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Determination of the pair potential and the ion-electron pseudopotential for aluminum
from experimental structure-factor data for liquid aluminum
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A method of inverting a given structure factor [S(k)],„„,of a liquid metal using a hypernetted-

chain equation containing bridge-diagram contributions is presented. Starting from parametrized lo-

cal pseudopotential and a parametrized model local field (or a theoretical local field), a pair potential
is constructed. The S(k) calculated from it is fitted to the given [S(k)],„~,. The method is first ap-

plied to a molecular-dynamics-generated S(k) derived from an ab initio aluminum potential and

shown to yield the pair potential, the pseudopotential, and the charge density in excellent quantita-
tiue agreement with the original ab initio potential and other quantities. The method is then applied
to the experimental S(k) of aluminum from x-ray data at 943 K. The Al-Al pair potential, Al-

electron pseudopotential, and electron charge densities as well as the electron-gas response function
(i.e., the model local field) are obtained self-consistently, to within the accuracy of the experimental

data. The calculated electrical resistivity is in excellent agreement with experiment. These investiga-

tions provide a comparative examination of the electron-gas local fields of Geldart-Taylor,
Vashishta-Singwi, Ichimaru-Utsumi, and the density-functional local-density approximation. The
hard-sphere parameter defining the bridge term is found to be essentially the same for the different
ion-ion potentials determined from all but one of the different local fields, thus supporting the
"universality" hypothesis of Rosenfeld and'Ashcroft.

I. INTRODUCTION

The determination of interionic potentials from liquid-
metal structure-factor data has been a tantalizing possibili-
ty since the early efforts of Johnson' and co-workers. The
object of this paper is to show that ion-ion potentials as
well as ion-electron pseudopotentials can be obtained with
a high degree of confidence from liquid-structure data.

Several methods have been used previously, but with
doubtful results. These involved the use of the properties
of the direct-correlation function c(r) at large r, direct in-
version of the structure factor S(k), or the pair-
distribution function g (r) using various equations derived
from statistical mechanics of liquids [e.g., Born-Green,
Percus-Yevick (PY), hypernetted chain, etc. ; for a brief re-
view, see Waseda ]. Mitra and collaborators have exam-
ined the use of more general types of equations coupled
with fitting to other physical data (e.g., specific heats), to-
gether with variation of the potential within molecular-
dynamics (MD) simulations. Rao and Joarder' have

attempted to include compressibility criteria into
hypernetted-chain (HNC) inversion of the structure factor.
However, none of these methods led to reliable ion-ion po-
tentials of quantitative accuracy. Further, it was not
reasonable to hope for information on ion-electron pscudo-
potentials from the so obtained low-precision ion-ion po-
tentials.

The usual approaches to the inversion of structure data
are destined to run into several difficulties from the outset.
The experimental S(k} is available only in a limited range
of k values, while both the small- and large-k data are
necessary for any accurate inversion procedure. Although
various methods can be considered for the extension of
S(k) data, the inversion results tend to be sensitive to the
method used. Also, given an ion-ion potential U(r) and

its own S(k), obtained from molecular dynamics, it is
known (e.g., see Taylor and Watts" ) that the HNC or PY
inversion does not reproduce the original potential U(r).

The failure of the HNC and similar equations is a
consequence of the approximation inherent in them. The
diagrammatic analysis of the pair-distribution function

g (r} leads to the form

g(r) =exp[ pU(r)+N(—r)+B(r)],

where p= 1 lktt T and N(r) and B(r) are the so-called no-
dal and bridge-diagram contributions. The HNC approxi-
mation consists of neglecting the bridge terms. ' Then the
Orstein-Zernike equation' can be coupled with (1.1) to
give the following set of closed equations:

g(r) =exp[ —PU(r)+N(r)],

N (r) =h (r) c(r), —

h (r) =g(r) —1,
c(r) =h(r) —p J h(

~

r —r '
~
)c(r ')dr ',

S(k)=1+)oI h(r)e' " 'd r .

(1.2)

(1.4)
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The self-consistent solution of these equations for a
given U(r} constitutes the solution of the HNC equation
to obtain an S(k}. On the other hand, given an S(k), Eqs.
(1.2)—(1.4) can be used to determine U(k), thus defining
the HNC inversion procedure. Now the solution of the
HNC equation from a given U(r) does not usually provide
a good S(k) of g(r} whtch agrees with MD 81111111atlo118.
Hence it is not surprising that HNC inversion will not
provide a good U(r}, unless there is reason to believe that
the bridge terms are negligible.

Detailed studies of the HNC solutions of the onc-
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component plasma' (OCP) and other systems have shown
that if the bridge term B(r) could be included even in an
approximate manner, then a fairly good g (r} could be ob-
tained. An important advance was made by Rosenfeld
and Ashcroft' who showed that a good B(r) can be calcu-
lated using a hard-sphere potential, irrespective of the ac-
tual form of the potential U(r). This "universality" prop-
erty of B(r) can be exploited if a suitable hard-sphere-
packing density parameter g is available for each liquid
metal. In fact, as already noted by Ashcroft and Lekner'
in another context, it turns out that g =0.45 for most met-
als near the melting point. This is also in agreement with
the range of values of g obtained by Rosenfeld and Ash-
croft by fitting to the compressibility sum rule, even in the
case of the OCP, for systems near the melting point.

