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Absolute measurements on the quantum oscillations in the transverse resistivity (both thermal and

electrical) and the thermopower of Al have been made at fields of up to 8 T in the liquid-helium

temperature range. The results show that the oscillations are related by known factors to a precision

of a few percent. The agreement between theory and experiment suggests that phonon drag plays no

observable role in the thermoelectric oscillations. There is an unresolved problem of precisely how

the many-body effects are incorporated in the theory, though this does not affect the conclusions of
this investigation in any way.

I. INTRODUCTION

In a previous publication' a relationship was established
relating the amplitudes of the quantum oscillations in the
thermopower to those in the electrical resistivity using a
phenomenological model suggested by Young. It was
tested using existing experimental results' and found to
hold to within the accuracy of the various data
( —+10—50%). The main purpose of the present paper is
to experimentally investigate the vahdity of the relation-

ship in the case of Al with an accuracy of the order of
1%. The oscillations in the thermal resistivity have also
been examined to complete the set of experimental data on
the transverse coefficients.

Al was chosen because of the occurrence of relatively
large amplitude oscillations in all the coefficients when the
magnetic field is close to a [001] axis (Refs. 3 and 4 give
extensive references to earlier experiments). The high De-
bye temperature of Al is also a useful attribute in that in-
elastic electron-phonon scattering is weak throughout the
liquid- He temperature range and, as will be discussed in
Sec. II, elastic scattering is a prerequisite if the theory is to
be tested as accurately as possible. Finally, the low fre-
quency of the oscillations allo~s a precise test of the
predicted phase relationships to be made.

On the other hand, it is known that the amplitude of the

oscillations grows rapidly for slight misalignments of 8
from [001] (typically 0.5') because of the influence of the
open orbits that are produced by the asymmetry. ' Under
these conditions the sample no longer exhibits the symme-

try properties expected for B parallel to [001], and the
theory must be extended to arbitrary crystal directions:
This is done in Sec. II. Using the same model, a simple
relationship relating the amplitudes of the oscillations in
the electrical and thermal resistivities is also derived.

II. THEORY

The intent of this section is to derive relationships be-
tween the various observable oscillatory transport coeffi-
cients. As usual one begins with the assumption of a
linear relationship between the fluxes and forces as embo-
died in the generalized Ohm's law

J =oE+e"V T,
U= —v"E—A,"VT,

yLOT=p . (2)

The last assumption is not particularly restrictive in these
experiments. As X~O, a-+1 (in fact by X =0.5, a is al-

ready 0.87). For the present experiments X=1.27T/B
with 8 in the range 4—8 T and T between 1.7 and 3.8 K.
We see that 0.-1 and to assume A,"=LGTo should be an
excellent approximation. The worst case conditions corre-
spond to low 8 and high T; however, these conditions are
just those for which the oscillation amplitude is small
compared to the monotonic part, and thus we expect Eq.
(2} to be an excellent approximation in these experiments.
With the stated assumptions, Eq. (2) is seen to be valid for
aB components of the tensors y and p, and for arbitrary

crystal orientation relative to 8. It is also appropriate for

where J and U are the electric and thermal current densi-

ties, o and X" are the electric thermal conductivity ten-

sors, and e" and m" are the thermoelectric and Peltier ten-

sors. We shall denote monotonic quantities by an overbar

and oscillatory quantities by a tilde, e.g., o =o+o.
It is convenient to first examine the expected relation-

ship between the measured electrical and thermal resistivi-
ties p and y; we assume throughout that p=o ' and
y=X" ', i.e., we assume that p is measured isothermally
and that the thermoelectric correction to y is negligible.

By definition we have op = 1 = (o +o )(p+ p }. Since
op=1 then op= —op and similarly A,"y= —k" y. Using
Young's result ' that

A,
"=[—3D"(X)/D (X)]L0To =aLo Ttr,

where Lo is the Sommerfeld value of the I.orenz number,
D(X)=X/sinhX, D"(X)=d D(X)/dX, X=2st kTm'/
Ae8 with usual symbols, and assuming the validity of the
Wiedemann-Franz law for the monotonic parts, i.e.,
X"=LoTa (so that yLoT=p), then we have

y= —Qo'p=&cTp .

