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An exact real-space rescaling approach for disordered tight-binding model Hamiltonians is
presented. The method provides a direct way of obtaining the local Green’s functions and the local
density of states. The behavior of the eigenstates in a given region of energy can be determined from
the behavior of the rescaling transformation under iteration. Localized-mode behavior is character-
ized by a fixed point of the transformation and the inverse localization length can be obtained direct-
ly from an analysis of the approach to this fixed point. The problem of a single impurity is studied
in detail and our method is compared with the standard treatment of such problems.

I. INTRODUCTION

In a recent paper' a real-space rescaling approach for
the study of the spectral properties of tight-binding Ham-
iltonians was described. The method can be applied to a
wide variety of problems: for example, electrons in pure
and defect structures, magnetic systems with impurities,
and in general, any excitation obeying a linear equation of
motion. The approach provides a direct method of calcu-
lating the local Green’s functions which contain all the de-
tailed information about the dynamics of the system.

The basic idea of the method is to take a system of
equations which describe N degrees of freedom and per-
form a transformation on the system which reduces the
number of degrees of freedom to a fraction of N but leaves
the equations invariant in form with modified (renormal-
ized) parameters. The relationship between the renormal-
ized parameters and the original set is used to define a
scaling transformation on the equations of motion. This
procedure can then be repeated indefinitely by simply
iterating the transformation many times until there is only
one degree of freedom left. In this limit, the local Green’s
functions are trivially obtained from the limiting values of
the renormalized parameters. Also, the behavior of the
transformation under iteration can be used to obtain de-
tailed information about the nature of the eigenstates.
The transformation exhibits certain fixed points, or special
points, where the parameters do not change their values
under iteration. The study of the accessibility of these
various fixed points can be used to locate the different re-
gions of energy in which the spectrum consists of extend-
ed states, localized states, or gaps.

In our previous paper' (hereafter referred to as SKLT)
the method was applied to the study of the dynamical
equations of a translationally invariant tight-binding sys-
tem on a one-dimensional (1D) lattice with arbitrary range
of interaction. We showed how to set up a general scaling
transformation for the system and illustrated the method
using the uniform chain with both first- and second-
neighbor interactions as an example. A general procedure
for calculating the local density of states (LDOS) at any
given site was outlined.

In this paper we apply the rescaling method to systems
which are not translationally invariant. In particular, we
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consider a 1D disordered chain with both first- and
second-neighbor interactions. The motivation for this
study stems from the fact that most applications of the
real-space methods have been restricted to systems with
only nearest-neighbor (NN) interactions. Such a study,
while being applicable to real systems, which in general
possess interactions beyond nearest neighbors, is also im-
portant for the application of the scaling methods to
higher dimensional lattices where the elimination pro-
cedure generates longer-ranged interactions. The expres-
sions that we obtain are valid for an arbitrary number of
impurities in the chain or any amount of randomness in
the interactions between the lattice sites. To illustrate the
approach, we consider in detail the problem of a 1D mag-
netic system with a single impurity. In contrast to the
conventional treatments of this problem, our approach is a
direct attack on the disordered system and does not re-
quire knowledge of the Green’s functions of the pure sys-
tem.

This paper is organized as follows. In Sec. II we
describe how to set up the rescaling transformation for a
ID tight-binding Hamiltonian with arbitrary first- and
second-neighbor interactions. A  general rescaling
transformation is obtained for the completely random
case. In Sec. III we consider the conventional treatment of
a single impurity in a ferromagnetic chain when the ex-
change interactions extend beyond nearest neighbors. We
derive the equations which determine the energies of the
localized modes associated with the impurity and discuss
some limiting cases. In Sec. IV we examine the same
problem using the expressions derived in Sec. II and
demonstrate how the localized modes can be identified by
studying the behavior of the scaling transformation under
iteration. In addition, we discuss how information about
the wave function of the localized modes can be extracted.
Finally in Sec. V we summarize our results and discuss
further possible applications of the method to systems
with a finite concentration of impurities and also to higher
dimensional lattices.

II. RESCALING TRANSFORMATION

We consider the following tight-binding model Hamil-
tonian:
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H=3 [Dei |+ 3 1DVl (D
i ij

where each state |i) is an atomiclike orbital centered at
site i and the sites form a regular 1D lattice. The parame-
ters €; and Vj; represent the diagonal and off-diagonal ma-
trix elements of the Hamiltonian in this basis. A Hamil-
tonian of this form is often the starting point for the in-
vestigation of the excitation spectrum of electronic, mag-
netic, and elastic degrees of freedom in both pure and
disordered solids. The spectral properties are obtained by
solving the following set of equations for the lattice
Green’s functions? Gjj:

(E —€)G;j=8;+ 3 ViGy; , (2)
k

)
and §;; is the Kronecker delta.

