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Lattice thermal conductivity in Cu-Al alloys is calculated for the first time within a two-

dimensional formalism involving the scattering of phonons by strain fields of finite spatial extent

around randomly oriented dislocations of edge and screw character. For the finite strain fields,
scattering widths indicate that long-wavelength phonons scatter very weakly. In addition to phonon

scattering by the strain field around the dislocation, phonon-electron scattering is included to obtain
the overall phonon relaxation rate. Comparison is made between the calculated results and measure-

ments on the commercial alloy Evanohm. Evanohm has a very high residual resistivity and thus

possesses a low electronic thermal conductivity. Therefore, the phonon contribution to the thermal
conductivity may be unambiguously identified for this alloy unlike the situation encountered for
most other alloys at very low temperatures. The calculated lattice thermal conductivity is found to
depart from the usual T dependence in general agreement with the measurements on Evanohm.

I. INTRODUCTION

Dense arrays of dislocations arrange themselves in such
a manner as to minimize the free energy. In doing so, the
strain fields of individual dislocations tend to cancel each
other resulting in a finite average cutoff radius for the
strain field about each dislocation. This average cutoff ra-
dius R may be related to the density of dislocations. ' It is
to be expected that for phonon wavelengths large com-

pared to R scattering will be weak. This should happen at
very low temperatures. But, as the temperature is in-

creased, phonon wavelengths become shorter and scatter-
ing becomes stronger until, finally, phonon wavelengths
become small compared to R and infinite strain-field
scattering results. In the latter case, lattice thermal con-
ductivity Ks varies with temperatures as T (Ref. 2).

The above model was first proposed by Ackerman and
Klemens, who predicted that the finite range of the strain
field around a dislocation leads to a decrease of the
thermal resistivity below some temperature which is deter-
mined by the dislocation density.

A departure from E& ~ T was seen in all the deformed
alloys investigated by Linz et al. , but was overshadowed
in the alloys of low residual resistivity by another anoma-

ly, present in all alloys (both annealed and deformed),
which also seemed to increase Kg below 0.7 K. Only in

one alloy, Evanohm, which has a very high residual resis-

tivity, did this additional anomaly seem to be unimpor-
tant, and did K~ follow approximately the predictions of
Ackerman and Klemens.

Linz et al. were not able to explain this discrepancy,
though they suggested that it was due to mobile disloca-
tions. This left in abeyance the question of why disloca-
tions were less mobile in Evanohm. Furthermore, Ander-
son pointed out that their anomalous Kg varied too rapid-

ly around 0.7 K to be explained by any phonon scattering
mechanism.

It seems more likely that the anomaly is due to a

measuring error in the total thermal conductivity Kt
Any such error would be multiplied since the Lorenz
number was used to calculate the electronic thermal con-
ductivity K„and Kg was found from Ktot Kg Indeed
the anomaly is not present in Evanohm, simply because
for this alloy K, is small, while in the other alloys
Kt t K is only a small fraction of K„,. It now appears
possible that it was due to a small error in the vapor pres-
sure thermometry caused by an incipient thermomolecular
effect at the lowest of temperatures.

For this reason, the effect of Ackerman and Klemens
was only clearly seen in Evanohm, but may well have been
present in all the heavily deformed alloys. Cu—10 at. %
Al, which has the next highest residual resistivity, exhibits
this anomalous behavior below 0.7 K. However, above 0.7
K, K& behaves similar to Kg for Evanohm but with an ad-
ditional slight bowing between 2—3 K. This bowing was
explained by Madarasz and Klemens who employed a
resonant scattering model.

The finite strain-field model of phonon scattering by
dislocations does appear to be a valid one for Cu—10 at. %
Al. The original theoretical work of Ackerman and Kle-
mens did address this alloy system. However, the phonon
scattering by a dislocation was treated as a three-
dimensional scattering problem. In particular, Eq. (11) of
Ref. 3 is only appropriate for a three-dimensional spheri-
cally symmetric scattering center. As discussed by Zi-
man, though, phonon scattering by a dislocation is a
two-dimensional scattering problem.