Providing A,
"

~&A,
" and o "ggo, then A,

" and o can be re-
placed by A,

" and o to give the required result
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LpT LpT
(3)

We see that the tensors P and p should be essentially iden-
tical except for the constant (PIL0 ) T= +—i (3e In kT)
XD'(X) ID (X). This is the obvious reason for using P
rather than S. The final advantage of the use of P is that
both P and p require exactly the same geometrical factors
in their measurement; experimentally P and p are analo-

gous except that the former uses a fixed heat current, the
latter a fixed electric current. Again, Eq. (3) is valid for
arbitrary crystal orientation and harmonic number.

III. EXPERIMENTS

The residual resistivity ratio of the sample that we have
used is about 850(p273 K/p4. 2 K), probably indicating an

impurity level of about 100 ppm. There are many advan-

tages in using a rather impure sample for this work, espe-

cially when previous experimental data for Al suggest that
the relative amplitude of the oscillations in p (as com-
pared to the monotonic background) is only weakly depen-
dent on purity. Thus an impure sample can provide larger
absolute signal amplitudes and tends to reduce the har-
monic content to manageable levels. We also note that the
derivation in Sec. II assumes the validity of the
Wiedemann-Franz law for the monotonic resistivities, i.e.,
p =yL p T. This implies a relatively ™puresample, both
to make sure that elastic scattering dominates, and also to
avoid the effects of the lattice thermal conductivity Ag

that can become significant at high fields in pure samples
(i .e., we need Azz, Az& » A g at all fields) . An estimate of
the effect of Ag on y may be made as follows. The largest
change occurs in y, which to lowest order becomes

yzz +A.gy~z. Using y» =p» /Lp T=4.2 X 10 (B/T)
W ' m K and X = 1.0X 10 T Wm ' K ', then

Xg yyz 1 1 X 10 W ' m K at 8 T and is independent of

the various harmonics, though for each harmonic n, X will

be replaced by nX to give various values for a.
The arguments involving the thermaelectric coefficients

are similar. It is convenient to work in terms of the ther-

moelectric tensor P defined via E=PU rather than the

usual thermopower S defined by E=SV T. Experimental-

ly, it is easier to measure E for fixed U rather than fixed

V T, but other reasons will also be mentioned later.

The experimental condition J =0 in Eq. (1) gives

E= —pe" V T=pe"yU so that P =pe"y. The main as-
sumption to be made is that the dominant oscillatory term
in pe" is p e". The amplitude of the fundamental cannot
be affected by p e", but in general it seems reasonable to
expect some harmonic enhancement in P from this term.
We expect p e " to be a small contribution in the present
work, though this may not be true in general. Introducing
the Young result '

. 77k D'(X)
e D(X)

where D'(X) =dD (X)IdX, and the +i is a phase factor ap-
propriate to electron ( + ) or hole ( —) orbits, respectively,
then we have P = P pay. Using our earlier results,

per = —po and y=p /L p T, we find

T. The measured value of yzz is -4 X 10 / T W ' m K
at 8 T and so the effect of kg is most significant at the
highest temperature and is a 1% correction at 4 K and 8

T. We have ignored this contribution, but it is clear that
the use of a sample with an order of magnitude higher
resistivity ratio ( —10 ) would necessitate a careful evalua-

tion of the problem.
After spark machining, the sample was in the form of a

flat plate with dimensions of approximately 25 && 2.5 ' 1.5
mm . The sample faces were parallel to [001 I planes to
better than 1'. The damaged surface layer was removed by
electropolishing and the crystal was soldered into the cryo-
stat by using a commercial Al solder and flux. Two limbs

spaced about 13 mm apart on the sample were used to at-
tach the potential wires and carbon thermometers. All at-
tachments were made with the same solder. Electrical
currents were limited to 0.5 A to minimize Lorentz forces;
this was necessary because the cryostat was designed to al-

low some angular displacement on the sample (about 0.5'

in any direction), and large Lorentz forces might well alter
the sample axis slightly for the resistivity measurements.
The available angular range is insufficient to investigate
angular dependence but was useful in obtaining large os-
cillatory signals. Angular positions are not relevant to
these experiments, but it was noted that the maximum
amplitude could be obtained by tipping the crystal such
that the field was about 0.5'—1' from [100] in a (00 1 )

plane: This is consistent with previous work. '

