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Static structure factor and electron-electron correlations in Be.
A comparison of experiment with electron-gas theory
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The inelastic scattering cross section of metallic Be has been determined from an x-ray scattering
experiment. The conditions under which the electronic contribution {static structure factor) can be

extracted from such an experiment arc discussed together with the approximations which have to be
introduced in order to distinguish between core and band contributions. Accordingly, the static
structure factor and the exchange and correlation energy of conduction electrons in Be have been

determined. These quantities agree within experimental accuracy {-5%)with current electron-gas

theory. From the static structure factor the electron-electron pair-correlation function has been de-

duced and compared with corresponding calculations for jcllium. To this purpose the unavoidable

experimental hmitations on data accuracy and the theoretical difficulties which are encountered
when performing direct first-principles calculations are discussed.

I. INTRODUCTION

The accurate description of the collective behavior of a
many-fermion system is a basic problem encountered in

widely different physical fields like solid-state and
nuclear-matter theory. In the case of electrons, the prob-
lem is further complicated by the long range of the
Coulomb potential which prevents a straightforward ap-
plication of perturbative approaches.

In particular, for what concerns conduction electrons in

simple metals usually modeled as a free-electron gas, since
the pioneering work of VA'gner and Seitz' going beyond
standard Hartree-Fock approximation, an accurate
knowledge of the high-density behavior has been ob-
tained and approximate theories at metallic densities
have been developed. Also, considerable theoretical ef-
fort has been devoted to the dynamic and static structure
factor of the electron gss. The static structure factor is
particularly interesting since from it the two-body correla-
tion function and from this the exchange and correlation
energy of the system can be calculated. Apart from its
fundamental interest, the study of the uniform electron
gas is important because it affords a qualitative descrip-
tion of real metallic systems which, because of the pres-
ence of ion cores, have a nonhomogeneous charge density.
This circumstance affects the validity of some of the re-
sults (sum rules in particular) established for jelhum and
at the same time poses the problem of the interaction be-
tween core and conduction electrons.

Although the theory of the- two-body correlation func-
tion has been developed to a reasonable degree of accuracy
only in the jelliurn case, ' connections between the two-
body correlation function (static and dynamic) and single-
particle properties' ' exist also in real systems. More-
over, if experimental information on jellium properties
were available, very interesting checks on the correlation
energy and the structure factor itself could be made. Ob-

viously, no direct experimental information can be gained
on the structure factor of jellium itself; nevertheless, close-

ly related experiments have been performed on simple
metals. Actually, while extensive experimental research
has bccn pcrformcd on thc dyriamic structure factor of
several real systems, ' little is known about the static
structure factor, which in principle can be obtained from
the dynamic one by integrating over the energy losses due
to electronic excitations. In an actual experiment, howev-

er, this procedure leads among others to normalization
problems when comparing values obtained for different
values of momentum transfer, so that a direct measurc-
rnent is certainly preferable.

Recently, two independent measurements by means of
x-ray scattering of the static structure factor of metallic
beryllium have been reported, ' *' resulting in significant
differences for conduction electrons. This discrepancy,
coupled to the fact that the experimental techniques and
procedures for data reduction in the two measurements
were basically different, casts significant doubts on the re-
sults of both experiments.

Because of the importance of having reliable expel. men-
tal data on the correlation function in real many-body sys-
tems as explained above, we have performed a new mea-
surement of the static structure factor of beryllium em-

ploying a different experimental setup and a more sophis-
ticated data-reduction procedure. The comparison with
available theoretical predictions has been performed
without making any assumption relative to the relation be-
tween conduction electrons in real systems and in the jelli-
um model.