Thus instead of the HNC equation we propose to use
the Rosenfeld-Ashcroft form of the modified HNC
(MHNC) equation for extracting physical information
from experimental S(k). To avoid various ambiguities in-
herent in the direct inversion of the HNC or MHNC equa-
tion, which requires the extension of experimental S(k)
data to the full range of k values, we use the MHNC equa-
tion in the forward direction. Thus we start from a trial
potential U(k) and calculate S(k) using the MHNC equa-
tions. The parameters defining U(k) are optimized to fit
the experimental S(k} to a given precision. This pro-
cedure will still be called an "inversion" of the S (k) data.

The form of the trial ion-ion potential' U(k) is taken
to be that described by pseudopotential theory. That is,
with R=e =1,

U(k) =Z Vk —X(k) V„(k)

Vk ——4m/k

Hence the parametrization of U(k) really defines the
parametrized electron-ion pseudopotential V„(k) and the
response function X(k). Thus the procedure, if successful,
determines not only an ion-ion potential, but some effec-
tive ion-electron pseudopotential and an associated dielec-
tric function. If the chosen V;, (k} and X(k) are sufficient
ly flexible, then the resulting U(k) should be independent
of the detailed form of X(k) or V;, (k). In other words,
U(k} is uniquely determined by the [S{k)],„~, and not by
the details of the parametrization. On the other hand, the
ion-electron potential V;, (k) will depend on a sensible
selection of X(k} and a good parametrized form of the
pseudopotential.

In this paper we report a detailed examination of the
proposed method by an application to aluminum. This is
a particularly interesting case' as the Al-Al potential is
considered to have a repulsive hump at the first-neighbor
distance, in some theories of the pair potential, while this
feature is absent in others [e.g., see the curve VS (which
represents Vashishta-Singwi form) in Fig. 1]. Also only a
precise inversion procedure would be able to reproduce re-
liably such features in the potential.

The Al pair potential U(r) given by Dagens, Rasolt,
and Taylor' (DRT) and its corresponding molecular-
dynamics simulation data' were used as a direct test of
the inversion procedure. The original DRT potential was
recovered with good precision for several forms of X(k)
using only a two-parameter local pseudopotential, even
though DRT used a four-parameter nonlocal form and the
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FIG. 1. Pair potentials for Al calculated from the same two-
parameter local pseudopotential [see Eq. (2.3}]using different lo-
cal fields: IU, Ichimaru and Utsumi; GT, Geldart and Taylor;
LDA, local-density approximation in density-functional theory;
VS, Vashishta and Singwi; for r, =2.168 a.u. k&T=0.0033245
a.u.

We assume that a liquid metal can be described, to a
very good approximation, by a pair potential. Pseudopo-
tential theory tells us that this potential should have the
form (e =fi=m =1)

U(k)=Z VI, —7(k) Vg, (k) (2.1)

Hence any suitable parametrization of Vi, {k) affords a
possible parametrization of U(k), for a given choice of
J(k). We consider them separately.

A. Ion-electron pseudopotential

The pseudopotential V;, (k) is not uniquely defined, and
contains nonlocal and energy-dependent contributions.

Geldart-Taylor dielectric function in constructing their
U(r). The method was then applied to real aluminum, us-

ing the structure-factor data, obtained from x-ray diffrac-
tion experiments, given in Waseda.

The plan of this paper is as follows. In Sec. II we
present the details of the parametrization of the potential,
the hard-sphere parametrization of the bridge-term contri-
bution, and the choice of the electron-gas response func-
tion. The electron-charge density induced by an ion, viz. ,
X(k}V;, (k), is also discussed in this section as a test of the
inversion results. In Sec. III we discuss the details of the
inversion of the S(k}, generated from MD data for Al,
and show that the original DRT potential is correctly
recovered. In Sec. IV we discuss the inversion of the ex-
perimental structure factor for Al. Here we find that the
existing dielectric functions are not flexible enough to
achieve an inversion to within the precision of the experi-
mental data. Using a parametrized form for the electron-
gas local field, we determine the ion-ion potential, ion-
electron pseudopotential, and the local field which are mu-
tually consistent with each other and the experimental
structure data. We conclude with a discussion of the re-
sults in Sec. V.

II. TRIAL POTENTIAL
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However, we seek from pseudopotential theory a con-
venient, physically meaningful parametrization. If we
consider a simple s-wave potential with a well depth Ap
and radius Rp such that

V;,(r)=
Ap, r (Rp
Z/r, r)Rp, (2.2)

we have the k-space form

ApRp
V (k)= —ZVk jp(kRp)

ApRp—kRp + 1 np(kRp)
Z

(2.3)

where jp(x} and np(x} are the spherical Bessel and Neu-
mann functions. It is well known that (2.3) is inadequate
for most metals. A detailed study of several liquid metals,
using a more general parametrization inclusive of nonlocal
contributions, etc., will be reported in due course. As we

found from detailed trials including up to six parameters
that two parameters are quite adequate for inverting the
aluminum data, the two-parameter local form (2.2) and
(2.3) will be adopted as the standard form of the trial
pseudopotential considered in this paper.