Carbon resistors monitored the temperature; suitable
corrections were made for magnetic field dependence. It
was found that p =y Lp T to within the experimental
accuracy of ( 1—2)%, these checks were made at B & 3 T
where the oscillation amplitudes are small and do not in-

terfere in the measurement This provides a useful check
on the overall calibrations, including the thermometry, as
well as experimentally testing the major assumption re-

quired to obtain Eqs. (2) and (3). The magnetic field was
produced by an 8 T superconducting solenoid, the smal 1

hysteresis due to a parallel superconducting switch being
determined in separate experiments.

The measurements of the oscillatory quantities were
made as follows. Because the phase and frequency of the
oscillations are essentially independent of angle over the
small range accessible to us, the magnetic field was fixed
at a peak in the thermoelectric oscillatory output (the volt-

age output being monitored by a superconducting chopper
amplifier) in the range 7—8 T, and the sample axis, was
adjusted to give a large signal. Sweeps were then made to
determine pzz with the sample in exchange gas; often this
was done at 4.2 K to eliminate vibrational noise from the
pumps since p provided only a small output signal for
the maximum current of 0.5 A (see Fig. 1 ).

After evacuating the sample space and pumping the
liquid helium to a suitable temperature, sweeps were made
to record P and y . In the former case the same super-
conducting amplifier monitors the output, but in the latter
case the recorded signal is the out-of-balance output from
a bridge containing the two carbon resistors that monitor
the temperature of the sample limbs. The use of such a
carbon bridge introduces unavoidable nonlinearities into
the measured signal. Carbon resistors have a rapidly
changing sensitivity to temperature so that both the oscil-
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FIG. 1. Open squares are experimental data for —I' as a
function of 8 for run 5. The temperature vanes from 3.094 to
3.127 K across this graph. The data may be converted to units
of A 'mK by multiplying the ordinate scale by 2.76&10 9;

however, the zero is arbitrary, and in fact no monotonic part is
visible in any of our data on P~. The solid line is a least-mean-
squares computed fit using Eq. (6) of the text. The data have

been inverted so that it resembles the thermopower

&~ =—~~y~

5 6 7 8

8 (T)
FIG. 3. Open squares are experimental data for y T at about

3.2 K. The ordinate scales may be converted to % 'm K2 by
Illultipllcatlon by 0.0227. Thc solid curve is a computed lcast-
mean-squares ftt using Eq. (g) with a single free parameter El
(plus a low-order polynomial to account for the background). As
with Fig. 2, the observed value of Ei is within 2.5% of the
predicted value (see Table I, run 5), and so the fitted curves
could be taken to be the theoretically predicted curves with no
free parameters.

lations in y and the monotonic background y change the
sensitivity appreciably ss the field is swept. Some account
of this is taken by evaluating the mean sensitivity for
out-of-balance signals in the bridge at s number of fields
Rnd interpolating by means of 81Hlplc polynomials. How-
ever, we have not corrected for nonlincarities in the bridge
+ output at fixed field (these are not due to excessive
bridge output, but reAect only sensitivity changes of the
carbon resistors). Clearly P and p involve no such
problems, and these coefficients can be compared with the
minimum of experimental difficulty.

Output voltages were recorded both digitally and by x-y
recorder during steady field sweeps, and Figs. 1—4 show
typical digital recordings of the three coefficients. Most
of thc 1Tlonotonic background 18 Qot d1splayed 1Q thc cases
of p and y, but for P such a backgmund was not
visible. A11 of p, P, Rnd y~ were symmetric in 8 to
high accuracy, i.e., the sign of 8 had no visible effect.

FIG. 2. Open squares are experimental data on the transverse
resistivity p at 4.20 K as a function of magnetic field 8 for run
5. The data may be converted to units of fl m by multiplying
the ordinate scale by 4.35&10,but the zero is arbitrary. The
solid 111lc ls R colnplltcd least-mean-squares fit uslllg Eq. (7) of
the text with a single free parameter A

& (plus a low-order poly-
nomial to account for the background). Since the observed value
of A i is within 1% of the predicted value (see Table I, run 5) the
fitted curve could be taken to be the theoreticaHy predicted
curve, given the data in Fig. 1 to fix all the free parameters as
described in the text.

