1.90 —22.95 —57.50
Nonlocal® (f =0.15) —2.01 —23.52 —58.68
Exact® (exchange) —2.05 —24.20 —60.32
Hartree-Fock! —2.05 —24.22 —60.37

?¢.=0in Eq. (2.3) and W =0in Eq. (2.2).
"Equations (4.19) and (4.20).
‘M. Talman et al., cited in Ref. 47.

4]. C. Slater and J. H. Wood, Int. J. Quantum Chem. 4, 3 (1971).

errors (row four minus row two) of 0.11, 0.32, 1.08,
1.46, and 2.60 Ry, for the five elements, respective-
ly. This should be compared to errors of 0.01, 0.12,
0.48, 0.72 and 1.42 Ry, respectively, for exchange
and correlation together (row six minus row four of
Table I). This set of errors should be comparable to
the former set if exchange and correlation are being
divided properly, since total correlation energy is
clearly much smaller than exchange in these sys-
tems. Clearly, however, the former numbers are
larger than the latter ones by factors of ~2 or more.
This clearly unreasonable result gives evidence that
exchange and correlation are still being divided in-
correctly. On the other hand, when the full expres-
sions (4.19) and (4.20) are used, the errors corre-
sponding to row four minus row three in Table IV
are 0.02, 0.13, 0.63, 0.82 and 1.58 for the five ele-
ments, respectively. These correspond very closely
with the errors in exchange and correlation together.
One would not expect to do much better, because
they are undoubtedly produced by inaccuracies in
the overall scheme, and not by the divisions between
exchange and correlation. We think that the size of

this latter set of errors is strong indirect evidence
that our division between exchange and correlation
is now roughly correct. This view is reinforced by
the exchange energies (exchange-only approxima-
tion) which are compared with the exact ones in
Table VI.

The eigenvalue differences calculated from Eq.
(4.20) with f=0.15 are shown in Table VII where
they are compared with the exact Kohn-Sham eigen-
value difference for “exchange only,” as well as with
those calculated for the LDA. As discussed earlier,
the LDA gives very good eigenvalue differences, and
we see that our correction in every case improves
them.

Next, in Fig. 7 we show the deviation in density
from the LDA (exchange only) for both this approx-
imation (4.20) and the exact curve which we calcu-
lated from the data of Ref. 23. Notice that the im-
provement of (4.20) over the local approximation is
marked, and that the error is also comparable to
that in Fig. 3, for exchange and correlation together.
Similar trends are observed for neon, whose density
moments we show in Table VIII.

TABLE VII. Eigenvalue differences in the “exchange-only” approximation (Ry).

Local® Nonlocal® Exact®

Be 2s-1s 7.25 7.36 7.64
Ne 2p-1s 59.58 59.91 59.94
2p-2s 1.65 1.68 1.73

Mg 3s-1s 91.51 91.90 92.15
3s-2s 5.41 5.46 5.69

3s-2p 3.04 3.05 3.21

Ar 3p-1s 226.76 227.35 227.72
3p-2s 20.79 20.87 21.12

3p-2p 16.09 16.10 16.28

3p-3s 1.00 1.01 1.01

*Local-density approximation for “exchange only.”
®Equations (4.19) and (4.20) with f =0.15.
‘Reference 23.
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TABLE VIII. Density moments for Ne in various “exchange-only” approximations (a.u.).

Local Nonlocal® Exact®
n(0) 614.2 620.4 619.8
(r=?) 411.7 414.4 414.8
(-1 30.95 31.05 31.10
(r) 8.07 8.00 7.90
(r?) 10.04 9.78 9.40

*Equation (4.20) with f =0.15.
®Calculated from potential of Ref. 23.

Perhaps the most conclusive test of our method of
separating exchange and correlation is the use of
(4.19) and (4.20) coupled with (2.31) and (2.35) to
calculate the correlation energy of atoms. What we
calculate is the “conventional” correlation energy
but define for the “exchange-only” definition of ex-
change, rather than the Hartree-Fock definition (al-
though the difference is small indeed). Thus we
solve for the total energy of the atom using the full
exchange-correlation functional (2.31)—(2.35), and
solve it again using the exchange-only functional of
(4.19) and (4.20). For the purposes of this compar-
ison we define the difference between the two results
as the correlation energy. Thus we arrange the cal-
culation in a way so that the errors in our approxi-
mation for exchange will tend to cancel. Since non-
local correlation is expected to cancel local correla-
tion, this procedure tends to magnify any errors in
our method of separating exchange from correlation.
The exact correlation energy with which to compare
these numbers is simply the difference between the
exact ground-state energy, as in row six of Table I,
minus the exact ground-state energy in the
“exchange-only” approximation, row four of Table

V.

