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We study a simple model which contains the basic physics of the image-potential problem but
which allows a nearly exact solution. The predictions of this numerical solution are compared to
those of various approximate theories that have been recently proposed. We find no support for the

suggested anomalies; conventional image-potential theory appears to be adequate.

I. INTRODUCTION

In the last few years reports of several experiments have
appeared' which probe the close-range interaction be-
tween an electron and a metal surface and whose interpre-
tation seems to challenge the conventional view. Instead
of supporting an attractive-image-potential energy of
VI ———e /4x where x is the distance from the metal and
VI is to saturate at the inner potential, one claims evidence
for an early saturation of VI, ' or an oscillation in time of
VI as an electron leaves, or a suppression of VI if the ex-
iting electron is tunneling. Although the main motiva-
tion for the suggestion of these anomalies is the desire to
fit experimental data, there is also some theoretical sup-
port in each case. However, since the suggestions are rath-
er diverse and not clearly consistent with each other, the
theoretical situation is similarly confusing.

In this paper we examine within the context of a single
model the implications of various theoretical approaches.
Our model has been purposely idealized and simplified so
that its content is tractable and transparent. Although it
is consequently too crude to allow direct comparisons with
experiments, it does contain the key physics thought to be
relevant. By extracting its predictions according to vari-
ous theoretical prescriptions, we can learn which approxi-
mation schemes are valid for it and hopefully also for
more realistic systems.

In Sec. II we describe the model and the calculations we
have done. We find no support for any theoretical
anomalies. ' In Sec. III we discuss to what extent our
conclusions may carry over to more complex systems.

II. MODEL CALCULATIONS

The basic problem we analyze is the transmission of an
electron past a barrier that presents both static and
dynamic potential energies. The latter aspect is due to the
transient polarization of the other electrons in a metal by
an exiting electron. It is often idealized to a coupling be-
tween the one electron and the metal's surface and bulk
plasmon fields. We further simplify the situation by
working in one dimension and by allowing only one polar-
izable mode to be present.

The many-body Hamiltonian which we study is

2

H = + V(x)+%co(a ta)+A. (x)(a +a f), (1)
2m

where p and m are the electron's momentum and mass, co

is the frequency of the polarizable mode, and a (a) is the
creation (annihilation) operator for this harmonic mode.
The static potential energy felt by the electron is V(x) and
is presumed to be nonzero only close to x =0. The cou-
pling, A.(x), of the electron to the polarizable mode is also
localized near x =0.

If the electron were held stationary, the effective poten-
tial energy would be given by the adiabatic dependence

V, (x)= V(x) —)I, (x)/fipp, (2)
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i/2A, t}},+ + V+2Aco E$,+v—3A,Q, =O, (4c)
2m

and so on. We shall work in a weak coupling limit, which
bounds the extent of virtual excitation of the polarization
mode. Specifically we truncate the set (4) by requiring

P„(x)—:0 for n &m .

which is found by completing the square for the part of H
that involves the polarizable mode. Thus the analog of the
conventional image potential for our model is —k (x }/fico.
The recent theoretical suggestions all concern possible
modifications to this result. The concept of an effective
potential energy, however, is not unambiguous since the
electron's quantum-mechanical motion is only properly
described via a nonlocal self-energy. We hence do not
compare various theories in terms solely of what "image
potential" they predict, but in addition calculate the
transmission coefficient T for an electron to pass through
the barrier region. For simplicity, the incident electron
energy E is kept less than %co and the mode is initially in
its unperturbed ground state so that only virtual excita-
tions of the mode are possible and T(E) is the elastic
transmission coefficient of the electron.

A general solution of Schrodinger's equation for the
Hamiltonian of (1) may be expanded as

~q'&=yy. ( )~ (3)

where the
~

n) are normalized eigenstates of a a. The
P„'s are determined by the set of coupled equations:
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(10)

when 0 &x &L1. Here we have assumed that the electron
has moved at a fixed speed v from —oo to x. Note that
this image potential starts from zero at x =0 and never
settles down to the adiabatic value —1,1/%co. Still, from
the viewpoint of classical mechanics an electron subject to
(9) with (10) for VI would have T= I for E & V, and
T =0 for E & V1. However, if we force the electron to en-
counter a second, higher static barrier V2 at x =L1, as
shown in Fig. 2, then its transmission coefficient might
show an oscillatory variation determined by cos(coL1/v).
This rough argument, which can be refined to some ex-
tent, ' thus leads one to expect oscillations in T vs E

I.O—

V2

i) V

yield with applied, static field. Roughly speaking, it says
that the sudden departure of an electron through a metal
surface leaves the surface plasmons not in a state of adia-
batic polarization, but instead in a state of oscillation.
This should lead in turn to an oscillatory image potential
and oscillations in T vs E.

To exhibit these implications one uses an image-
potential theory based on the trajectory approxima-
tion. ' The electron is treated as a point charge follow-

ing a prescribed path and the resulting time-dependent
perturbation on the polarizable modes of the system leads
to an induced potential energy. For instance, following
the prescription of Echenique et al. ,

' we obtain for our
model with a single bump (Fig. 1),

2
~1 NX

VI(x) = — 1 —cos
fico v

whose period will depend on co, the frequency of the polar-
ization mode.