In SKLT we considered the case where (1) is transla-
tionally invariant and the ¥; were of arbitrary range. As
discussed in that paper, when the range of interactions ex-
tends beyond nearest neighbors the inhomogeneous term
in (2) is modified under the rescaling transformation. For
this reason we must replace the Kronecker delta by a ma-
trix Z;; which is §;; only at the initial stage. In the present
case we limit the range of interactions to first and second
neighbors only but allow each Vj; and ¢; to be arbitrary
and hence Eq. (2) reduces to

(E—E,)G,J:Z,]+ 2

n=x%1,%2

where

E+i0t—H

Vi,i +nGi+n,j . (3)

If we now divide the sites into two groups which we
simply label as “even” or “odd,” then we can eliminate the
odd sites from (3) and the equations for the even sites can
be written in the form

(E——ﬁ; )Gij=zi}+ 2 Vi’,i+nGi+n,j ’ (4)
n=+2,+4
where the primes indicate that the parameters in the origi-
nal set (3) have been renormalized. This elimination pro-
cedure actually generates two sets of equations which are
completely decoupled from each other, and each involves
only N/2 sites. If we now rescale all distances in each set
by a factor of 2 (the scaling factor), or equivalently rede-
fine the lattice constant a’=a /2, then Eq. (4) has the
same form as Eq. (3) and the procedure can be repeated
again. This procedure is illustrated schematically in Fig.
1.
The renormalized parameters are given by

(E—e)=(E—g)— 3 LGV, (5a)
n==%1,+2
Z;=Zy;, Y LGnZ,,;, (5b)
n=%1,%+2
Viier=Viixa—L (i, 22)(E —g;+))
+L,2DVizi42 5 (5¢)
Viiea=L(,x2)V;4) 44, (5d)
Vi .
Li,42)=——2M5 7 (j +1), (5e)
it2,it3
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X DF + X s Xizrin

L(l,i’l)z () (i) ? (Sf)
DyD” —X;_1,i+1Xi41,i-1
where
DW=y JizpirKisrizs (59)
Xit2it3
and
X, =Vi;/(E—¢) . (5h)

The above expressions were obtained by multiplying Eq.
(3) for each neighbor n of the reference site i by L (i,n)
and determining the L (i,n) subject to the condition that
the odd sites are eliminated when we sum over the equa-
tions for site i and its neighbors.

In the uniform case these expressions reduce to those
given in SKLT and can be used to calculate the various
Green’s functions for the uniform first- and second-
neighbor problem. For a detailed discussion of the recur-
sion relations and their fixed points in the uniform case,
we refer the reader to SKLT.

The elimination procedure together with the rescaling
of lengths defines the rescaling transformation and the re-
normalized paraineters become the new effective interac-
tions within each set. With these renormalized parameters
the procedure can be repeated to generate twice as many
additional sets of decoupled equations. Each Gj; thus be-
longs to a smaller and smaller set until finally each set
contains only the G;; of interest which is equal to the lim-
iting value of the ratio ij” "J(E —¢2).

Our expressions are exact for any degree of disorder on
the chain and can be easily implemented on any pro-
grammable device in order to obtain the Green’s functions
for any initial values of the parameters in (4). This point
will be discussed further in Sec. IV where we will consider
the problem of a ferromagnetic chain with defects. We
treat a single impurity in a uniform host when the impuri-
ty has both first- and second-neighbor interactions with
the host. In the next section, we outline the standard
treatment of this problem and in Sec. IV we use the ex-
pressions obtained above to show how the scaling ap-
proach can be used to obtain the same results.

i-5 i-4  i-3 i-2 il i i+l i+2  i+3  i+4 i+5
UE!imino?ion
( ) ) ) ) )
N4 A A AN
i-4 i-2 i i+2 i+4
UResccling
i-5 i-4 -3 -2 i-l i i+l i+2  i+3  i+4 i+5

FIG. 1. Schematic illustration of the rescaling procedure.
The first step consists of “‘eliminating” the odd sites (closed cir-
cles) leaving a chain with only even sites (open circles). The
second step consists of rescaling all the lattice distances by a fac-
tor of % and relabeling the sites.
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III. SECOND-NEIGHBOR CHAIN WITH
A SINGLE IMPURITY