It soon became apparent that onc of thc ma)or sources
of error in this experiment is thc accuracy with which the
cyclotron mass Pl of thc relevant orbit 18 known. For-
tunately, it is possible to use the data on y to determine
m' reasonably accurately as was pointed out by Young.
The thermal damping factor D"(X) appropriate to y
passes through zero near X =1.6. Figure 5 shows R trace
of y~ over the field range where this occurs for T 3.6 K
together with p for comparison. The actual zero in y
tends to be obscured by harmonics (since the equivalent
zero for 'thc harnlo111cs RppcRls Rf, hlghcr flclds) but lcRst-
mean-squares fits to the curves are found to be very sensi-
tive to the value of m*. The actual fitting was done as
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FIG. 4. Same as Fig. 3 but the data are taken at about 1.8 K.

The ordinate may be converted to units of %' ' m K2 by multi-

plication by 0.0389. The observed value of El is within 1.5% of
the predicted value (see Table I, run 5) and, as with Figs. 2 and

3, the fitted curve could be taken as the predicted curve. The
changing form of the oscillation, being sinusoidal at high T (Fig.

113) and cusp shaped as low T as shown here, is automatica y
reproduced snd results simply from variations in the thermal

damping factors D"(nX) on the various harmonics.

fo11ows. First, p was used to fix some of the variables
by approximating

2irf
p =AtD(X)exp — cos +P

The exponential term represents both a Dingle factor, usu-
all written as exp( 2n2kTnm— '/AeB), which accounts
for Landau-level broadening by impurity scattering, and a
magnetic breakdown factor with the same functional
dependence on 8. Initially, an approximate value of m*

EI(T)
FIG. 6. Points are s digital recording of the same data as

shown in Fig. 5 on y . The solid curve is a least-mean-squares
computed fit using Eq. (5) of the text (plus a monotonic contri-
bution).

was used to evaluate D (X) as a function of B. Having ob-
tained values for Bi,f, and P, y was then fitted using

2 2mf
y = g E„D"(X)exp — cos n +P

n=l
I

with variables Ei, E~, 82, and m', n refers to the harmon-
ic number. The form of the phase factors, i.e., nP, was
suggested by visual examination of this and other data and
has been used throughout the analysis. It leads to a pro-
nounced cusp shape of the waveform for p an y aand at,

low T) at high fields, cf. Figs. 2 and 4. The fit is ver' y
sensitive to I'; an example of the fitted curve is shown in
Fig. 6. Although another iteration was carried out using
this new m' in Eqs. (4) and {5), again no significant
change resulted. The final value was found to be
m'=0. 0867m, with the repeatability suggesting an accu-
racy of 1%. The previous literature values"' are
0.102+0.006m, and 0.093+0.010m, .

The remaining data were analyzed over the range 4—8
T. Because thc signal-to-noise ratio is usually very high
for the thermoelectric oscillations, P was always fitted
first. It was assumed that this coefficient can be approxi-
mated by a series of the form

P T=g C„D (nX)exp — slil n +P

FIG. 5. Recorder traces of p and y over the field range of
1.88—3.86 T at a temperature of about 3.4 K for p and 3.6nd 3.6 K
for y . Near the center of the trace for y, the thermal damp-
ing factor D"(X) changes sign, which causes a phase inversion

harmonic component obscures the precise crossover point.

with the variables being the coefficients C„, B„,f, and P.
Because the temperature of the sample changed during a
field sweep, simple linear interpolations were used to find
T on a point-by-point basis so that I'~ T and nX could be
evaluated with no appreciable error. Extending the series
to n =3 provided an adequate fit to all data; Fig. 1 shows
a typical example. It was usually necessary to include a
contribution of the form a +b8 to account for the mono-
tonic background. The frequency f was always in the
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range 46.8+0.2 T for all the data and is in excellent agree-
ment with previous work. The coefficients B„ increased
systematically with n and were typically 14 T for the fun-
damental. However, it was found that B& in particular de-

pends on B and has decreased to about 7 T by fields of -3
T. Thus the exponential terms in Eq. (6) do not provide
an exact representation of the amplitude field dependence,
but their use should simply be viewed as a procedure to
obtain a reasonable fit to the data and, providing the same
form is also used for p~ and y, we do not expect this to
have any significant effect on our final results. %'e might
also mention that the B„depends strongly on angle, and

for B parallel to [001],8, drops to about 8 T for 8 in the
range 4—8 T. However, we have not made a systematic
study of this, and in general, the precise orientation of our
sample in the various experimental runs is not known.