B. Electron-gas response function

This is related to the dielectric function Z(k) by

[e(k)] '=1+VkX(k) (2.4)

X(k)
X.(k}

1 —Vk[1 —G(k)]X (k)
(2.5)

and can be expressed in terms of a zeroth-order response
function gp(k) and a local field G (k). That is,

bi k exp[ b3 (b—4 —k ) ]
G(k) =bp(1 —e ' )+ —bs[b6 —k5 6

k =k/kp, bp =bp(A, ) b] =b](A, )

(2.7)

In actual trials only the most sensitive pairs of parame-
ters, e.g. , b2 and b4, were varied. bp and b] could be fixed
by the requirement that G(k) for k~ 0 is related to the
compressibility and hence to k' (i.e., r,') as in Eqs.
(2.8)—(2.10). The appropriate bp and b] were later deter-
mined at the end of the calculation. Note that if b2 ——0,
Eq. (2.7) reduces to the VS local field when bp and b&

are appropriately chosen. The GT and IU forms can also
be approximated by a suitable choice of the parameters.
Thus we see that this model local field provides a very
flexible parametrization encompassing all the standard lo-
cal fields as variants of it.

We noted that the k~0 limit of G(k) has to be chosen
so that the compressibility theorem is satisfied. The local
field prescribed by the LDA is simply a statement that the
k dependence of G(k) is far less important than the satis-
faction of the compressibility sum rule. The LDA local
field is a rigorous result of density-functional theory
within the local-density approximation and is given by

Utsumi (IU) form, and (fl a model local field (MLF),
having adjustable parameters and capable of generating a
good approximation to any of the above forms.

The MLF was invoked only in the analysis of experi-
mental data as the ab initio dielectric functions proved to
be too inflexible in spite of the use of an r,'. In effect the
parametrized local field given by MLF affords a pro-
cedure for a self-consistent determination of the local field
itself from the experimental structure data. Such a possi-
bility exists because, as seen from Fig. 1, the pair potential
is very sensitive to the local field. The form chosen for
the MLF is

Thus the choice of 7 (k) and G(k) completely specifies
the response function. When G(k)=0 Eq. (2.5) gives the
random-phase approximation (RPA) response function.
Introducing the electron-sphere radius r, and an effective
electron-sphere radius r,', we can write (2.5) in dimension-
less units as follows:

G(k)/k 2=/(0), for all k,
BE, r, B BE,

$(0)=0.25 I+A, (1—ln2) r,

(2.8)

(2.9)

where

4i(;F (k)
k 2 —[1—G(k, k')]4k, 'F (k )

k =k/kp, kp ——(ar,') ' a.u.

(2.6)

where BE,/Br, is the r, derivative of the electron-gas
correlation energy E,. This is obtained from the Vosko-
Wilk-Nusair parametrization of E, and can be written as

rs
BE 1 +a]x

x =(r,), (2.10)
1+a]x+a2x +a3x

and

A,'=ar,'/n. , a=(4/9m)'

The effective electron-sphere radius r,
' has been intro-

duced since it can be used as an adjustable parameter to
incorporate electron-renormalization effects.

We have examined the following local fields in this
study: (a) the RPA where G(k)=0, (b} the density-
functional local-density approximation (LDA) form, ' '

(c) the Geldart-Taylor (GT) form, ' (d) the Vashishta-
Singwi (VS) form, (e) the recently proposed Ichimaru-

with a] ——9.8137865, a2 ——2.822236, and a3 ——0.736411.
As already noted by Hedin and Lundqvist, ' the large-k

(i.e., k & 2k+) behavior of the local field is not very impor-
tant in determining the pair potential U(r) since the free-
electron response F (k) occurring in (2.6) drops off rapid-
ly for large k. As seen from Fig. 2 the GT and LDA local
fields are quite similar except for k & 2k~, but the pair
potentials generated by them are seen from Fig. 1 to be
essentially identical.

We have examined two possible choices of the zero-
order response F (k). These are (i) the Lindhard function,
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FIG. 2. Local fields VS, LDA, GT, and IU at r, =2. 168 used
in forming the potentials of Fig. 1. MLF is a model local field
obtained self-consistently from the fit to experiment and is at an
effective r, /r, =1.276.

and (ii) an approximate generalization of the Lindhard
form to include electron mean-free-path effects as
described by Leavens et aI. However, the simple Lind-
hard form proved to be quite sufficient while the mean-
free-path form did not bring any improvement to the op-
timization process.

C. Hard-sphere packing density parameter g

An exact evaluation of the bridge term 8(r) using the
trial potential U(r) is not practical. The Rosenfeld-
Ashcroft procedure uses a hard-sphere potential for
evaluating 8(r), with the hard-sphere parameter g deter-
mined to satisfy the compressibility sum rule. This im-
plies that g be adjusted so that the compressibility calcu-
lated from the total energy agrees with the value obtained
from the k~0 limit of S(k). The method requires a
knowledge not only of the potential U(r), but also its gra-
dients, its density dependence, etc. Thus a direct utiliza-
tion of their method is unfortunately not feasible within
the present context.

The procedure adopted here was either to fix g to corre-
spond to the best hard-sphere fit to the given S(k), or to
treat g as a free parameter where this did not lead to un-

physical results. By this we mean if q becomes adjusted to
values outside the physically acceptable range (near the
melting point it is expected that 0.4&q &0.48; the hard-
sphere fluid undergoes a phase transition for q=0.48), or
if the parameter r,' in G(k, r,'}becomes adjusted to unusu-

ally large (or small) values. These unphysical values can
arise if the short-range structure introduced by the local
field is inadequate in some sense and the bridge terms
have to compensate for this in trying to fit [S(k)]„~, to
[S(k)],„~,. In fact, the question of the suitability of a
given local field seems to depend on whether the detailed
features of the potential needed to fit the [S(k)],„„,re-
quires the existence of a Thomas-Fermi —type pole (on the
imaginary axis) in the dielectric function, for the values of
r,' generated by the fitting process.