In the present paper the formalism of Ackerman and
Klemens is applied in the two-dimensional regime. Also,
we have extended the calculation to include the effects of
an edge dislocation with a finite cutoff radius. The origi-
nal work only considered screw dislocations. An addi-
tional feature of the present work is the averaging of pho-
non wave vectors onto the plane of scattering.

In Sec. II we present the theory of phonon-dislocation
scattering by edge and screw dislocations and calculate
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their scattering widths. These results are then applied to
the problem of lattice thermal conductivity of copper al-
loys in Scc. III. Additionally in Scc. III wc compare the
results of our calculation with those of Ackerman and
IGemens. Significant differences are found. %e further
discuss the dislocation dipole model and the difficulties in
obtaining data on Cu-Al alloys at low temperatures which

may be directly compared with the present model's predic-
tions of lattice thermal conductivity. A summary is given
in Sec. IV.

II. THEORY

In this section wc follow, in general, the approach to
phonon-dislocation scattering as prescribed by Ziman.
Just as a photon's velocity is varied when traveling a
medium of changing index of refraction, so too is the
phonon's velocity varied when traveling through a strained
region. Thus we may write the fractional change in pho-
non velocity c„when 5c, /c, ««1, as

Here, y is the Gruneisen constant and e is representative
of the component (s) of the strain tensor which produces
the phonon scattering. Since the energy of a phonon with

wave vector q 0 is fiqoc„we may, with the aid of Eq. (2.1),
write the perturbation energy density U, due to an element
of the strain field e;J, as

U (s;J )=yfiqoc, e~,
where A' is Planck's constant divided by 2m,

The scattering from a phonon state of wave vector qo to

q, is shown graphically in Fig. 1 where the dislocation
axis is along the z axis. Because of cylindrical symmetry
and the assumption of elastic scattering, the z component
of the wave vector is conserved and the problem of pho-
non scattering by a dislocation reduces to a purely two-
dimensional process in which scattering takes place be-

tween q 0 to q,' in the xy plane. The prime indicates that
the scattering is between the components of qo and q,
projected onto the xy plane, i.e., qo ——q,

' =qosin80.
The transition matrix in thc first Born approximation

due to an element of the strain field is given by

(q,' ~
U(a;; )

~
q;) = J, f, U(~;, )e'o 'pdpdg .

2q SiNP/2

FIG. l. Scattering diagram of the elastic scattering from an

initial phonon state of wave vector qo to a final phonon state of
wave vector q, by the strain field of a dislocation reduces to a
two-dimensional problem +here scattering takes place between

q o and q,
'

in a plane perpendicular to the line of the disloca-

tion. Since the z component of qo is conserved qo ——qosin8o ——q,
and g'=2qssin(P/2).

and for the edge dislocation they are

[{1—2v)sing+2 sing cos P], (2.5a)
4n (1—v)p

e~ —— [(1—2v)sing —2 sing cos2$], (2.51)
4n (1—v)p

[cosP(cos {()—sin P)], (2.5c)
4m'(1 —v)p

where b is the magnitude of the Burgers vector and v is
the Poisson ratio. The above expressions assume the xz
plane to be the slip plane and, in the case of the edge dislo-

cation, b to lie along the x axis.

In this equation A& is the area inside a circle of radius
p=R lying in the xy plane in which the transition from

q o to q,' takes place, and Q'= q 0 —q,'. The polar coor-
dinates (p,P) in the xy plane label the field vector p of the
dislocation strain field. The relationship between p and
Q' is shown in Fig. 2. ro and R are dislocation core ra-
dius and the strain-field —cutoff radius, respectively.