Once we had an acceptable fit to P T, the following ex-

pressions were used to represent p and y

p~ =+A ~ D(nX)exp
Ci

B„
B

y T=Q E~ D "(nX)exp
Ci

2'
Xcos n +PB

The coefficients C„, 8„,f, and, in the first instance, P,
were taken directly from the results on P T. Each of
Eqs. (7) and (S) contain bnly one variable, A~ or E~,
though in practice it was always necessary to include
monotonic contributions, usually up to a term in B~. Fig-
ures 2—4 show examples of the fitted curves to the experi-
mental points, and it is clear that the agreement is excel-
lent on all respects. In particular, the cusp-shaped
waveform for p is well reproduced. This same
waveform is observed for y at low temperature (Fig. 4),
but it becomes much more sinusoidal at higher tempera-
tures (Fig. 3};this arises simply from the fact that at high
T (i.e., -3.5 K},D"(2X} has a zero in the midrange of the
data, so the second-harmonic contribution disappears.

The characteristic cusp shape for p and y and the tri-

angular shape for P result from the form of the phase
locking of the harmonics in Eqs. {6)—{8),together with the
overall phase shift of m/2 predicted to occur for P„„rela-
tive to the resistivities. Incidentally, the sign of the phase
shift indicates that the orbit we are observing is electron-
like as expected. In a number of cases (t was made a vari-

able in Eqs. (7) and (8). However, the best value as deter-

mined by least-mean-squares fitting was always very close
to that obtained from Eq. {6); in the ~orst case, the
discrepancy was 5', but in the majority of cases the same
phases were obtained to within 2. In other words, the ex-

pected identical phases of p and y and the phase shift
of P by m/2 are observed to be correct to a precision of
about 2'.

The sensitivity of the C„and B„ to sample orientation
means that all the coefficients P, y, and p must be
obtained at the same angle, so it was always essential to
obtain all sets of data in each experiment. On the other
hand, the actual temperature at which any individual data
set is measured is not particularly important since all
thermal effects are taken into account in the thermal
damping factors D (X), D'(X), and D"(X)

According to Eqs. (2) and (3) the amplitudes of the os-
cillatory components are all related via known factors.
These equations apply to each harmonic, but it will be
seen from the way that the data have been treated that we
essentially fit all harmonics simultaneously, so we are left
with only three coefficients to compare, i.e., A i, C~, and
E~. The predicted ratios are (C, /A ~ ) =3e/m k and

E& /A
&
———3/Lo. Table I presents all the experimental re-

sults in the form (C&/A&)(nk/3e) and —(E&/A&)(LO/3),
and it will be observed that they are in good agreement
with the expected values of unit. The consistency of the
results for (C~/A ~ ) is traceable to the fact that there are
essentially no difficult calibrations involved in the fitting
procedures. The same amplifiers and filters are used to
record the data, the differences being the use of a heat
current for P~, and an electric current for p (both of
which are easily measured to 0.1%), and the requirement
of T in the former case (which is unlikely to be in error by
more than 10 mK. On the other hand, the determination
of Ei requires not only T, but also the oscillatory tempera-
ture difference across the sample. As we have indicated in
Sec. III, the problems have only partially been overcome,

TABLE I. Observed values of the reduced coefficients (C&/3 ~)(mk/3e) and —(E[/A l )(L o/3), both
of which should be unity according to theory.