As seen from Fig. 1, VS screening tends to lower the

value of the potential at the first-neighbor position r&

awhile IU screening tends to raise the potential, above the
value given by the density-functional LDA form. As will
be seen later, the behavior of the potential at r

&
is crucial

to the value of the compressibility [or, equivalently, the
value of S(0)], and vice versa. VS screening corresponds
to a higher value of S(0) while IU screening favors a
lower value of S(0). Hence some of the shortcomings in
the screening can be reduced by choosing a fitting pro-
cedure where the calculated S(0) is strongly weighted to-
wards the experimental value of S(0), as in Eq. (2.13) to
be discussed later.

If the analytic features of X(k) are appropriate, then the
pair potential U;;(r) would have the right qualitative
features. Then the "universality" arguments of Rosenfeld
and Ashcroft would suggest that the hard-sphere parame-
ter g would be essentially independent of the detailed form
of the potential Thu. s in our trials (see Sec. III) with the
MD data generated from the DRT potential the value of g
was -0.425 for all the trial potentials except that generat-
ed from the VS local field. In fitting the experimental
structure data (Sec. IV) the optimal g was found to be
about 0.46S, irrespective of the potential, except for that
generated from the IU local field, where an q &0.48 was
needed.

n (k) = —X(k) V;, (k) (2.11)

and may be calculated once the pseudopotential parame-
ters Ao Ro and the local field entering into X(k) are
specified. If the charge density calculated from the pseu-
dopotential was in accord with that from a Schrodinger
calculation, it implies that the pseudopotential respects the
requirements of charge neutrality, phase shifts, etc., in-
herent in the full Schrodinger calculation.

E. Computational aspects

The method explored in this paper requires the solution
of the MHNC equation for a given set of trial parameters,
Ao, Ro, r, , ri, and a given local field, G(k, r,'). The local
field may itself have a parametrized form if it is to be
determined self-consistently, from the given [S(k)],„~,.

We found that the MHNC has to be solved to high accu-
racy (precision greater than 10 9) even in the early stages
of the fitting process. Dimensionless grids were used with
the r grid in units of the ion-sphere radius ro ——r,Z
and the k grid in units of ro . A fast Fourier routine with
4096 points and an r/ro space interval of 0.025 were used
together with Ng's procedure for separating out the

D. Charge densities

The quality of the ion-electron pseudopotential V;, (k)
obtained from the inversion process can be tested in a
direct manner by a calculation of the charge densities.
That is, if V;, (k) had been determined by inverting an
S(k} using a particular X(k), then the electron-density
profile around an isolated ion immersed in jellium, calcu-
lated within linear-response theory using V;, (k) and X(k),
should agree with the full nonlinear density obtained from
a detailed Schrodinger (or density-functional) calculation.
The electron-density profile is thus given by
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long-range and short-range potentials and for obtaining
convergence. Note that liquid metals near the melting

point correspond nominally to an OCP with a strong cou-

pling parameter of the order of 150. The sum of squares

of the differences between [S(k)]„l,and [S(k)]„I,i w«e
weighted as follows to obtain a function I' which was min-

imized:

F=fo+ g f'

fo = ~o t [S(0)]..I.—[S(0)]-IIj (2.13)

f;=(1+ t [S(0)],„„—1 j') I [S(k, )]„„—[S(k, )],„„,j,
(2.14)

The weighting on S(0) introduced by Eq. (2.13) allows

us to constrain the calculated S(0) to a desired value ob-

tained theoretically or from experiments. If Wp ——0 the
calculation "finds its own" value of S(0}defined by the

[S(k)],„~, data for the points NI to N&. However, the
value of S(0) crucially determines the form of the pair po-
tential U(r} near the first-neighbor distance rl. Thus, for
examPle, $Vp = 1000 was used with VS scrccning which
has a tendency to generate high values of S(0) if no
weighting were used. Usually Wp=100 was found to be
adequate. It should be noted that when S(0) is accurately
reproduced fo tends to zero and drops out of the minimi-

zation.

III. INVERSION OF MD DATA FOR Al

In this section we discuss the inversion of the MD
data' for Al (at T= 1050 K and at a density such that the
ion-sphere radius ro ——3.1268 a.u.) generated from the
DRT potential for aluminum. DRT construct their Al-Al

potential from the GT dielectric function and the DRT
pseudopotential' for Al. The latter is a nonlocal pseudo-

potential containing six parameters (four are independent),

Ap, Rp, Ai, 8&, A2, and R2, i.e., up to the I =2 angular
momentum state, with the constraints Ap ——A i,R i

——R2.
As detailed trials showed that a two-parameter local

pseudopotential was sufficient, we use Eq. (2.3) as our trial
potential. We also use the response function taken in the
form (2.6), which contains the adjustable parameter r,'.
Thus for a given choice of the local field (e.g., LDA) we

have a maximum of four parameters, viz. , Ap, Ap, r,', and

q, to be adjusted in fitting the S(k) calculated from
MHNC to the "experimental data" which is [S(k)]Mo in

the present case.
It should be noted that our procedures have been formu-

lated for fitting S(k) and not the r-space form g (r). This
is the appropriate choice since scattering experiments pro-
vide S(k) and not g(r). However, MD simulations pro-
vide the pair-distribution function g(r) for the limited

range r &r,„, but do not directly provide [S(k)]MD.
Hence we used a numerical table of the original DRT po-
tclltlal fof Al slid gcllcl'Rtcd [S(k)]Mo llslllg MHNC to ex-

tend the MD data self-consistently to all values of r, using

a value of q adjusted to give a best fit to the available MD
data, i.e., [g(r)]MD, r &r,„. The optimal value of I),
found to be 0.4250, provides a measure of the bridge con-

tributions inherent in the MD data. Note that this type of
extension of MD data for obtaining S(k) is usually car-
ried out within the less accurate but simpler HNC scheme
whcrc 7J =0.