The elements of the strain tensor for both screw and
edge dislocations are given by Nabarro. 9 For the screw
dislocation they arebslnf-

&xz =&ax =
4n p

&ys=&y =
4r p

(2.41) FIG. 2. Angles vrhich label the strain-field position vector p,
the scattering vector Q ', and their relationship P =(+a.
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Let us now consider the calculation of Eq. (2.3), the
transition matrix for each strain component. Consider
first the elements due to the strain field of a screw disloca-
tion. Because there is no preferred direction of the
Burgers vector in the plane for this case, we may rotate

the coordinate system in Fig. 2 so that Q
' is parallel to the

x axis and a=0, resulting in P=g. Then the transition
matrix for the e~ component of the strain field becomes'

& q,
'

I
U(e~)

I q o &
=

4 A7T p

2m R
X f f cosp exp(ig'p cosp)

& qs I U(e~)
I
qo)

—yblq oc,

~ R
Ji(Q'p)

X KJo(g'p)+2I
p 'o

where

Jt = [(1—2v) —2 cos a]sina,

& q,
'

I
U(e„y)

I q o) =

(2.14)

(2.15)

~ R

Xdpdg.

Doing the p integration first results in

(2.6)
J)(Q'p)

X (M —1)Jo(g'p)+2N
p 'o

(2.16)

b 'c,
&q,

' IU(e~)
I
qo)= . ,

* f exp(ig'pcosg) dP.
4+i 'A& To

(2.7)

The integral definition of Jp, the Bessel function of order
zero, is

where

M =2cos a —cosa+1,

and

N =(3 sin a —cos a)cosa .

(2.17)

(2.18)

2e
Jp(x) = exp(ix cosP)dP .2' 0

With this definition, Eq. (2.7) takes the form
R

b 'c,
(e~) I q o &

= . ,
'

Jo(Q'p)
2i 'A

(2.8)

(2.9)

&q I
U(e )

I qo&=

When performing the same integration for e, Eq. (2.7)
would contain a tang in the integrand. Integration over
the full angular range of 2m. would then yield zero. There-
fore, only the symmetric part of the strain field need be
considered.

The matrix elements for the strain tensor elements of an
edge dislocation are not as straightforward to evaluate. In
this case the Burgers vector does have a preferred direc-
tion and a rotation of the coordinate system of Fig. 2,
such that a=0, cannot be done. We must include both
the a and g angular dependences in the integration process
with the constraint /=(+a. The details of these calcula-
tions are quite lengthy and involved, and will not be given.
However, the results are as follows:

W~g ~g
do qo

dP (c, /A&)dP
(2.19)

The angle P is defined in Fig. 1; it is the scattering angle

between qp and q,'. The transition rate W, , is
q o~q

given by"

[21&q,
'

I
U(e~)

I qo) I ]PJ, (2.20)

for the screw dislocation, and by

[I &q' IU«) lqo& I'

+1&q,' I
U«)

I q'& I'

+21 & q,
'

I
U(e~ )

I q o ) I ]PJ, (2.21)

We are now in a position to calculate differential

scattering widths for a screw and an edge dislocation. In

general, the differential scattering width is given by the

expression

~ R
Ji(Q'p)

X HJo(g'p) —2I o'

where

H = [(1—2v)+2 costa]sina,

I =(3cos a —sin a)sina,

f=2(1—v),

and Ji is the Bessel function of order 1,

(2.10)

for the edge dislocation. The factor of 2 within the brack-

ets of (2.20) and (2.21) arises because the strain tensor is

symmetric and there must be another equal contribution

to the scattering for each off-diagonal element. Also, in

the above expressions p~ is the density of final scattering
states given by Ziman as

(2.11)

(2.12)

Ap qp (2.22)

(2.13)
Combining Eqs. (2.9), (2.19), and (2.20), and Eqs. (2.10),
(2.14), (2.16), (2.19), (2.21), and (2.22) yields
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«s b qo
[1—2Je(Q'R)+ Jo(Q'R)],

dP ger(2 sin2P/2)

do'E f b go z Ji(Q'R) Ji(Q'R) Je(Q'R)Ji(Q'R)
A+BJO(Q'R)+CJ02(Q'R)+D, +E +I"f 4n.(2sin P/2) (Q'R)2