In the following sections we shall first outhne the basic
theory that allows the connection between the x-ray
scattering cross section and the static structure factor.
Then we shall recall the available theoretical approaches
to the calculation of the structure factor. Finally, the ex-
perimental procedures and results will be presented and
discussed.
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II. THEORETICAL BACKGROUND

Even though the response theory of electron systems to
electromagnetic fields is a well-developed subject described
in standard text books, ' nonetheless, it is useful to con-
sider in some detail the case of x-ray scattering and speci-

fy the conditions under which a sin1ple relation obtains be-

tween the scattering cross section and the static structure
factor. To this purpose in what follows wc will use the
van Hove formalism" and the procedure employed in

Refs. 4, 16, and 18.
Consider a target system composed by X nuclei (occu-

pying positions R~ which later on will be assumed to form
a periodic lattice) and SZ electrons. Let us assume that
the energy of the incoming x-ray beam is high with
respect to all binding energies of the electrons but small
with respect to electron rest energy m0c so that our sys-
tem can be described by classical quantum mechanics with
sn1all first-order corrections due to relativistic effects.

Under these conditions the x-ray scattering cross section
from the electrons is

do qK
— -= r0 icos 8

diode K0

proximations other than those involved in assuming

(K/K0)dy to be energy independent, which is known to be
true only when the electron binding energy is negligible
with respect to incoming photon energy. However, when

comparing theory and experiment d~ is usually approxi-
n1ated as K/K0 which in the case of free electrons
amounts to expanding d~ as a power series in ficK/m0c
and retaining only the first-order term. Then, as noted
above, it is clear that because of the contrasting demands

upon the incoming photon energy, a significant interpreta-
tion of an experiment will be possible only for low-Z ele-

ments and for a judicious choice of x-ray wavelength.
The general properties of the static structure factor are

well known in the case of homogeneous electron systems.
However, real many-electron systems are not homogene-
ous since the electronic number density n(r) =(p(r)) is
not constant throughout the signer-Seitz cell. As such it
is useful to describe the general properties of S(Q) as well

as its possible theoretical derivations in the case of nonho-
mogeneous systems.

First, using Eqs. (2) and (4) we can write

S(Q)= f d r dr '(p( r, O)pt(r ', 0) )

X=f dtdrdr'(p(r, O)p (r', t))
2 re

Xexp[ig ( r —r ' )+icot],

where K0 and K are the wave vectors of incoming and
outgoing photons, 8 is the angle between the polarization
vectors of the photons before and after the scattering pro-
cess, p(r, t) is the electron density operator in the Heisen-

berg representation, fico and fiQ are the exchanged energy
and momentum, respectively, and dy is Ac(BK/BE~), E~
being thc total systcn1 energy, i.c., the sun1 of thc outgo-
ing photon energy and the energy of the target system
after the scattering event. Although dy can be calculated
exactly only in the case of a single free electron, one has
that in a many-electron system d~(free) &dj (1 and that

d~ approaches dI(free) for increasing AQ. Then, as
described in the literature, ' the x-ray cross section is

simply related to the dynamic structure factor

S(g co)= f dt d r dr '(p(r, O)p (r ', t))
2mHZ

Xexp[iQ (r r'}+icot—] .

Neglecting the co dependence of (K/EO)d~, one can in-

tegrate the cross section of Eq. (1) over the whole energy
range,

=ro diNZcos 8 f dcoS(g, co),
0

so that an x-ray scattering experiment gives information
on the static structure factor,

S(Q)= f dcoS(Q, co) .

At this point we note that in Eq. (3) there are no ap-

Moreover, one has

=n(r)n(r') . (6)

S(Q)= f dxdr(p(r)pt(r+x))e
XZ

f dx f(x)e

where

f(x)= f dr(p(r)p (r+x)) .

For large x, using Eq. (6), one has

lim f(x)= f drn(r)n(r+x)=p(x) .

The function p(x) is known in the theory of structure
determination by x-ray diffraction as Patterson's map.
The above relations have a general validity, but as we are
interested in the case of beryllium we shall consider the
special case of a periodic lattice. In a crystalline system
the electronic nun1ber density n ( r ) has the lattice periodi-
city

n (r+RI ) =n (r), (1O)

RI being a translation vector of the lattice. Then, using
the periodicity, it is easy to show that

f p(x)e 'O "dx=N +5- - ~'P'(Q)
~

6

Xexp[ig (r —r ')],
so that S(Q}is the Fourier transform of the probability of
having an electron at the point r ' when another electron is
at the same time at point r. When

~
r —r '

~

is large no
correlation between two electrons at r and r ' exists. As
such,

lim (p(r)p (r ')) =(p(r)}(pt(r '))
I

r —r'I
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where G is a reciprocal-lattice vector and F(Q) is the usu-

al structure factor of the unit cell:

F(Q)= f n(Re 'o 'dr, (12)

where the integration is extended to the Vhgner-Seitz cell.