The potentials obtained by the inversion of MD data are
subject to several sources of error, viz. , (a) error inherent

ill flttlllg tllc [S(k)]MHgc to [S(k)]MD, (b) error arising
from the limited r-space MD data, viz. , [g (r)]MD, r &r,„,
(c) numerical noise and the error arising from the limited
number of configurations used in the MD simulation

(these may be as much as 2%), and (d) noise artificially in-

troduced by restricting the range of S{k) values used in

the fitting process to k;„&k&k,„. This was done to
simulate the conditions which will arise in fitting
[S(k)],„,since experimental data are available for only a
range o k values. Subject to these reservations, the pair
potential obtained from the inversion should agree with

the original DRT potential if the inversion is successful
and if the parametrization, choice of the local field, etc., is
Aexible enough.

The potentials obtained from the inversion are given in

Table I and displayed in Figs. 3(a) and 3(b). From Fig.
3(a) wc scc that tllcrc ls cxccllcIlt agfccIllcllf, wltll tllc origi-
nal DRT potential if the local field in X(k) is chosen to be
the I.DA or the GT form. These are of course the local
fields most appropriate to the orginal DRT potential. ' In
Fig. 3(a) we have also shown the potential GT which re-

sults when a —5% error is enforced on the S(0}. This
shows the extreme importance of ensunng that [S(0}]„l,
is in accord with [S(0)],„~, which has to be determined ac-
curately. The wright factor Wo, Eq. (2.13), provides a
powerful means of enforcing a given S(0) even if the na-

ture of the screening used would normally lead to a quali-

tatively different potential. Thus although I.DA and GT
local fields behaved satisfactorily even with $Vp ——100, the
IU and VS local fields needed a high weighting

TABLE I. Results of the inversion of MD data at T=1050 K for aluminum. The ion-sphere radius ro ——3.1268 a.u. ,

Vz Ze'/ro 0 961——230 R.u. w—ith. Z =3. Also [S(0)]Mo is 0.02040. The weighted square error (e )' is defined in Eq. (2.12) Rnd Wo

is the sleight on the error in S(0). The electron-sphere radius r, =2.168 a.u. The potentials are identified by the local fields used to

generate them.

Potential

LDA
GT
GT
IU
VS

'o

0.428 51
0,42490
0.42434
0.42320
0.401 14

o/Vo

—0.31775
—0.514 81
—0.508 17
—0.97292

1.243 50

Ro/ro

0.38506
0.397 38
0.397 13
0.43102
0.32785

rs /rs

0.99804
1.003 88
1.002 36
1.04844
0.897 26

S(0)/[S(0)]MD

1.0039
1.0034
1.0001
0.9997
1.0005

g(e)'
0.014
0.009
0.009
0.021
0.139
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cess can be tested by calculating the charge-density profile
around an isolated Al + ion immersed in jellium. The re-
sults are compared with the self-consistent field (SCF) cal-
culations of Dagens in Fig. 4. The Dagens data are for
Tp =3.015, i.e., r, =2.069, while our pseudopotential pa-
rameters are appropriate to rp ——3.1268. However, the
r/rp scaling used in the plots make them comparable, to
well within the accuracy of these calculations. The agree-
ment confirms that the pseudopotential parameters ob-
tained from the inversion define physically valid pseudo-
potentials. Note that the charge density for small r ob-
tained from the pseudopotentials do not contain the oscil-
lations found in the SCF density arising from the inner-
shell structure of the atom. This is of course entirely in
accord with the properties of pseudopotentials.

IV. INVERSION OF EXPERIMENTAL $(k)
FOR ALUMINUM

fjRT
0.0

0.. 0

-0 5—
2. 5

FIG. 3. (a) Pair potentials for Al at 1050 K (see Table I).
DRT is the Dagens-Rasolt-Taylor potential used in Ref. 18 for
molecular dynamics. LDA and GT are the potentials obtained

by inversion of [S(k)]Mu using LDA aud GT local fields. GT
is the potential obtained when [S(0)]Mu is assumed to be 5%
lower. kqT=0. 0033245 a.u. , r0 ——3.1268 a.u. (b) Pair poten-
tials for Al at 1050 K obtained by inversion of [S(k)]Mu using

VS and IU local fields (see Table I).

The experimental S(k) obtained from x-ray diffraction
data of %aseda ' were used in this investigation. The
data are for T=943 K and at a density corresponding to
an ion-sphere radius rp ——3.121 a.u. Although the experi-
mental S(k) is available for values of k up to about 7kF
(6.3 a.u. ), only the range 0.3&k &5kF was used as the
data outside these ranges were judged to be too noisy.
The more recent small-k data are claimed to have an un-
certainty of about 3.4%. Since S(0) is obtained in Ref. 29
by a polynomial fitting process over many data points, one
may expect that S(0) itself is obtained to a higher accura-
cy, e.g., 2%.