{2.23)

A =(H —I)'+(K+I)'+2[(M —1)+N]',

B =2[(HI H) (—KI+—K)

—2[N(M —1)+(M —1)']I,
C =H +K +2(M —1)

{2.25a)

(2.25b)

(2.25c)

D =4[2{HI I ) 2(—KI+—I ) 2[N{M——1)+N ]I,
(2.25d)

for screw and edge dislocations„respectivdy. To obtain
the above expressions we have used the fact that
Q'=2qe sing/2 and the approximations Jo(Q'ro) ~1,
Ji(Q're)/Q're~ —,

'
when Q're &&1. This should be espe-

cially true at low temperatures where qo is small. The
core radius is on the order of a lattice constant. The
forms of tlie coefficients iii Eq. (2.24) are as follows:

Rtivc change in the component of phonorl velocity along
the initial direction of motion and then integrated over the
scattering angle, viz. ,

(2.26)

where n, c(:q,' VT and noc(:qo. VT, and VT is the tem-
perature gradient. This weighting factor is quite compli-
cated and possesses several singularities. The difficulties
with it ar1sc because of thc cylindrical symmetry of thc
problem. They axe discussed at some length by Carruth-
ers and, following him, wc approximate thc wcight1ng
factor 1 n, /n—o by 1 —cosP. Thus inserting Eq. (2.23)
and Eq. (2.24) into Eq. (2.26) and carrying out the integra-
tion we get

E=8(I2+N ),
F= 4[HI KI—N(M ——1)—] .

(2.25e)
y'&go 2, 1 +

(2 25f) mrs —— 1 —2JO(qoR)+ Jo(Q'R)dP

%hat is of interest in transport problems is the total
weighted scattering width. The differential scattering
width is first weighted by a factor which measures the rel-

r'b'eo 2 + 2
+e Ji(Q'R)

era —— — 2mA+2rrBJe(qoR)+C f Jo(Q'R)dP+, . dP
4m 2q+ -~ sin( /2

E +~ Ji{Q'R) p +w Je(Q'R)J, (Q'R)+, 2 2
dp+ . dp

(2qiiR) -~ sin2(p/2) 2qoR -& sin(p/2)
(2.28)

%e have found that only the Jo terms of Eqs. (2.23) and
(2.24) could be integrated analytically. All the other terms
involving Besscl functions had to be integrated numerical-

ly. However, there were two added difficulties which we
considered when evaluating (2.27) and (2.28). First, both
scattering widths Rxe functionally dependen~ on

qo ——qosin80, the projection of qo onto the xy plane. %c
therefore averaged these expressions over 8o, which gave
us double integrals to evaluate. Of course, fox the first
texm of each expression the averaging was straightforward
and gave a multiplicative factox of m/4. Second, the coef-
ficients in the expression for the scattering width of an
edge dislocation are functionally dependent on the angle 0,

and, hence, we had to average this expression over o,.
%hen this was done the numerical values obtained werc
the following:

In the next section wc will apply the results of oux'

scattering width Mculations to the problem of lattice
thermal conductivity of copper alloys.

Fol an 1sotropic Dcbyc continuum thc lattice thermal
conductivity is given by

4r0D T' 8o'T x "e"3
' '3

Ks f——
2

r{co)dx, {3.1)
2 c, en 0 (e"—1)

where x =AN/AT, eg ls thc Dcbye temperature, m~ 1s

the Debye frequency, k~ is the Boltzrnann constant, and w

is the total relaxation time.
At very low temperatures the total relaxation time is

made up of contributions from phonon-electrorl scattering
phonon-scx'ew dislocation intex action ~~, and

phonon-cdgc d1slocRt1on 1ntcl'action TE. At these tcmpcra-
tuxcs umldapp px'ocesses arc very weak and may be
neglected. Normal proccsscs may also bc disregarded
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since none of the scattering mechanisms being considered
are strongly dependent on frequency. Thus the total relax-
ation rate is

1 1 1 1+ +
T Tph~ TE

(3.2)

The phonon-electron relaxation time is directly propor-
tional to the wavelength and may be written as

(3.3)

For copper alloys the interaction parameter
E =1.12X 10 sec/cm ~

The relaxation times for the anharmonic dislocation
scattering are related to the scattering widths of Eqs.
(2.27) and (2.28) by

(3.4a)

8-
6-

-}
lO8-
8-

-2}08-
6-

I I i i I I i I} I I I I I I I I}

TE ——1/NEoECg .