Because the long-range behavior of f(x) is described by
I

p(x) it is clear that f(x)—p (x) is a rather short-ranged
function, so that its contribution to the scattering is dif-
fuse in the whole reciprocal space. The function

f(x)—p(x) contains all the inelastic contributions to the
scattering cross section. This can be easily shown by split-

ting S(Q), as described by Eq. (5), in an elastic and inelas-
tic part:

NZS(Q) =HZ [S,i(Q}+S;„(Q}]

= f d«r '«II {r}10&«IS'«')10&e'~"

+ g f drdr '{0/p(r)
/

n& { n/pt(r ')
/

0&e'~''

=N @5- - [F(Q)/ + f dx[f(x) —p(x)]e

where
~
0& indicates the ground state and

~
n & an excited

state of the system. %e have to remember that although

~

n & contains the contributions from both electrons and

nuclei the two contributions can be separated because of
the large energy difference between the spectra of electron-
ic and nuclear excitations which allows only negligible

coupling between the two. This coupling contributes to
the nuclear motion as a phonon energy renormalization
and perturbs the electronic spectrum in a region of the or-
der of kaT about the chemical potential. Therefore, we

can consider S;„(Q) as coinposed by two contributions

S~os(Q) and S„(Q), corresponding to nuclear motion
[thermal diffuse scattering (TDS)] and to dynamic
electron-electron correlations.

%e have also to remember two simple sum rules. The
first one is the so-called compressibihty sum rule' which
states that

lim S(Q)=nke Ter(Q),
Q-+0

n and &r(Q) being the average electron density and the
isothermal compressibility, respectively. It is interesting

to observe that the sum rule of Eq. {14) is completely ex-

hausted by the TDS contribution, i.e.,

lim $„(Q)=0.
Q~o

The other simple relation is

correct analysis of experimental data must take them into
account.

No analytical theory is at present available in order to
calculate explicitly g ( r i, r2); ho~ever, several approximate
approaches have been applied rather successfully to the
electron gas. ' In the case of nonhomogeneous extended

systems the only approach available, other than the
Hartree-Fock approximation, is the slowly varying density

{SVD) approximation. Using the same argument em-

ployed by Sham and Kohn" when studying the self-

energy kernel, we can write

g{ri, r2)=gp[
~
ri —ri ~;n (ro)],

ro= {ri+r2}

where g~(r;n) is the correlation function of the homogene-

ous electron gas with density n Then Eq.. (17}becomes

f(x)—p(x)= f n(r)n(r+x)[gs[x;n(r+x/2)]Idr .

Since Eq. {19) is based on the short-range character of

gi, (x)—1 within the same approximation, we have

f(x)—p(x)=4irN f„[ (nr)]'[ g[sx; (nr)] —1Ir dr,

(20}

lim S„= lim $(Q) =1 .
Q~ ao Q~ oo

%e observe that taking the Pourier

S„(Q)—1 it is possible to show that

3 f [S„(Q)—1]e'~'dQ

(16)
assuming a spherically symmetrical electron density

within each atomic sphere Q,o. From Eq. (20) it is easily
transform of

seen that

ZS„(Q)=4m f n (r)Ss[Q;n (r)]r dr,

= f n(ri)n(r —ri)g(ri, r —ri)dri, (17}

where g(ri, r —r]) is the probability density of finding
two electrons r apart, the first being at r]. The function

g(ri, r —ri) has a number of exact properties that have
been extensively discussed by Rajagopal et al. , so that a

where Ss(Q;n) refers to the homogeneous electron gas of
density n.