In this section we work out the problem of a single im-
purity in a chain with extended range (beyond nearest
neighbors) interactions. The basic purpose of this calcula-
tion is to allow a detailed comparison between the conven-
tional treatment of this problem and the scaling approach
developed in the preceding section. In order to fix our
ideas, we discuss the case of the impurity spin in a fer-
romagnetic chain with first- and second-neighbor ex-
change interactions. However, the approach is not re-
stricted to magnetic problems and, with proper identifica-
tion of the parameters characterizing the impurity, the fi-
nal expressions can be also applied to other types of de-
fects. The analysis in this section follows the general pro-
cedure outlined by Wolfram and Callaway.>* We omit
the details of the calculation here and give only the essen-
tial features.

The system is defined by the Hamiltonian

=_% 2 J]nlgi'§i+n
i, +2
— (J”,, }§;)“Jln |§0)'§n ’ (6)

where S(S’) is the host (impurity) spin and J,J,(J},J3)
are the host-host (impurity-host) first- and second-
neighbor interactions, respectively. The impurity spin is
located at the site labeled 0. This Hamiltonian can be ex-
pressed in a basis of single-spin deviation states®* and
takes the following tight-binding form:

H=H0+H1 ’
where
Ho=const+ 3, |i)e(i|+ X |[iD)V i, (i+n|
i in=1%1,%2
(7
with
e=—2V(1+4),
V1=—2‘11S Py
(8)
V2:V1A 5
A=J,/J,
and
H, = [n)Ae , (n |
n=0,+1,+2
+ AV, (10)(n |+ |n)(O]) )
n=+1,+2
with
A80=2V1(€]+€2) s
Agy=Vyp;,
A€2= V1p2 N (10)
AVi=Vin1,

AV,=Viv2,
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and
Pi=—(Ji'S’—JiS)/J1S s
6,-—_——(.,," —J,)/Jl s (11)
172
, | S .
n=i |5 | - /J1 (i=1,2).

Our definitions of p; and ¢, are the negatives of those used
by Wolfram and Callaway>* whereas y; is the same.
Equation (10) can be used to study other types of defects
as well and Eq. (11) would then involve the parameters
which are used to characterize that defect.

The eigenstates |¢) of the system are determined by
the Schrodinger equation

(Ho+H)) |¢)=E |¢) (12)

or
[I—(V)"'G°H,]|¢)=0,

where G° denotes the Green’s-function matrix for the
Hamiltonian H,,
e

H, represents a uniform chain with first- (¥;) and
second- (¥,) neighbor interactions and the Green’s func-
tions can be obtained using the formalism of SKLT.

Since H, is only a 5X 5 matrix, the solutions for the im-
purity modes can be obtained from the following 5X5
determinantal equation:

det[I—(¥,)"'G°H,]1=0.

V|
E—_H,

Gj= (i

(13)

If we transform to a basis which reflects the point-group
symmetry of the impurity, then this equation factors into
two subdeterminants D; and D,. The expression for D; is
quite complicated in general and gives the energies of
modes which are symmetric with respect to the impurity
site. The expression for D, is simpler and gives the ener-
gies of modes which are antisymmetric with respect to the
impurity site and hence have zero amplitude at the impur-
ity. D, has the form

D,=1—p(GY—GI)—p,(GI—G3)
+p1p2[(G—GN (G —GH—(GI-GI)] .
(14)

In the above we have used the fact that GS- =G? i—j|- In
general, it is difficult to solve this equation for arbitrary
values of 4, p;, and p, since no simple relationship exists
between the various Green’s functions when 4540.

In the case where there are no second-neighbor interac-
tions in the host (J,=0), the various G,(,) in (14) simplify
and the local-mode energies are solutions of the following
cubic equation:

80,03 +(—4p3—8p,p,)A2
+(2p1—4p,+4p1p3+201p) A —pi — (p1p— 1)*=0 ,
where

A=(E —g)/(2V}) . (15)
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Figure 2 indicates the regions in the p;-p, plane where the
antisymmetric modes can appear. If p,=0, then there is
only one solution given by

A=(pl+1)/(2p))

provided |p;| > 1.

As mentioned above, D; is generally quite complicated
and requires a numerical solution. However, if S =S" (i.e,,
pi=€;=—Y;), then the symmetric modes are obtained as
the solutions of a quartic equation. In the next section we
describe how our rescaling approach can be used to obtain
these same results in a very direct way.