Again, both o~ and eE must be evaluated numerically for
each qo. In addition, these quantities were averaged over
values of qo projected onto the xy plane. The speed of
sound c, is a spherically averaged speed and has the value
of c, =2.78X10 cm/sec for copper. NE and Nz are the
densities of edge and screw dislocations. The units associ-
ated with N are length of dislocation per unit volume of
crystal, i.e., cm

In copper alloys edge dislocations are predominant. '

We thus assume there are twice as many edge as screw
dislocations, as would be the case in which the Burgers
vector is randomly oriented with respect to the dislocation
line. In this case NE ———', N~ and Nz ———,

'
N~ are substituted

in Eqs. (3.4a) and (3.4b), respectively. Here Nd is the total
dislocation density.

Additionally, in Cu-Al alloys, solute atoms tend to clus-
ter about edge dislocations in an attempt to relax its strain
field forming the so-called Cottrell atmospheres. These
atmospheres are themselves capable of scattering pho-
nons. ' ' We further assume, then, that the strain-field
scattering by an edge dislocation will be enhanced by a
factor of 2. This is in rough accord with observation. '

With the above relaxation rates, and Eq. (3.1), we have
calculated theoretical values of lattice thermal conductivi-
ty. Figure 3 illustrates the effect of having either all edge
or all screw dislocations with finite strain field present.
Both curves were calculated for a dislocation density of
N~ ——4.5 X 10" cm . Despite the complexity of the edge
scattering width, Eq. (2.28}, as compared to that of the
screw dislocation, Eq. (2.27}, both curves exhibit very
similar shapes. The main difference appears to be in the
relative strengths of scattering.

If phonons are scattered both by edge and screw disloca-
tions, the curves in Fig. 4 are the result. These curves
were calculated based on a ratio of two edge to one screw
dislocation as discussed earlier. For comparison, we have
calculated several curves for different dislocation densities
as indicated on the figure. Equivalently, these curves were
calculated for a different strain-field —cutoff radius. The
relationship between the two quantities is given by Kocks
and Scsttergood'; it is N~ ——1/m.R .

With s finite strain field, the dislocation acts as a

-4
IO8-
6

-5
I l I I I t I i } i} I I l I I l l I

O. l 0,2 04 O60.8) 2 4 6 8 fO 2O 40 60 }OO

FIG. 3. I.attice thermal conductivity vs temperature for ei-

ther all edge or all screw dislocations with finite strain fields.

X~——Nq ——4.5&10"cm '.

cylindrical lens of varying index of refraction and radius
R. When densities are small, R is large, and at all but the
lowest temperatures, where phonon wavelengths are k) R,
scattering appears to be caused by an infinite strain field.
The thermal conductivity curve can then be expected to
exhibit very little structure, other than a T behavior,
which is what we find for N~ ——4.5 X 10' cm

For an infinite strain-field-type scattering the condition
A, gR must be met. However, as the dislocation densities
increase, this condition can only be satisfied at higher and
higher temperatures. We thus would expect to see more
structure in the thermal conductivity curves over a
broader range of temperatures. Our curves corresponding
to N~ ——4.5X 10" cm and N~ ——9.0X10" cm illus-
trate this effect.