The nominal hard-sphere-packing density parameter q
for the aluminum-structure data at this temperature is re-
ported to be 0.45. The first question to be examined was
the extent to which an ab initio potential (here the DRT
potential) constructed for this temperature and density
could reproduce [S(k)j,„z,. The first two lines of Table II
are obtained by optimizing q to get the best fit to the ex-
perimental S(k) without a weight on S(0), i.e., Wo ——0,
and with S(0) weighting. The value of S(0) calculated

( Wu ——1000) to ensure that the given [S(0)jMD was repro-
duced with reasonable accuracy; these potentials are
shown in Fig. 3(b). If the S(0) weighting Wc was too low,
the VS local field presumably tends to generate short-
range correlations which compete with the bridge contri-
butions. The net effect is to drive g towards zero while

[S(0)j„~,becomes significantly higher than [S(0)]MD. A

similar coupling between q and the local field seems to
arise in the IU form which favors low values of S(0). If
the density-functional LDA form is taken to be the norm,
the VS and IU forms have opposite qualitative features.
IU seems to have a strong Thomas-Fermi —type character
while the VS form is known not to possess a Thomas-
Fermi —type pole for r, p1.52. Thus in order to ensure
that the local field used to generate the potential is "ap-
propriate" to a given S(k) it becomes necessary to deter-
mine the local field itself via a self-consistent procedure.
This objective is realized within the MLF formulation.

The pseudopotentials obtained from the inversion pro-

0. 15

0. 10

0.05

-0 05 —————~----

0

FIG. 4. Electron-charge densities around an isolated Al + ion

in jellium calculated from Eq. (2.11) using the pseudopotentials

corresponding to the LDA and GT curves of Fig. 3(a). DFT is

the density-functional theory results of Dagens (for r, =2.069).
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TABLE II. Results obtained by fitting to the experimental (Ref. 8) S(k) for Al at T=943 I( . The ion-sphere radius r o——3.121 a.u. ,

electron sphere radius r, =2.164 a.u. The experimental S(0)=0.018 59 aud Wo is the weight attached to fitting S(0) as in Eq. (2.13).

The weighted square error sums for 8'o ——0 are set in parentheses. Vo ——Ze2/ro ——0.961 23 a.u.

No.

1

3

5

6
7
8
9

10
11
12

Potential

DRT
DRT
RPA
LDA

0
100
100

1000
0

1000
100

1000
100

1000
100

0.461 90
0.461 52
0.465 40
0.465 43
0.46546
0.46545
0.465 45
0.465 39
0.465 39
0.488 47
0.488 34
0.465 41

Ao/Vo

—1.255 54
—1.229 28
—0.992 13
—1.29056
—0.982 88

0.19656
1.11769

—1.25459
—1.477 11
—1.58347

o/ro

0.48661
0.448 73
0.414 77
0.461 31
0.422 55
0.341 54
0.31798
0.44240
0.490 59
0.631 72

2.31562
1.15100
1.059 74
1.16454
1.06977
0.982 14
0.928 54
1.13727
1.231 70
1.278 75

S(0)/[S(0)] p,

0.953
0.960
1.021
1.171
1.004
1.156
1.003
1.172
1.003
0.935
1.001
1.000

g(e &'

(0.73)
0.73
0.52
(0.32)
0.54
(0.33)
0.46
0.63
0.78
0.28
0.23
0.21

from DRT is about 5% too low; the first peak of
[$(k)],„~, is very well reproduced by the DRT potential.
The secondary peaks in S(k) (corresponding to the large-k
regime) are poorly reproduced by DRT in that the ampli-
tudes are too large.

Illustrative results for the best-fit parameters q, Ao, Ro,
and rs corresponding to the different choices of response
functions are given in Table II. In view of the importance
we attach to generating an accurate value of S(0), typical
results for different weights Wo, the ratio $(0)/[$(0)],„z„
an the total weighted square error in each case are also
given. It is perhaps possible that these results correspond
to some local minima and not the absolute minima since
an exhaustive search of the four-parameter space is not
practical. However, trials from different starting points
were used to r'educe th1s posslb111ty. It ls gratifying to
note that when q is optimized freely, together with A 0&

0, and r, , from different starting points it finds a value
of =0.4654 for almost all the potentials including that de-
rived from the RPA. This feature strongly supports the
universality hypothesis of Rosenfeld and Ashcroft. Note
that the VS potentials tend to give high values of S(0) un-
less corrected by a high weighting 8'o. Similarly, IU
tends to give low values of S(0). The IU potential tends
to generate values of i) in excess of 0.5 if the S(0) weight-

ing is removed. (In Fig. 7 the effect of a forced error of
+5% on S(0) on the potential obtained (from the self-
consistently determined MI.F) is shown, to indicate how
errors in [S(0)],„pi are reflected in the potential. )

In Figs. 5(a) and 5(b) the S(k) calculated from the vari-
ous optimized potentials (except MLF) are shown. The
noteworthy features in these figures are that (i) the calcu-
lated first peaks are shifted to the left, i.e., to the small-k
side of the experimental first peak; (ii) the large-k oscilla-
tions of [S(k)]„i,are bigger in amplitude than those of
[S(k)],»„as seen from Fig. 5(b), except in the case of IU
which gives a good fit at large k. These optimized poten-
tials are shown in Fig. 6, and are similar to the DRT po-
tential but fall lower since the value of S(0) has been fit-
ted more accurately.

The difficulty in reproducing the [$(k)],„~, to within its
error bars with respec~ to its firs~ peak position, first peak
height, and its large-k amplitudes may have an g priori ex-
planation in several possibilities.