(16)

IV. SCALING TREATMENT OF DEFECTS

In this section we discuss the impurity problem of Sec.
III from the point of view of the rescaling method. Al-
though one can write down the scaling expressions for the
complete second-neighbor problem and calculate any Gj;,
we restrict ourselves here to the case of the “extended de-
fect” discussed at the end of the preceding section, namely
the case where the impurity has both first- and second-
neighbor interactions while the host has only first-
neighbor interactions. The advantage of this case is that
the expressions become particularly simple and it also pro-
vides an excellent comparison with the conventional ap-
proach discussed in Sec. III.

A particular Gj; for this problem can be evaluated by
choosing the site i as reference and ‘“‘eliminating” the
neighboring sites progressively. If we choose the impurity
site O as the site of interest, then the expressions for the re-
normalized site energies and couplings given by the ex-
pressions in (5) reduce to
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eh==eo+2V5 /(E—gy),

g =e,+V2/(E —¢)+VI/E —¢),
gy=¢'=e+2Vi/(E —¢),
Vor=VaVi/(E—e)+Vo
Vi=V3i/(E —¢),

V=0,

where 1 and 2 refer to the effective first and second neigh-
bors of site 0 at each stage. In addition, we must also con-
sider the renormalization of the inhomogeneous terms Z;;.
For the calculation of G, only Zy, is needed since in the
present case of 4=0 it does not change from its initial
value of unity. To calculate Gg;, however, we require both
Z, and Z; and these terms satisfy

Zy=Zy+Z Vo /(E —¢y),

(17)

(18)
ZW=Z W\ /(E—¥¢)),

with the initial condition Z;; =8;;. The other Gy; may be
evaluated similarly but involve larger numbers of inhomo-
geneous terms. Figure 3 shows the results for Gy and Gy
for the following choice of impurity parameters:
p1=€=—y1=3 and p,=€,=—¥,=2.5. The real and
imaginary parts of the G;; are obtained by introducing a
small positive imaginary part into the energy E. The local
modes are found at the values of A where the real part of
the G’s diverge. Since Gy and G, involve the impurity
site, the divergence of these G’s describe the symmetric
modes. In order to locate the antisymmetric modes, we
must take site 1 as reference and then calculate G,. The

ILA
LB

3

-50 -40 -30 -20 -l

oLB =301

-4.01

FIG. 2. Regions in the p,—p, plane where localized (antisymmetric) modes appear. LA refers to localized above the band and LB
refers to localized below the band. There are no localized antisymmetric modes in the central shaded region.
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FIG. 3. (a) Real and imaginary parts of G in units of 2V, for py=€,= —y,=3 and p,=€,= —¥,=2.5. The vertical dashed lines
represent delta functions at the positions of the symmetric modes. The band of extended states of the host is in the range |A| <1. (b)
Real and imaginary parts of Gy, in units of 2V, for p;=€,= —¥,=3 and p,=€,= —y,=2.5. The vertical dashed lines represent delta
functions at the positions of the symmetric modes. The band of extended states of the host is in the range |A | < 1.

results for G;; are shown in Fig. 4. Note that G,
diverges at values of A which correspond to both types of
local modes. For the given values of p; and p, we observe
two antisymmetric modes in agreement with Fig. 2. It is
easily verified that the values of A where the G’s diverge
are solutions to either the cubic or quartic equations dis-
cussed in the preceding section. For values of |A| <1
(within the band of extended states of the host) the Gy
converge after about 25 iterations. Outside the band, only
about 7 iterations are required. Thus the location of the

local modes can be found with a minimum of calculation.

The rescaling transformation can be expressed in terms
of any suitable set of parameters which describe the sys-
tem. In the present case, the “deviation” parameters p;,
€;, and ¥; introduced in the preceding section are a more
convenient set for obtaining information about the nature
of the impurity modes. In terms of these parameters the
above equations can be rewritten as follows:

A=2A2—1, (19a)
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FIG. 4. Real and imaginary parts of Gy, in units of 2V, for pj=€;=—7,=3 and p,=€,= —y,=2.5. The vertical dashed lines
represent delta functions at the positions of both the antisymmetric and symmetric modes. The modes alternate from symmetric to

antisymmetric beginning at the highest mode.