In Table I we attempt to lend more of a quantitative
feel for the magnitude of this effect and the temperature
range in which the transition from 8 to infinite strain-
field scattering takes place. Kg, /Eg is the ratio of the lat-
tice thermal conductivity limited by electrons alone to the
lattice thermal conductivity with R field dislocation
scattering included. The temperatures T(10%) and
T(50%) are those at which Kg exceeds the lattice thermal
conductivity in the limit of infinite strain-field scattering
by 10% and 50%. In other words, where the ratio
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FIG. 4. Lattice thermal conductivity vs temperature for vary-

ing dislocation densities or, equivalently, for varying cutoff
strain-field radii. Dislocation densities (in units of cm ) aI'c in-

dicated on the figure. Phonon-electron label stands for the
phonon-electron-scattering —11IMtcd lattlcc thermal conductlvlty.
The dashed curve ls 6ttcd to the experimental data of Linz 8f cl.
(Ref. 4) taken on heavily deformed Evanohm.

E/K ——1.1 and 1.5, respectively. The value of hT
gives the temperature range in which the transition from
10% to 50% takes place.

Table I illustrates that which is predictaMy expected
from the R field madel. As the number of dislocations in-

creases thc ratio of K/E& lncI'cRscs, slncc R field scattcr-
i g becomes stro ge and IDO 'mport t. And, the teID-

pcfatuic range ln which transition from 8 to infinite

strain-field sc8ttcring takes place also lncI'eases.
For cornparlson %ve display Table II which is IDadc Up

of the values from the earlier work of Ackerman and Kle-
mens (AK).s Several observations may be made. By com-
paring the number of dislocations for ratios of Eg, /K at
3 K %ve IDay conc1udc the AK calculation predicts 8
strongcf interaction. IQ particular, ln order to obtain the
value of Eg, /E ——2.1 wc had to increase the number of
dlsloc8tions by RQ oldci of Inagnitudc over AK to obtain
thc SRIDc value of this 1"atlo. Also, lt ls Rpp8rcnt, by coID-

paring values of KT', that our transitions from R to infin-
ite strain-field scattering are nore gentle, again reflecting
thc diffcrcncc of thc interaction strengths between thc two
calculations.

FinaHy, we have concluded that relative to our calcula-
tion the AK calculation overestimates the strength of the
infinite strain-field scattering. One may determine this by
observing that at lower dislocation densities our calcula-
tion yields values for the ratio K, /E„g 1.5 thus render-

ing it impossible for us to report values of K/L'„——l.5
as AK do (Es,/Es„sets an upper bound on Es/Ks„).
ASSUIDing that the electron-11IDitcd conductlvltics are Rp-

proxiIDatcly equal we would then have to decrease our

I:g„ to obtain vaLues of Eg, /E~„p 1.5 Rnd in turn to ob-
tain Eg/Eg„——1.5. %e werc unable to determine the
Inagnitude of this overestimate since the AK paper reports
only normalized values of thcITQ81 conductivity and tcID-

pcratul e.
Another mechanism which would cut off the spatial ex-

tent of thc strain flcM about 8 dislocation and reduce the
scattering of long-%vavclcngth phonons is the dislocation
dipole —the pairing of parallel dislocations of opposite
signs. Such pairing ls IDUch Hlorc restrictive than thc Rs

sumption in the present model. ~ile it could bc an iiD-

portant mechanism which limits the spatial extent of the
dislocation s stfRln flicld» such 8 restrictive assumption
IDay bc unnecessary ln thc formulation of 8 theory of thc

temperature dcpcndcncc of lattice thcITnal conductivity 8t
liquid- He temperatures.

Gruncr and Bross did propose such 8 dipole IDodel.

But, as AK point out, 8 colnparison of the tcIDperature
dcpcndcncc of the present rnodcl Rnd theirs ls coIDplicatcd
by the fact that Gruner and Sross used thr'ee-phonon S
pi'occsses instead of phonon-clcctl"on interactions to
prevent low-frequency divergence of the thermal conduc-
tivity integral. This IDRy bc proper ln insulators at, hlghcr
tcrnpcraturcs but ln alloys at liquid- Hc tcIDpcraturcs thc
doIDlnant scattering IDcchanisID ls IDorc likely the
phonon-electron interaction.