As discussed in the Introduction the study of simple
metals can be used for the purpose of obtaining informa-
tion on the electron gas. Keeping this in mind, we can try
to separate the conduction-electron and the core-electron
contributions. Obviously this separation is an approxima-
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tion, inasmuch as there is no clear-cut distinction between
core and conduction electrons. Such a distinction has va-
lidity within the Hartree-Pock approximation since in this
case the various single-particle orbitsls retain physical
meaning. Using this approach, we can write'

ZS„(Q)=Z,S„„(Q)+ZsSi„„g(Q)+S;„i(Q),

where S „(Q),S&,„z(Q), and S;„,(Q) are the contributions
from core electrons, conduction electrons, and interference

effects. In this connection a useful property of Ss,„s(Q)
which can be used to test the validity of the separation

procedure is related to the behavior of Sh,„~(Q) in the
neighborhood of Q =0. One has that

Sh.a(Q) = +o(Q'»
2@i Qlp

where ~& is the classical plasma frequency. Since the
Hartree-Pock approximation is expected to be rather good
for the high-density core electrons, ' S„„(Q)can be easi-

ly calculated from the free-ion wave functions, while

S;„,(Q) can be determined using the approach described in
Ref. 18, i.e., employing the Wailer-Hartree treatment us-

ing orthogonalized plane waves (OP%) for the
conduction-electron states. The use of this approach for

S;„,(Q) is justified by its simplicity and by the fact that

S;„,(Q) is (1%of S«(Q).
Observing that the conduction-electron density is almost

constant in a simple metal, it is possible to deduce the
two-body correlation function in real space g(r) from the
"experimental" S&,„z(Q), by means of Eq. (17):

Co

g(r) = I+ I [Sh,„z(Q)—1]sin(gr)Q dg .
21r nf

(24)

In practice, however, one has that because of the form of
Eq. (24) a very accurate knowledge of Si „~(Q) in the
high-Q region is necessary in order to deduce a reasonably
accurate g(r) for small r, that is for rk~ &1. A striking
example of this difficulty has been offered by Singh and
Pathak ' who have compared their g(r)'s, calculated for
several values of r„with those obtained by Vashishta and
Singwi. Although the static structure factors were ex-
tremely similar in the tmo calculations, the resulting corre-
lation functions were remarkably different in the region
rk~ & 1, when the static structure factors started to show
systematic differences of order 17o in the high-Q region.
In this connection it is important to remark that no gui-
dance in order to deduce the shape of g(r) for small r can
be gained from the assumption that g(0)=0, as this as-
sumption has been shown to be false for charged Fermi
liquids at metallic densities. However, as mentioned
above, it has been established that g(r) has a number of
properties which for an electron-gas result in a "model"
formula depending on only two parameters currently in-
terpreted as a measure of the size of the correlation in the
parallel and antiparallel spin case, respectively. An at-
tempt to deduce g (r) from the experimental data by means
of this formula will be presented in the discussion of re-
sults.

III. EXPERIMENT AND RESULTS

The Be single crystal was a 2.4-mm-thick slab with the
extended face parallel to a (110) plane. The experiment
mas performed along tmo directions in reciprocal lattice
such that no Bragg scattering mould occur. The bulk of
measurements was performed with the scattering vector in
the hexagonal plane at an angle of -7' to the [100]
reciprocal-lattice vector. With the use of monochromatic
CoKa and Ag Ka radiation, data were obtained covering
the Q region [Q =4ir(sin8)/A. ] from 0.7 to 22 A '. In or-
der to have a good resolution while maintaining a suffi-
cient intensity, a Soller slit about 7 mm wide and having
0.25 resolution was placed in front of a NaI scintillation
detector whose change of efficiency due to Compton ener-

gy loss in the sample was found to be negligible st all an-

gles. A check of the geometrical correction accounting for
sample absorption and irradiated volume mas performed
by collecting data along the same direction with the crys-
tal set in transmission and in reflection. A comparison of
the two measurements allowed one also to select, for each
crystal setting, the angular range for which the cross sec-
tion of the scattered beam was definitely smaller than the
Soller-slit width. This condition mas not fulfilled only in
a small region at very high angle in transmission and very
low angle in reflection. Transmission measurements with