P1
. ) , (19b)
p1 —p; +2Ap,
py=0, (19¢)
2AM1+71)
h = — 1421y, , 19d)
14! —p, +T2AY, (
2A(1+479,)?
(€, +€))=2Me+ep) + —— T 1, (19)
2h—p,
72=0, (19f)

where A is defined as in Eq. (15).

We observe that the first three equations are decoupled
from the remaining three and thus their behavior under
iteration can be studied independently. This decoupling is
similar to the factorization of the determinantal equation
in the preceding section. The antisymmetric impurity
mode solutions only depend upon the parameters p; and p,
and thus the first three equations in (19) are sufficient to
study these modes.

The first equation (19a) only involves the parameters of
the host and its behavior under iteration characterizes the
uniform ferromagnet. If |A| > 1, then A iterates to a sink
at infinity. However, if |A| <1, then A behaves chaoti-
cally under iteration. These two types of behavior are
characteristic of the regions outside and inside the band of
extended states of the magnetic excitations. |A|=1is an
unstable fixed point which describes the band edge. We
refer the reader to SKLT for a more detailed discussion of
the uniform case.

The next two equations [(19b) and (19¢)] describe the
impure system and their behavior under iteration can be
used to locate the regions of energy in which the localized
modes associated with the impurity appear. For a mode
to appear outside the band of extended states of the host,

we must have |A|>1 and thus A iterates to infinity.
However, p] in (19b) displays two different possible types
of behavior under iteration. It either approaches zero or
infinity and the latter occurs only if the initial value of A
corresponds to the position of the local mode. When A is
a solution of the cubic equation (15) we can combine (19b)
and (19¢c) and write them as

a'=2a, (20)
where
a=In 1 +
- 2)\.——p] pZ

and a’ is the same function of the primed quantities. If
a <0 then a' iterates to — o whereas if a>0 then it
iterates to + . Thus the unstable fixed point a*=0
separates these two types of behavior. A local mode is
characterized by a’'— + « which corresponds to both A
and p, approaching + . Solutions of the cubic equation
which correspond to negative values of a do not describe
local mode solutions and correspond to A—+ o but
p1—0. The fixed point A* = w0, p} = oo is only accessible
if the initial value of A is a root of the cubic equation and
a>0.

Each antisymmetric mode requires a critical value of
the parameters p;,p, before it appears. Since these modes
first appear at the band edges of the host (|A| =1), the
local modes appear whenever

—P1 : ’

which coincides with the solid lines in Fig. 2. The scaling
form for a in (20) is identical to that of the inverse lattice
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spacing and hence a can be identified as the inverse locali-
zation length for the local mode. In the nearest-neighbor
case (p,=0), we simply have a=In|1/p,| in agreement
with the standard treatment of this problem.*

The symmetric modes can also be discussed in a similar
fashion but the expressions are more complicated. It is
easier to evaluate the various Gj; directly using the general
expressions in (5) and determine the location and symme-
try of the local modes from their divergent behavior.

V. SUMMARY AND CONCLUSIONS

In this paper we have described a real-space rescaling
approach for the calculation of the spectral properties of a
randomly disordered tight-binding model Hamiltonian on
a 1D chain. Although we restricted the range of interac-
tion to first and second neighbors and used a scaling fac-
tor of 2 (eliminating every other site) a general transfor-
mation can be obtained for any range of interaction and
any scaling factor. Real-space methods have been used
previously®—? for disordered tight-binding models, but the
ability to handle longer-ranged interactions is crucial for
the application of these techniques to higher dimensional
lattices. For these lattices, the elimination procedure
causes the effective range of interaction to increase under
iteration and it is necessary to use a transformation which
is valid for arbitrary range. We have derived an exact
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transformation for the problem of a single defect in the
two-dimensional square lattice and these results will be re-
ported elsewhere.

The expressions in Sec. II can be used to study systems
with an arbitrary number of defects exactly. However, for
a finite concentration of defects, a suitable averaging pro-
cedure®®® should be used on the parameters in these ex-
pressions. We are currently studying this question.

Several other techniques are available for calculating the
local Green’s functions of disordered systems, notably the
recursion method used by Haydock'® and co-workers. In
contrast to that method the present approach does not in-
volve a preliminary transformation of the initial Hamil-
tonian to a tridiagonal (nearest-neighbor) form and the
concomitant numerical problems of nonorthogonality.!%!!
Stein and Krey'? have used a rescaling method in the
study of Anderson localization in combination with the re-
cursion method. However, our approach is a direct attack
on the identical disordered Hamiltonian and does not rely
on the tridiagonal form.
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