Run

1

2
3

5b

Mean values

(C, /A, )(mk /3e)

0.993
1.022
1.006
0.985
1.002

1.002+0.014

—(E) /A ) )(I.o/3)

0.946
1.070
1.090
1.076
1.024
0.987
1.02+0.05

Approx. T (K)'

3.6
2.S
1.8
3.1
3.2
1.8

The temperatures are usually different for p as compared to y and P . This table gives the ap-

proximate T relevant to y and P because p is insensitive to T.

p and y were measured at two temperatures. The observed values of A i were identical to within

0.5% for data taken on p at 1.40 and 4.2 K; the mean was used in the analysis.
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and the residual errors in Ei ( —+5%) are not unexpected.
The only other uncertainty that will appear in our final

results is that arising from m*. By repeating one series of
fits with m' increased by 2%, we found that C~/A ~ was

decreased by 3%; a similar analysis was not carried out
for E&/A&, but we would expect a similar change. As-
suming the uncertainty in m' to be +1%, then our final
value «r (&i/& i )(~k/3e) i».002+0.030, and for
—(&i/& i)(LO/3) it is 1.02+0.07.

The obvious result of this work is that, given any one of
the oscillatory components p, y~, or P for Al, the oth-
ers can be predicted to high accuracy in all detail by the
use of Eqs. (2) and (3). The fitted curves in Figs. 2—4
could be considered to be theoretically predicted curves
since the predicted and measured amplitudes are the same
to within experimental error. This conclusion means that
each transport component contains essentially all the use-

ful information (except for the electronlike or holelike

character of the orbit, which requires a comparison of P
with either of the others) and one should use whichever is

convenient for a particular application. Because these ex-

periments have investigated only a single component of
the tensors p, y, and P, it is premature to claim that all

components are so well behaved. Nevertheless, with the
assumption that p= yLOT, Eqs. (2} and (3) should apply to

any metal crystal at any orientation relative to 8, e.g., a
previous study of the quantum oscillatory effects in the
thermopower of Mo can now be considered to be a study
of the effects of the resistivities for all intents and pur-
poses.

As pointed out by Streda and Vasek, ' the verification
of Eq. (3) can be considered to be a verification of the
closely related Mott relationship S=LoeT(dlnp/de)„:
Although this equation has been in use over a long period
of time, it has not been subject to experimental tests until

very recently. In retrospect, it is not completely clear why
the relationship is directly applicable in the present case.
It has been established that the monotonic part of the
Nernst-Ettingshausen coefficient P~„obeys the appropri-
ate Mott relationship very accurately" provided that a
many-body enhancement factor is included in the calcula-
tion (Ref. 11 uses the notation P' for P„„}.In this case P„„
depends only on the density of electronic states X(IM)
evaluated at the chemical potential JM. Both experiment
and theory' ' agree that the appropriate E(IJ, ) is that
enhanced by many-body effects. In the present theory,
there is no explicit reference to an enhancement factor. It

may be that the use of the experimental m', which is
enhanced, has implicitly included the effect. In the high-
field hmit (X~O), Eq. (3) reduces to e"=+E(irk'/e)(X/
3)o, where X contains the enhanced m'. However, as
8~0 (X~ oo },Eq. (3) becomes e"=+i (irk /e )o, which is
independent of m'. This might suggest that the enhance-
ment is only relevant when the structure in the density of
states is coarser than kT in scale, but a clarification of this
problem must be left to theorists.

Finally, we note that Eqs. (2} and (3) contain no explicit
reference to phonon drag, and we, therefore, conclude that
phonon drag plays a negligible role in the quantum oscilla-
tory effects in Al. This is perhaps not unexpected, but it
is, nevertheless, useful to have experimental data confirm-
ing this conclusion.

V. CONCLUSIONS

These experiments demonstrate that, at least for the
case of Al, the oscillatory components in the transverse
electrical and thermal resistivities, as well as those in the
thermopower, are all intimately related by known equa-
tions. Given any one oscillatory component, the others
are readily calculated at any field or temperature. Al-
though the oscillations in the thermopower are very large
and perhaps the most easily accessible experimentally,
those in the thermal resistivity have the merit of good sig-
nal to noise at low temperatures and also have the useful
feature that the effective mass of the orbit can be obtained
very accurately from a single field sweep, providing the
zer'o in the amplitude is observable.

Thc prccisc way ln which thc many-body enhancement
effects are accounted for in the calculation has not been
resolved, though from an experimental point of view this
is clearly not a problem since the expressions we have used
certainly fit the experimental results very accurately. Fi-
nally, we conclude that phonon drag plays no observable
role in the mechanism producing quantum oscillations in
the transport properties of Al.
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