Ag Ka were also performed along a direction forming an
angle of -7' with the [001] reciprocal-lattice vector in or-
der to detect the presence of measurable anisotropy in the
static structure factor. In all cases an incident beam was
used having a cross section of -1&8 mm at the sample
surface and 0.3' divergence. Beam stability was checked
after all runs. Small corrections due to this factor were
performed on a fem Co Ka runs. Enough counts mere ac-
cumulated to make statistical errors absolutely negligible
with respect to other sources of uncertainty. The back-
ground was measured several times for each wavelength
and type of scan. In order to allow for sample trans-
parence, runs were made without the sample and with a
lead foil having the same shape of the crystal. Standard
formulas for geometrical effects in unsymmetrical
transmission and reflection were used. In order to account
for x-ray polarization, the polarization ratio of our pyroli-
tic graphite monochromator mas measured for both radia-
tions using a direct method similar to that described by Le
Page et a/. The measured ratios were 1.000(2) and
0.914(4) for Ag Ka and CoKa, respectively. The data ob-
tained in the hexagonal plane with AgKa and corrected
for geometry and polarization are shown in Fig. 1.

Multiple scattering was allowed for by introducing a
polarization-dependent angular factor in the usual quasi-
isotropic approximation developed for neutrons. This
factor could be calculated exactly in the case of an infin-

itely thin slab, which, considering the shape of our crystal,
was considered a reasonable approximation. The multiple
scattering coefficient derived for neutrons and appropriate
to our sample thickness snd geometry was then multiplied

by this factor. Multiple scattering correction ranged for
Ag Ka from 8% to 12% and for CoKa from 2% to 3%.

The one-phonon component of TDS along the chosen
experimental directions was calculated in the usual har-
monic approximation from the dynamical matrix derived

by De Wames et al. for Be from experimental data and
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subtraction of the TDS component and division by the
factor dyEiEq, the normalized static structure factor for
electron correlations (ZS ) was obtained for each direc-
tion. The results for the direction in the hexagonal plane
obtained combining Co and Ag results are shown in Fig. 2
and listed in Table I. On the basis of the uncertainties in
the corrections performed on the raw data, the resulting
structure factors were estimated to be accurate to within a
few percent.

In order to evidence the presence of anisotropy an
agreement factor 8 for the structure factors measured
along different directions was calculated:

l()U

2y (deg )

FIG. 1. Incoherent intensity scattered in transmission along

the (100) direction from a Be single crystal is shown in arbi-

trary units. The data have been corrected for absorption, irradi-

ated volume, and polarization.

~
St(i)—S2(i)

~

[S&(i)Sq(i)]'

[N indicates the number of points on the Q s«le, and

S&{i}and S2(i) the values of the structure factors in the

two directions at the ith value of Q.] The value obtained

for g (().()3) turned out to be of the order of the estimated

uncertainties in each structure factor determination.

IV. DISCUSSION

using for the atomic form factor the values published by

Benesch and Smith. The higher-order components of
TDS were obtained from the static approximation'

which, because of the quasielastic nature of TDS, is par-

ticularly appropriate in the case of x rays. The total TDS
contribution was, on average, 6% of the measured cross

section with a peak value about twice as large in the re-

gions of minimum distance from reciprocal-lattice points.