9.15
0.30
1.69
2.75
2.19

'FABLE I. Temperatures at which E& is 10% and 50%
greater than Kg„.

Xg, /Eg Xg (10' cm 2) +19%) 7|59%) dkT

at 3 K (edge and screw) (K) (K) (K)

1.20 4,5 a
1.33 9.0 b
2.11 45 9.72, 0.88
2.61 90 1.65 1.19
1.70 (45)' 0.65 1.45

TABLE II. Temperatures at which Ez is 19% and 50k
greater than Eg„taken from Ackerman and Klemcns.

E+/EC~ Ng (10'0 cIn 2) TII10%) +50%) h, T
at 3 K (screw only) (K) (K) gQ

'Ag, /Eg„—1.12, at 0.1 K Eg =Eg, .
bX~/Xg„——1.21, at 0.1 K Eg-Eg
SC5Nv only.

2.1
3.0
4.0

0.63
1.10
1.52

0.29
0.53
9.77
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More recently Brown' has invoked the scattering by
the static strain fields of edge dislocation dipoles to recon-
cile some of the discrepancies between the theory of
Kneezel and Granato" (KG) and the observations of Roth
and Anderson' in LiF. KG employed a dynamical model
of scattering by narrow dipoles which resulted in a dislo-
cation density of 30 times that which was obtained by etch
pit measurements' (which are themselves in question).
Even though Brown's estimates complement the results of
KG to give agreement between theory and experiment, he
notes that in part the discrepancies above 2 K are probably
due to scattering by point defects and three-phonon pro-
cesses which were not included in the theory of KG.
Since Brown only estimates the effects of the dipoles and
never actually carries out a detailed calculation of Kg, and
due to discrepancies that arose from the original theory of
KG, we again find comparison with the present model's
results difficult.

It appears then, that until a detailed calculation of the
effects of dislocation dipoles on Kg is made for metallic
alloy systems there is no clear and reliable way of compar-
ing the two models. Also, even if the calculation is done
the two mechanisms may be acting at the same time.
Therefore, experimentally it would be very difficult to dis-
tinguish between the two, thus obscuring verification of
theoretical models.

Direct comparison of the results of the present calcula-
tion with experimental results on Cu-Al alloys below 1 K
at this point does not seem to be possible. The reason is
that good reliable lattice thermal conductivity data for this
alloy system are not available.

Below 1 K, Anderson points out' ' that measure-
ments are difficult, and the extraction of Kg from K„,
more than likely will result in error, since the determina-
tion of K, is in question. Specifically he points out that at
such low temperatures the use of the %'iedemann-Franz
law may be in question. The Wiedemann-Franz law is
based on the thermodynamic absolute temperature scale,
whereas K„, is measured using a laboratory temperature
scale. The laboratory temperature scale was based on the
vapor pressure of liquid helium. And, what is more, the
vapor-pressure scale itself was in error by an amount rang-
ing from 0.2% at 5 K to possibly —1% when extrapolat-

T&0.1 K. Thjs sjtuatjon was rectjfjed by 1979
(Ref. 22) but all the data presently available on Cu-Al al-
loys were taken before that date.

Even above 1 K there is some disparity in the data. An-
derson has collected and compared lattice thermal con-
ductivity data from various laboratories. 2 He shows
that even though most laboratories are in agreement there
are some cases in which differences as large as 2 orders of
magnitude exist.

An additional complication which compounds the diffi-
culty of comparing the results of the present model with
experimental observation of Cu-Al alloys in the (l —3)-K
range is the apparent presence of resonance scattering by
fluttering dislocations. This appears as a bow in the K
curve. The measurements of Linz et a1. and Vorhaus and
Anderson ' are in good agreement and show the bow be-
tween 2 and 3 K. Theoretically, as mentioned in the In-
troduction, the calculations of Madarasz and Klemens on
resonance scattering by dislocations appear to have been
successful in substantiating this mechanism. The com-
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FIG. 5. Estimated lattice thermal conductivity vs tempera-
ture when both finite strain-field and resonance scattering are
present. The dashed portions are fitted to the data of Linz et al.
(Ref. 4) taken on well-annealed and heavily deformed Cu—10
at. % Al.

bined action of 8 field scattering and resonance scattering
on Kg may look somewhat like the curve in Fig. 5. The
dashed portions correspond to the data of Linz et aI. on
Cu —10 at. % Al.