We make such a comparison in Table IX. In the
first row we use the local-density approximation. In
the second row we used our nonlocal form, Egs.
(2.31)—(2.35) with f=0.15 for the exchange plus
correlation calculation, but we use f =0 in (4.19)
and (4.20); this incorrectly divides exchange from
correlation. In the third row we use the correct
division (4.19) and (4.20), with f=0.15 for the ex-
change part of the calculation, with the exchange
plus correlation part the same as before. The fourth
row is the exact value as discussed earlier. The en-
tries in this table should leave little doubt that we
are proceeding correctly.

V. EXACT EXCHANGE PLUS APPROXIMATE
NONLOCAL CORRELATION

The preceding section indicates that the largest er-
ror in our nonlocal functional (2.31)—(2.35), at least
when applied to atoms, comes from the nonlocal ex-
change contribution. This does not necessarily mean
that our basic approximation q <<k is substantially

TABLE IX. Correlation energies in various approximations (Ry).

He Be Ne Mg Ar
Local® —0.29 —0.58 —1.84 —2.19 —3.47
Nonlocal® —0.19 —0.40 —1.36 —1.61 —2.64
Nonlocal® —0.10 —0.20 —0.82 —0.96 —1.60
Exact¢ —0.08 —0.19 —0.76 —0.86 —1.46

“von Barth—Hedin parametrization for E,..
°f =0.15 for E,., f =0 for E,.

°f =0.15 for E,. and E,.

dSee text.
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FIG. 7. Be density for “‘exchange-only.” In each case
the ordinate is the radial density difference between the
indicated calculation and the local-density approximation
(X 100). The solid curve represents the calculation based
on Eq. (4.20) with f =0 (thus improperly separating ex-
change and correlation). The broken curve represents the
calculation based on the full Eq. (4.20) (f =0.15). The
dashed curve is the exact result.

V*(T) =07 00 (T) + (VR4 )(F) +2an ~ 13 | —18f2

worse for exchange than correlation, but rather that
nonlocal exchange is larger in absolute terms than
nonlocal correlation even though nonlocal correla-
tion is a ~100% effect. It does mean, however,
that the rough method which we used to make the
small-k cutoff is not the main source of error.

It is tempting, therefore, to use an exact version of
exchange and combine this with an approximate
version of correlation. Although this idea has un-
doubtedly occurred to many over the years (see, for
example, Ref. 52), the most recent impetus for us to
try this has come from Perdew®® with respect to
“exchange-only” and especially from von Barth®
with respect to Hartree-Fock; the latter has attempt-
ed an application of our functional in this connec-
tion,2® but without the benefit of the results of the
preceding section.

The approximation which now suggests itself is

EX*=E%.+(ETDA)

+a [d[VOP2eF+18fY), (5.1

where EZ,, is the exact-exchange energy according
to (4.3) and (ERBA ) is the local-density approxima-
tion to the correlation energy in the RPA. The extra
term in the curly brackets (18f2) corrects the corre-
lation energy by the negative energy of extra term in
(4.18) as implied by Eqs. (4.11) and (4.12). Similar-
ly,

VK _2K?
3 n?
(1—F/2)€-K_3_11F+7F2 K2
n 376 12 |n?

TABLE X. Correlation energies (Ry) in various approximations using exact exchange in all

cases.

He Be Ne Mg Ar
Local correlation® —0.30 —0.58 —1.84 —2.19 —3.48
Nonlocal correlation® (f =0.15) —0.105 —0.20 —0.82 —0.96 —1.60
Nonlocal correlation® (f =0.17) —0.093 —0.18 —0.75 —0.87 —1.45
Exact® —0.084 —-0.19 —0.76 —0.86 —1.46

2von Barth—Hedin parametrization Ref. 34.
®Equation (5.1).
See text.
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TABLE XI. Total energies (Ry) of atoms, calculated with exact exchange plus nonlocal

correlation.

He Be Ne Mg Ar
Calculated (f =0.15) —5.82 —29.34 —257.91 —400.18 —1055.22
Calculated (f =0.17) —5.82 —29.32 —257.84 —400.09 —1055.07
Exact —5.81 —29.33 —257.84 —400.08 —1055.08

where v},,(T) is the exact-exchange potential and
(vREA)(T) is the RPA correlation potential in the
local-density approximation. The other quantities in
(5.1) and (5.2) are defined as in (2.31)—(2.35).

We write (5.1) and (5.2) with the same proviso as
the similar expressions in the preceding section.
That is, the 18 term must be multiplied in the
most general case by an extremely nonlocal func-
tional of the density which is approximately equal to
unity for the case of well-localized orbitals, but
which is otherwise smaller and approaching zero for
fully extended electron-gas-like states. Therefore,
we expect (5.1) and (5.2) to give the correct nonlocal
corrections only for fairly tightly bound systems (or
parts of systems). In any case the tests we have
made on (5.1) and (5.2) have been restricted to
atoms.