The total inelastic cross section measured with Ag radia-

tion was then normalized in the region of Q-20 A ' to

the sum of the incoherent atomic cross section (given in

Ref. 29) multiplied by the factor dyK/Eo appearing in

Eq. (1) and the calculated total TDS contribution. Upon

Examination of Fig. 2 shows, particularly in the low-Q

region, some dips and bumps in the present measurement

which arise from structure in the TDS correction not ex-

actly matched by the corresponding raw data. These ir-

regularities give an idea of the maximum error introduced

by the TDS correction. Similar features are of course

present also in the data taken along the vertical axis of the

crystal and are responsible for a large fraction of the
difference between the two measurements. One can con-

clude that within experimental accuracy, no anisotropy in

the structure factor has been detected and that the es-

timated error of -0.1e arising from systematic factors is

reasonable. Shown in Fig. 2 are other curves obtained

~0~aa» V% OO

0
IP

g)
2

10 15 20

&G 2. Normahzed static structure factor for electrons (ZS ) along the ( 100) direction of a Be single crystal {closed circles). A)so
sho~n» the free-atom calculation of Ref. 29 (solid line), the result of a SVD calculation as explained in the text (dashed line), and the
measured structure factor of Ref. 15 (dashed-dotted line).



28 COMPARISON OF IMAGE-POTENTIAL THEORIES 1777

TABLE I. Experimental static structure factor for electrons

(ZS ).

04
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

10.0
10.2
10.4
10.6
10.8

~ee

0.16
0.23
0.37
0.45
0.59
0.75
0.94
1.08
1.27
1.42
1.58
1.72
1.82
1.89
2.05
2.25
2.40
2.47
2.49
2.53
2.58
2.62
2.67
2.69
2.77
2.83
2.87
2.96
3.02
3.02
3.07
3.10
3.13
3.18
3.20
3.22
3.20
3.26
3.30
3.35
3.37
3.42
3.45
3.46
3.46
3.45
3.50
3 ~ 55
3.54
3.63
3.66
3.70
3.72

11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0
15.2
15.4
15.6
15.8
16.0
16.2
16.4
16.6
16.8
17.0
17.2
17.4
17.6
17.8
18.0
18.2
18.4
18.6
18.8
19.0
19.2
19.4
19.6
19.8
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4

S

3.70
3.76
3.76
3.75
3.78
3.80
3.77
3.82
3.83
3.84
3.85
3.84
3.84
3.85
3.83
3.92
3.87
3.92
3.90
3.89
3.90
3.92
3.95
3.95
3.93
3.92
3.93
3.98
3.94
4.02
4.02
3.97
3.92
3.94
3.95
3.95
3.97
3.95
3.96
3.94
3.91
3.93
3.90
3.91
3.98
3.96
3.97
3.96
3.95
3.96
4.00
4.02
4.09

from experiment and calculations. Relative to the free-
atom calculation of Ref. 29 present experiment shows ex-
tremely good agreement for Q )4 A '. This result is not
unexpected since beyond this value all deviations from the
asymptotic value of S(Q) arise essentially from core elec-

trons which, in a recent calculation by Dovesi et al. have
been shown to exhibit small charge-density differences of
1% between solid and free atom. The simplistic pro-
cedure of data reduction adopted in the polycrystal experi-
ment is reflected in the differences with the present, more
accurate study. In addition, in a polycrystal experiment,
the subtraction of Bragg scattering may lead to serious er-
rors particularly in those regions where Bragg peaks are
not well resolved. We believe that the bump in the
polycrystal experiment at Q-10 A ' might be due to this
cause. Last, we remark that the area under the two exper-
imental structure factor curves is nearly the same. This
coincidence, probably accidental, has a direct bearing upon
electron-gas correlation energy as detailed below. Also
shown in Fig. 2 is the structure factor calculated in the
SVD approximation from the charge density obtained by
Moruzzi et al. ' for fcc beryllium from a first-principles
calculation. Considering the importance of the SVD ap-
proach for determining one-electron potentials in band
calculations, its capability to reproduce present results to a
good approximation is certainly remarkable.