2. 4

2. 0
4. 1 4. 2

kxr
0

0.8 '

0.6

0 4
5

GT

ii i2

FIG. 5. (a) Comparison of the first peak of [S(k)],„~, and

[S(k)]„~,for Al at 943 K. The [S(k)] ~, curves correspond to
hnes 5, 7, 9, and 11 of Table II. Error bars of +1% are sho~n
on the experimental curve. (b) Comparison of the large-k region
of [S(k) ],„~, and [S(k)]„~,for Al at 943 K.
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DRT

LDA

GT

VS

-—EMPT

}4LF.

DRT

3.O

/
I ) j

4, 5 4, 6 4. 7 4, g

FIG. 6. Pair potentials for Al at 943 K corresponding to lines

5, 7, 9, and 11 of Table II and to [S(k)]„~,of Figs. 5(a) and 5(b).

kqT=0. 0029862 a.u. Also shown is the DRT potential at this

temperature and density.

(a) Shortcomings in the electron-ion pseudopotential: In
Fig. 7(a) we show the $(k) obtained from the DRT poten-
tial (which contains nonlocal contributions} with the value
of ri ( =0.4619) which gives the best fit to [$(k)],„z,. The
first peak is well reproduced both in terms of position and
height. This clearly suggests that a purely local form of
the pseudopotential is not fully satisfactory. From Fig.
7(b) we note, however, that the large-k amplitudes of the
[$(k}]DRT are too large.

(b) Shortcomings in the ion-ion potential: One may ex-

pect that tllc sllliplc loll-loll potciltlal of Eq. (2.3) sllould
be augmented with terms corresponding to Born-
Mayer —type terms, van der %'aals —type

' terms, etc.
However, no significant improvement in the quality of the
fit was obtained when such terms were included.

(c) Inadequacies in the zeroth-order response function:
The Lindhard function which was used as the zeroth-
order response function X (k) does not contain any renor-
malization of the electron propagators arising from the
presence of the ion subsystem. An approximate procedure
for incorporating this effect is to replace I (k) by I (k, l }
~here I is a mean free path calculated from the self-energy
of the electrons in the presence of the ion subsystem.
Hence we repeated all the calculations with Xc(k} replaced

by X (k, l ) following Ref. 25 but treating I as an adjustable
parameter. Values of I obtained were of the same magm-
tude as those of Ref. 25 but this procedure led to no useful
improvement in the calculated $(k).

(d) Inadequacies in the local field G(k): The actual
form of the local field and the effective r, (i.e., r, ) applic-
able to a liquid metal need not be the same as in jellium at
the unrenormalized density corresponding to r, . Also the
form of the potential is clearly very sensitive to the details
of the structure of the local field, as seen from Pig. 1.
Hence a strong case could be made for studying c MLI'
which is to be determined self consistently, from the experi'-

mental $(k) itself. The form of the MI.F was already
displayed in Eq. (2.7). This form has the merit of encom-
passing ail the recent electron-gas local fields within its
parameter space.

(b)
/ /

/ /
/' ///
/

/

vjXPT
MLF

/ —- —DRT
//

/
/

/, '/
/

TABLE III. The ion-ion potential derived from the inversion

of [S(k)] r, using the self-consistently generated MI.F of Une

12, Table II. DRT is the ion-ion potential of Dagens, Rasolt,
and Taylor. ro ——3.121 a.u. (see Sec. IV). The data are in units

of k~T=0.0029862 a.u.

1.0
1.5
1.7
1.9
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
5.0
6.0

DRT

98.500
3.5698
0.5447
0.4702
0.5458
0.3625
0.1171

—0.1048
—0.1202
—0.0211

0.0559
0.0531
0.0031

—0.0329
—0.0274
—0.0135
—0.0038

MLP

78.418
2.5624
0.5470
0.4507
0.4492
0.3005
0.0868

—0.0329
—0.0398

0.0002
0.0274
0.0260
0.0113
0.0012
0.0010
0.0006
0.0005

FIG. 7. (a) Comparison of the first peak of [S(k)],„r, and
[S(k)] ~, for Al at 943 K, corresponding to lines 2 and 12 of
Table II, for DRT and MLF. (b) Comparison of the large-k re-

gion of [S(k)] p, and [S(k)] ~, for Al at 943 K, corresponding
to lines 2 and 12 of Table II, for DRT and MLF.
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Local field bG

to,S(k},„„seeline 12, Table II.efined b Eq. (2.7},obtained by self-consistently fitt]ng toTABLE IV Parameters for the MLF d y
%e give for comparison approximate (visua y I e pall fitted} arametrizations o t e an

b bg b6b ba

MLF
GT
IU

0.8220
0.928
0.920

0.3381
0.289
0.289

0.1801
0.15
0.14

0.850
0.80
0.81

1.8832
2.3
2.0

5.3767
5.0
5.0

2.0097
2«2

2.1

T efcsu so ah lt btained from the MLF are shown in Pig. 7
to etherand Table III. The local field itself is displayed, og

ith the other local fields, in Fig. 2. Calculations with

S(0) weighted towards [S(0)],„~, 5%
la ed in Pig.

8 e
' '

Table IV. The fully
d the corresponding potentials are disp y

8. The MLP parameters are given in Table
4

opt1II11zed value of 9 1s found o
of the other potentials. The [S(k)]MLF, calculated rom

MLF re roduces the experimental data [S(k)],„~t' h' h r bars of the first peak, exc p p pe t erha s forw1t 1n t c crro
its right shoulder, where [S(k)]MLF a sfalls on the edge of
the error ars. nb A error of about 2% is found to persist in
the high- pea s.