In making these tests we have used the exact ex-
change potentials v, (7) tabulated by Ashamar
et al.® for neutral atoms. Since we are not set up to
recalculate v7,,. self-consistently once the density
distribution is changed by the correlation terms [the
remaining terms in the right-hand side of (5.12)], we
were forced to use a perturbation procedure. This is

r/oO
0.092 0.5 0.25 0.4l 068 112 1.85 305 502
T T T T T T T T T
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FIG. 8. Density of Be. In each case the ordinate is the
radial density difference between the indicated calcula-
tions and the local-density approximation (X 100). The
solid curve represents the calculation based on Eq. (5.2)
(f=0.15 and 0.17 virtually indistinguishable on this
scale). The dashed line marked ‘“‘exact” represents the
configuration interaction calculations of Ref. 49.

in this case, however, a valid procedure because the
sum of local plus nonlocal correlation is very small
in atoms (at least once exchange and correlation is
properly divided). Our procedure was therefore as
follows. For total energies, we calculated the densi-
ty with vZ,.(T), and then used that density to
evaluate E*® according to (5.1). Similarly, to calcu-
late the density, we first took the density implied by
Uiyact and evaluated v*(T) in (5.2) using this density;
this resulting v*® was then used in the Kohn-Sham
equations to calculate a new perturbed density.
These procedures are guaranteed to give the energy
and density correctly to first order in the correlation
(local plus nonlocal) parts of (5.1) and (5.2).

In Table X we show the results for correlation en-
ergies of the spinless atoms through argon. These
were calculated in the same way as described earlier,
except that exact exchange is used, both in the ex-
change plus approximate correlation calculation,
and in the exchange-only calculation which is sub-
tracted from it. The fact that the first two rows of
Table X are virtually identical to the first and third
rows of Table IX supports our contention that (1)
the calculation has been arranged properly so that
the functional used for exchange has little effect on
the results, and (2) that our perturbation procedure
(used in the calculations in Table X but not Table
IX) is correct.

In all our previous calculations we have resisted
the temptation to adjust f to get a best fit, and ex-
cept to get a feeling for the sensitivity of calculated
values of the choice of f, we have kept to the choice
f=0.15. However, we have finally reached a point
where we believe we have (in the calculations of this
section) eliminated all other sources of error which
give greater errors than our cutoff procedure.
Therefore, now and only now does it make physical
sense to make fine adjustments in f. The total
correlation energy is fairly sensitive to this choice in
percentage terms because of the near cancellation be-
tween the nonlocal part which depends on f and the
local part which does not. Nevertheless, our original
choice of f=0.15 was obviously quite good. In
Table X we also show the correlation energies calcu-
lated for the choice f=0.17, which appears to be a
slight improvement.



28 BEYOND THE LOCAL-DENSITY APPROXIMATION IN . . . 1833

TABLE XII. The eigenvalue (Ry) of the Kohn-Sham equations for atoms, calculated with
exact exchange plus nonlocal correlation (f =0.15).

He Be Ne Mg Ar
1s —1.92 —8.34 —61.67 —92.68 —288.88
2s —0.70 —3.56 —6.34 —22.44
2p —1.83 —3.87 —17.61
Is —0.60 —2.33
3p —1.31

In Table XI we show the total ground-state ener-
gies calculated for these elements, using exact ex-
change plus the correlation of Eq. (5.1) with
f=0.15 and 0.17. It is apparent that the agreement
is very good and therefore provides further evidence
for the correctness of the scheme.

Next we have used (5.2) to calculate the density of
beryllium and have compared it in Fig. 8 with the
exact beryllium density (what is plotted is the devia-
tions from LDA). We note that our approximation
not only reproduces all the trends correctly, but also
that it is quantitatively a good approximation to the
true density in that it, for the most part (except near
places where the true error in LDA changes sign),
reduces the LDA error of several percent by an or-
der of magnitude or so. We feel that these results
for the density as well as the results for the energies
provide strong evidence for the correctness of our
approximation scheme.

Finally, we give in Table XII our calculated
values for the Kohn-Sham eigenvalues. These were
calculated with f=0.15. Although we now feel on
the basis of our correlation-energy results that
f=0.17 may be a slightly better choice, the differ-
ence is not significant enough to recalculate all our
results of this and previous sections. There are, of
course, no exact results with which to compare our
calculated eigenvalues, since the eigenvalues of the

Kohn-Sham equations do not give an approximation
to the experimental removal energy spectrum either
in principle or in practicee. We will be very
surprised, however, if better calculations in the fu-
ture do not prove our results in Table XII to be very
close to the exact Kohn-Sham eigenvalues.
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