It has already been pointed out that in the formalism
of Kohn and Sham, ' using the virial theorem, it is possi-
ble to write the ground-state energy of an electron system
in terms of measurable x-ray quantities. It is also possible
to avoid the approximations introduced by Weiss and
Mazzone and account exactly for the exchange and
correlation energy of the system by means of S(Q}. Per-
forming such calculations on Be one has that the contribu-
tion to the total energy (-400 eV/atom) computed from
S(Q) is -90 eV/atom and that the exchange and correla-
tion contribution to cohesive energy is 3.8 eV/atom. The
nucleus-electron and electron-electron terms, calculated
from the experimental structure factors of Larsen, con-
tribute to the cohesive energy another 0.7 eV/atom. These
values should be compared with the experimental (-3.3
eV/atom) cohesive energy. Considering that present (4.5
eV/atom) cohesive energy is obtained from the difference
of free-atom and solid total energies, one has that experi-
mental scattering cross sections for Be have to be regarded
as very accurate, at least at the present state of the art.
Moreover, since a large fraction of the cohesive energy ar-

ises from exchange and correlation effects in conduction
electrons, accurate $(Q) curves are necessary to this pur-

pose, at least for low-Z elements.
As explained in the theoretical introduction it is possi-

ble to separate the structure factor in core and
conduction-electron contributions plus a small interference
term. The core contribution has been obtained from the
configuration-interaction calculations of Thakkar and
Smith exploiting the close similarity of crystal and free-
atom core electrons, while the interference term, which is
less than 1% of the conduction-electron structure factor,
has been abtained using orthogonalized plane wave (OPW}
functions for the conduction-electron states and Herman
and Skillman wave functions for core electrons. The
Sb,„d(Q) obtained with this procedure is shown in Fig. 3.
The asymptotic value is reached for Q -2kF in agreement,
within the errors, with all electron-gas theories. For
smaller values of Q the experimental curve deviates fram
Hartree-Fock approximation, also shown in Fig. 3, and is
in close agreement, except perhaps at very small values of
Q, with the Singh and Pathak23 curve which is representa-
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FIG. 3. Experimental band-electron static structure factor for
Be (closed circles). Also shwvn are Hartree-Fock (solid line) and

Singh and Pathak (dashed-dotted line) calculations for electron

gas. The dashed line refers to a "model" S~„q(Q) obtained from

Rajagopal pair-correlation function (see text).

tive of modern electron-gas theory.
Assuming that present Ss,„q(Q) is sufficiently represen-

tative of the jellium structure factor, the calculation of the
jellium correlation energy, proportional to the integral of
SI„„q(Q)—1, can be performed along the same lines fol-
lowed in Ref. 1S for the results of the polycrystal experi-
IIlcnt Slllcc 'thc IIltcgrR1 of SI,q„g(Q) 1 18 practically thc
same in the two experiments, the numerical values ob-
tained from the polycrystal apply also to the present case.
The main result is that the correlation energy deduced

from a combination of the exact high-density treatment
and present experiment is, at metallic densities, only a few
tenths of an eV higher than that calculated from the inter-
polation formula of Hedin and Lundqvist. 3

As mentioned in the theoretical introduction Rajagopal
et aL have developed a "model" for the electron-gas
pair-correlation function which obeys a number of con-
straints arising from the solution of the many-electron
Schrodinger equation when a pair of electrons is allowed
to come close while keeping the others fixed. In order to
fix the value of the two parameters appearing in the model
pair-correlation function we have chosen to calculate from
this function a model S(Q) and select the values of the pa-
rameters which give the best agreement between experi-
mental and model S(Q) curves. Because of the nature of
the constraints the resulting model S(Q) is not expected to
be very accurate at low-Q values corresponding to large
electron-electron separation. Comparison with the Singh
and Pathak curve reported rn Ftg. 3 shows that thIs &s

indeed the case and that, for Q ) 1 A ', the model S(Q)
is very accurate and coinciding with experiment within es-
timated errors.