Because of the problems with Cu-Al data mentioned
above we are unable to make a direct comparison between
the present theoretical model's results and experimental
observations. Evanohm, on the other hand, exhibits none
of these problems. Experimental data indicate little or no
resonance scattering taking place. Furthermore, as men-
tioned in the Introduction, it has a very high residual
resistivity and thus possesses a small electronic component
of thermal conductivity. By virtue of this fact, extraction
of Kz from K„, can be achieved with a higher degree of
accuracy than, for instance, in Cu-Al alloys.

In principle the differences between a calculation of the
effects of R field scattering on Kg for Cu-Al versus
Evanohm are small. For low temperatures these differ-
ences lie mainly in the strength of phonon-electron scatter-
ing and in the lattice constant. The Debye temperature
and impurity scattering become more significant at higher
temperatures beyond where R field scattering is expected
to be important. In light of these facts and those men-
tioned above concerning Cu-Al alloys, we find it reason-
able to compare our results with the data on Evanohm.
We do so in Fig. 4 where the dashed curve fits the experi-
mental data of Linz et al. for Evanohm. The reported
number of dislocations in the deformed Evanohm was in
excess of 10" cm . As can be seen, the temperature
dependence is very similar to that calculated in the
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theoretical curves. We also note that the lower displace-
ment of E is indeed due to a stronger phonon-electron in-
teraction. Should the Evanohm curve be normalized to
the Cu-Al electron-limited conductivity curve it would fall
very close to the theoretical curves and in the proper range
of dislocation densities.

IV. SUMMARY

The original calculation of phonon scattering by a limit-
ed strain field around a screw dislocation due to Acker-
man and IGemens was amended to account for the two
dimensionality of the problem. The model was also ex-
tended to include phonon-edge dislocation interactions.
An additional feature in our work was the averaging of
the projection of the phonon's wave vector onto the xy
plane in which the scattering takes place. For the case of
an edge dislocation, scattering was dependent on the angle
between the strain-field position vector p and the scatter-

ing vector Q'. This angular dependence was averaged as
well.

The theory of phonon scattering by a finite dislocation
strain field was then applied to the problem of lattice
thermal conductivity in copper alloys. At the lower tem-
peratures, where phonon wavelengths are large compared
to the cutoff radius, dislocation scattering was found to be
weak. The thermal conductivity curves reflected the dom-
inance of the phonon-electron scattering. As temperature
was increased, phonon wavelengths became comparable to
and less than the cutoff radius. Owing to this, the thermal
conductivity curves exhibited more structure bending to-

ward a T dependence, which is what is expected for in-
finite strain-field scattering.

In the temperature regime where 8 field scattering is
expected to be important, a comparison with experimental
data on Cu-Al alloys was not possible. The difficulties in
making the comparison were twofold. First, below 1 K
there is no reliable data. Second, above 1 K, to about 3 K,
an additional scattering mechanism, resonance scattering,
acts, which tends to obscure the identification of the ef-
fects of the 8 field scattering. Comparison with the ex-
perimental data on the commercial alloy Evanohm was,
however, possible. Being of high residual resistance, the
extraction of K from E„, in Evanohm is effectively de-
void of the problems found with most other metallic al-
loys, in particular Cu-Al. Furthermore, resonance scatter-
ing is apparently damped out. Thus over the range of
temperatures where 8 field scattering is expected to occur
Evanohm docs indeed appear to be a reliable source for
comparison. The temperature dependence of our thermal
conductivity curves has been found to be very similar to
what is seen in Evanohm.
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