'
h k k The charge density from [ V;, (

kdis layed in Fig. 9, together witll that fi'oin [V,( )]oTdisPlayed 1n 1g. s og
corresponding to line o a e
Dagcns for solid )clliull1 aluminum.

V. DISCUSSION AND CONCLUSION

0

The purpose o e pf the resent investigation was to o tarn
the Al-Al air potential, pseudopotential, an e oc
ie or ', '

nction} from the ex-field {or equivalently, the screening func
'

perimental structure data [S( ],„~,.k) ~ . The following
features of the results obtained are worthy of comment.
(') If 1 fit to the first peak of the [S( ],„~, is
demanded, the ab initio potential of DRT seems o
Quite satls actory. c va

' f Th value of S(0) predicted from DRT
IQa 1nis within 5% of the experimental value (which may

error of +2%}and hence DRT does reproduce the low-k
regime quite we;ll however we have noted that small er-

rors in S(0) have large effects on the potential. The two
calculations where the optimizations were constrained to
[ (0}] +5% show that the potential is quite sensitive
to the quality of the small-k data. (ii e

expt-

'
t tl determined MLP and the associated localconsistent y c erm

1 II ive the bestpscu opdopotential given in line 12 of Tab e give e
11 ion-ion pair potential in the sense of giving1 thc bestovera 1on-

~ II

all eaks offit to the experimental data including the sma p
the large-k region where the DRT gives poor agreement.
If the local form of the pseudopotential, Eq. (2.3), used
hclc is rcp aclaced b a more general nonlocal form, t en wc

expect the agreement between the [ ]„i, anmay cxpcc
[ (0)] to im rove, especially on the large-k shouldhoulder of
the first peak. (iii) The optimized potentia [ r Mt„ is'al U(r) is
strongly damped for large r and softer than the DRT po-
tential for small r.

The charge densities shown in Fig. 9 show that the elec-
tron istri Ut1on is pu

red to the Dagens data for Al in (Cilium a.compar to e
=2.069. This is in agreement with the weaker sc

'
g1 scrceninr$= . . 1S 1

~ a s r cncc smallerimplied by the larger effective r„ i.e., r, ence
density) entering into MLF in Table II.

The electrical conductivity was calculated using the Zi-
man formula and gave 23.4 y, , g
with the experimental value of (24.4+5%) pQ cm (see Ref.
25).

The MLP, determined self-consistently ron1m S(k) is
that appropriate for electrons in liquid metallic aluminum.
It contains e exth expected sharp cutoff in the neighborhood

r =2.767, 1sof 2kF. The k~0 limit of [G(k, r, )]M„„,r, = . , is

2. 0

1.0

}

3.0 3.5 4. Q

0.0—

X
X

)4LF-
MLF

X--X X
X

0, 05

----- HLF+

X DRT

-0.05
0

FIG. 8. Solid line is the potential obtained (linene 12 of Table
II) by inversion o 1f [$(k)] at 943 K using the self-consistently

'
ed MLF (shown in Fig. 2}. The potentials correspon-

ing to [$(0)]„s,+5% are shown as MLF and MLF .
shown is the DRT potential.

FIG. 9. Electron-charge densities calculated fromrom . (2.11}
using the pseudopotentials correspon g

~ ~

ndin to lines 7 and 12 of
Table II, at their respective r, , compared with th*,, with the OFT results
of Dagens at r, =2.069.
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about 0.2826, compared with the Vosko-%ilk-Nusair
value of 0.27 at the unrenormalized value of r, =2.164
(however, note that the VS local field gives a slightly
higher k-+0 limit of about 0.286). The enhancement of
the k 0 limit found by the self-consistent determination
of G(k, r,') is probably a reflection of the fact that the
conduction-electron compressibility has to conform to the
mixture compressibility. The peak near 2kF found in
[G(k,A,')]MLF is more pronounced than in the other local
fields. The presence of this peak probably gives the MLF
dielectric function a Thomas-Fermi —type pole structure
even for r,

' =2.767.
The effective electron-sphere radius r,' is usually rein-

terpreted in terms of an effective mass of the electrons.
This assumes the existence of a k-dependent dispersion re-
lation for the energy, within an effective one-particle
Schrodinger equation or one-particle Green function, 33 for
the electrons in the liquid metal. However, within the
context of the present method we prefer to consider r,

' as
an optimized electron-gas parameter which compensates
to some extent the various shortcomings in the theory of
the second-order local pseudopotential, linear-response
theory, etc. A detailed analysis of the nature of the local

field for the conduction electrons in a liquid metal will be
the subject of a future study.

We may conclude that inversion of [$(k)],„~, data using
the HNC equation (corrected for bridge terms which are
determined self-consistently via a hard-sphere-packing
density parameter ri) provides a reliable and potentially
very powerful method for extracting effective ion-ion po-
tentials, ion-electron pseudopotentials, and the detailed
structure of the electron response in liquid metals.

Instead of starting from S(k) obtained from experi-
ments, there is now the possibility of its calculation from
first principles using density-functional theory for a sys-
tem of ions and electrons. Such S(k) can then be used
within the resent inversion method for a completely nov-
el method of determining effective pair-potentials which
transcend the normal route based on second-order pertur-
bation theory and linear-response theory.
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