Starting from S&„z(Q) a well-known inversion pro-
cedure allows the calculation of an experimental pair-
correlation function which can be compared with the same
function calculated for the homogeneous elec~ron gas.
Two pair-correlation functions obtained from SI„„q(Q)are
shown in Fig. 4 together with the Hartree-Fock curve and
a calculation by Zabolitzky ' which has been obtained
directly from a Bijl-Dingle-Jastrow function and therefore
is not affected by the errors arising from an inversion of
S(Q) as confirmed by the fact that Zabolitzky's curve is
practically indistinguishable from the pair-correlation
function obtained directly from a Monte Carlo calcula-
tion. In order to avoid numerical difficulties in the in-
version of SI„„q(Q),a polynomial fit has been used for the
experimental data up to 4 A ', while from that point on,
Sg,„e(Q) was collsldcrcd to 11Rvc rcacllcd lts RsyIIIptotlc
value since no physical meaning can be attached to Auc-

FIG. 4. Experimental g(r) for conduction electron from a polynomial fit to Sq,„~(Q) (dashed-dotted line) together with Hartree-
Fock (solid line), Zabohtzky (dashed line), and experimental Rajagopal-type g (r)*s (dotted line).
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tuations at large-Q values. Of course, this procedure
amounts to losing most of the information relative to
r &r~-2m/4 A. It is interesting to note that for r &r
the experimental g (r) is in good agreement with
Zabolitzky*s curve which in most of this region is also
very similar to the Hartree-Fock approximation. Actually
the experimental g(r) is such that with the exception of
the region around r-1 A, where it favors Zabolitzky's
calculation, it nearly coincides with both curves. In other
words we have that in the region where the experimental
g(r) is significant it shows the only behavior compatible
with theoretical calculations. In view of the fact that this
result has been obtained from experimental data without
any assumption, we have that all physical information
which can be extracted from that part of Sb,„d which
differs appreciably from its asymptotic value are inherent-
ly sound. This statement is in line with the fact that
ground-state energy calculations based on the integral of
S(Q)—1 have turned out to be very accurate. In order to
have an experimental g(r) accurate for all r's, an experi-
ment has to be performed capable of measuring Sb,„d(Q)
up to very-high-Q values to an accuracy better than, say,
1%. In view of the problems posed by the data-reduction
procedure and the necessity of extracting S»„d(g) from
the total S„(Q), to perform such an experiment seems, at
the moment, a very difficult task. This problem may be
circumvented by combining experimental and theoretical
results. To this purpose we have used Rajagopal s theory
for g (r), having fixed the value of the two free parameters
with the help of present Sb,„d(Q), as explained above. The
resulting pair-correlation function is shown in Fig. 4. We
believe that, at the present experimental state of the art,
this is probably the best procedure to obtain an accurate
experimental g(r) without any ad hoc assumptions. It is

remarkable that this pair-correlation function is in very
good agreement with Zabolitzky's calculation except at
very-small-r values. In this region, however, Zabolitzky's
curve does not satisfy the condition derived by Rajagopal
et al. stating that, for electrons having opposite spins, in
the limit of r going to zero, g(r) =g'(r), in atomic units.
In summary, one has that the agreement between present
experimental results for conduction electrons in Be and
the corresponding theoretical predictions for uniform elec-
tron gas is very good.

The present pair-correlation function, on the other
hand, is in sharp contrast with that derived for Be by
Eisenberger et al. ' from a conceptually similar experi-
ment. Indeed, in the g (r) of Ref. 14 a well-developed peak
at r -0.3 A appears. In order to understand the nature of
this peak we have inverted Sb,„d(g) reported in Ref. 14
without extending analytically the data to Q~ ao but set-
ting Sb,„d(g)=1 for Q )8 A, as shown by the experi-
ment. With this procedure we have been unable to obtain
from the data of Ref. 14 a pair-correlation function hav-
ing a peak at small r. It appears therefore that since the
structure factor employed for the inversion by Eisenberger
et al. was allowed "to approach unity with the asymptotic
random-phase approximation (RPA) form such that g(0)
was equal to zero" the peak appearing in Ref. 14 is a re-
sult of this assumption. This conclusion is in line with
current practice in liquid-structure determination where it
is recommended to go beyond Q values of the order of 10
A if structures in direct space with size 1—3 A have to
be determined. The extreme sensitivity of the small-r
part of the pair-correlation function to changes in the
structure factor is also clearly illustrated by Kaplow
et al. in a study of the infliience on g(r) of small sys-
tematic errors in the high-Q part of S(Q).
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