In Fig. 2 we show T(E) for a double-step model of
V(x). Only the weak coupling solution for m =2 is
shown. The parameters used are L1 ——10 A, L2 ——12 A,
V1 ——5 eV, V2 ——10 eV, 1,1/~ =2.45 eV, and Ace =20 or 30
eV. There are definitely oscillations in T over the range of
E shown. However, their period depends negligibly on co

and the weak coupling curves seem to again mimic the re-
sult found from the conventional image potential. We in-
terpret the oscillations as due to standing waves of the
electron momentarily trapped by the potential in the re-
gion 0 &x &L1. Indeed the ticks in Fig. 2 show where L1
is an integer multiple of one-half the wavelength of an
electron with kinetic energy E —V1+A, 1/%co. A similar
interpretation may be applied to the oscillations in Fig. 1.

Thus the rough argument sketched above is apparently
wrong, although a specific a priori reason for this is not
obvious. Some work has been done on refining its de-
tails ' but this has not changed its basic prediction about

8, 13

the co dependence of the oscillations in T. We feel that a
crucial assumption is the classical localization of an elec-
tron to a fixed trajectory, even if the latter may be self-
consistently determined. ' Within a quantum-mechanical
description, the electron cannot be precisely located awhile
it is in the barrier region. Hence for the two-step model of
Fig. 2, there is no clear relevance of the comparison of the
polarization mode's period with classical transit times
across L1. Another worrisome point is the neglect of
recoil implicit in the trajectory approximation. This de-
fect is unfortunately most important as v~0, which is
just where the new argument's predictions are most strik-
ing.

III. DISCUSSION

0.8—

0.6—

04-

V) So far we have criticized the modified theories of the
image potential only within the context of our idealized
model. We have suggested reasons why they are deficient
but the strongest argument against them has been their ex-
plicit disagreement with the weak coupling solutions.
When we now turn to more realistic models we lose this
argument since we no longer have nearly exact results with
which to compare. Thus it is more difficult to draw firm
conclusions.

One way to lessen this problem is to use Green's-
function techniques to make a better treatment appear to
be essentially the same as our simple model. For instance
we can recast the set (4) truncated at m =2 as

0.2- Pp(x) =Pp(x) + fdx'Gp(x, x')l lx')P)(x')

P, (x') = fdx "G,(x',x")l(x")Pp(x"),

(11a)

(11b)

0-
6

E(eV)
IO

FIG. 2. Transmission coefficient T vs incident electron ener-

gy E. The shape of the barrier parameters are shown in the in-

sets; the electron is incident from the left. See text for numerical
values of the parameters. The solid curve was computed from

{9)using the conventional image potential. The other two curves
were found from the weak coupling solution of {1)with m =2
and A, /%co held fixed. They differ in the choice of P. and co:

%co =20 eV, dashed curve, and Rcu =30 eV, thin line.

where

T

2 —1

G„(x,x')= x E— —V —n~+ i0~
2m

are single-particle Green's functions and

Pp(x)=exp[i(2mE)'~ x/fi)

(12)

is the appropriate choice for a transmission problem. Al-
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ternatively one can introduce a self-energy via

Po(x) =tt)o(x)+ fdx' fdx "Go(x,x'}X(x',x")Po(x"),
p AK

G„(x,x';E)= x E— — —V
267 2@i

—n Am+& 0+ x'

X(x,x') =ibex)G t(x,x')&(x') .

Now consider a three-dimensional model wherein the
static potential V has translational invariance parallel to
the surface and the polarization coupling is to a continu-
um of surface plasmons, labeled by the two-dimensional
wave vectors Q. If an electron whose wave vector parallel
to the surface is E is incident on such a barrier its (ap-
proximate} elastic wave function may be written as

4o( x) =$&&(x,K)e'—

where the three-dimensional vector x ={x,X), with x (X)
normal (parallel) to the surface. The equation for po(x, K)

ttto(x, K)=ttttt(x, K)+fdx fdx'Go(x, x',K)

XX(x',x";K)go(x",K), (16)

where (()o(x,K)=exp[i(2tnE RK )'r x l—fi] and

X(x,x',K) =+A(x, —Q)G&(x,x';K+ Q)A(x', Q),
Q

The function Po determines the elastic scattering ampli-
tude and we have used a weak coupling form for X, allow-
ing only one surface plasmon to be (virtually) excited at a
time b~ the coupling A,(x,Q}, which is proportional to
8

—Qjr

%e do not wish to push the analysis of these equations
further since they are essentially the set studied by Jon-
son. Instead we emphasize the similarity between (13),
(14), and (12) on the one hand and (16), (17), and (18) on
the other. Our numerical results and conclusions apply to
the former set, while a fairly realistic model description is
possible with the latter. The two sets are quite similar in
structure and give us confidence that the qualitative as-
pects of our one-dimensional results would again be found
in a three-dimensional calculation.

One should note, however, that we have not described a
completely realistic model': V depends only on x, both
bulk plasmon and electron-hole pair coupling are ignored,
only weak coupling solutions are considered, etc. Yet we
have made contact with the models that were used in the
recent theories that suggest anomalies in the image poten-
tial. * Perhaps the reason for the discrepancies' be-
tween experiment and conventional theory, which our cal-
culations support, hes in these further omissions.
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