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A calculation of the Compton profiles of beryllium is presented. The wave functions are obtained
from an ab initio calculation with the use of the pseudopotential approach within the local-density-
functional approximation. The calculated anisotropic profiles are in excellent agreement with exper-
iments. The directional profiles are also in good agreement except for a small discrepancy which can
be improved by the inclusion of the effects of correlation in an approximate way.

I. INTRODUCTION

Beryllium metal is a very attractive candidate for
theoretical and experimental investigations because of its
anomalous properties and its simple atomic and crystal
structures. Beryllium has a hexagonal close-packed crys-
tal structure with only tw'o core electrons (1s ) and two
valence electrons (2s ) per atom. One common way to in-
vestigate the momentum distribution of the electrons is to
examine Compton profiles. Experimentally these profiles
can be measured directly from the photon scattering pat-
tern, and theoretically they can be calculated using wave
functions obtained from band-structure calculations. A
comparison between theoretical and experimental profiles
then ser ves as a test of the accuracy of the calculated wave
functions. Several experimental measurements of the
Compton scattering profiles' 6 have been carried out in
recent years to determine the electron momentum distribu-
tion. Because of recent improvements in the experimental
facilities, the experiments by Hansen et al. using 412-keV
gamma rays and Loupias et ol. using 10-keV x rays are
considered to be very accurate. Directional profiles along
several symmetry directions were measured with a
momentum resolution of 0.41 and 0.15 R.u. for the above
experiments, respectively. Compton profiles of beryllium
have been computed previously using several different
methods "; the calculated anisotropic behavior agrees
qualitatively with the experimental results, but there is
still a discrepancy in the amplitude. ' Since the direction-
al Compton profiles measure the electron momentum dis-
tribution integrated over a plane perpendicular to a specif-
ic direction, they are very sensitive to the accuracy of the
wave functions.

%e have performed an ab initio calculation of the
structural properties of beryllium' using the pseudopoten-
tial technique' and the local-density-functional formal-
ism' with the atomic number Rs the only input. The lat-
tice constants and the e/a ratio were successfully predict-
ed by calculating the total energy of the system in the
momentum space representation. ' The calculated bulk
modulus Rnd Poisson s rRtio werc Rlso found to bc in
reasonably good agreement with the experimental values.

In this paper, we will present a calculation of the
Compton profiles using the wave functions obtained from
the ab initio calculation of beryllium. ' lt will be shown in

the following sections that the calculated results are in
good agreement with the two recent experiments, c.g., they
are closer to experiment than any of the previous calcula-
tions. In particular, the agreement is excellent for the an-
isotropic profiles. A rough estimate of the contribution of
electron correlation is added to explain the remaining
small discrepancies in the directional profiles. A brief re-
port of our results has been published previously. ' The
rest of this paper is organized as follows: The theoretical
method is dcscribcd in Scc. II, icsults Rlc pI'cscntcd Rnd
discussed in Sec. III, Rnd conclusions are given in Sec. IV.

II. CALCULATIONAL PROCEDURE

In this calculation the core electrons are taken to be
atomiclike, and the valence electrons are treated by the
pseudopotential approach. The pseudopotcniials are an-
gular momentum dependent and are generated for the
berylhum atom. ' A plane-wave basis set is employed to
solve the Schrodinger equation self-consistently in the
local-density-functional scheme' ' an.d the Hedin-
Lundqvist formula' is used for the correlation energy.
The eigenfunctions„with the spin index ignored, can be
written as

qy (r) y C (G)e&( k y G ) r
k, n P' k, n

6
where V is the volume, n is the band index, and the sum-

mation is over the reciprocal-lattice vectors G. The coeffi-
cients have to satisfy the normalization condition

g ~C-„(6)
~

=1.

The electron momentum distribution is obtained from the
Fourier transform of the wave functions,

BZ

n(p)= gg+5 -„-~C-„(6)
~

8(Ep E-„), —
k 6

where EF is the Fermi energy, E- is the energy eigen-
k, e

value of %' ( r ), and BZ represents Brillouin zone.k, n

The impulse approximation" is often used to calculate
the Compton profile; it is valid when the incoming photon
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FIG. 1. (a) First Brillouin zone of the hexagonal-close-packed

structure. The irreducible —,4 th portion of the fast Brillouin

zone and the reciprocal-lattice vectors are drawn with symmetry

points specified. (b) Special directions in the I MI.A and I KHA

planes.
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has much larger energy than the electrons of the system
and when the final energy of the scattered electron is
much greater than the initial energy. With the assumption
of the impulse approximation the Compton profile along a
certain direction e can be written as

FIG. 2. Comparison between the calculated valence Compton

profile of the free beryllium atom (solid line) and that of the

pseudoatom (- - -). The isotropic profile of the metal (—~ —) and

that of the free-electron gas ( ) are also shown.

J(q, e ) =—g n( p)5( p e —q) .
P

(4)

X5((k+G).e —q) . (6)

The summation over k in (6) is changed into an integra-
tion using the tetrahedral method. The 24 irreducible
wedges of the Brillouin zone may contribute differently;
hence a method of equivalent vectors' is used to reduce

the k points to be in one irreducible wedge of the Brillouin

zone only. A set of 196 k points is chosen in one irreduci-
ble wedge of the Brillouin zone and 648 tetrahedra are

generated to carry out the integral. If the number of k
points is increased from 196 to 288, the change in the pro-
fllc alollg thc ( 11.0) dlrcctloll ls of thc order of 10
with the largest change being 0.005. The isotropic profile
is obtained by integrating (6) over all directions first, i.e.,
integrating over e.

Four Miller-Bravais indices are often used for the hcp
structure to specify directions in real space. For our pur-

pose, the reciprocal-lattice vectors G&,G2, G3 are a more
convenient set of basis vectors. A direction with respect
to this basis is specified by three numbers in square brack-

The Compton profile J(q,e) is symmetrical with respect
to q=0 because of time-reversal symmetry. It is also sub-

ject to the normalization condition

I J(q, e)dq =2, (5)

which is equal to the number of valence electrons per unit
cell divided by the twofold spin degeneracy. Substituting
(3) into (4), the Compton profile is given by

J(q,e)=—ggg ~
C„(G)~'e(E, Z„)—

n k G

ets: [clc2.cl]. A full set of equivalent directions is ex-
pressed by angular brackets: (clc2.c3). Figure 1 shows
the first Brillouin zone of the hcp structure and indicates
several symmetry directions. The nearest-neighbor Be-Be
direction is along Gl+(c/a) Gl and can be expressed as
(10.(c/a) ) using this basis, where (c/a) is equal to
2.46.

There are two major approximations in the current
pseudopotential scheme: One is the frozen-core assump-
tion ', the other is the smoothing of the valence wave
functions in the core region. Since the oscillations of the
valence wave functions in the core region are taken out, it
is expected that this approximation will decrease the am-
plitude of the Compton profiles for large q and increase
the values near q=0. An estimate of this difference is
given by examining the beryllium atom. The Compton
profile calculated from the atomic 2s pseudo-wave-
function as well as that from the real all-electron wave
function are sho~n in Fig. 2. The long tail disappears in
the pseudoatom profile and a higher central peak is ob-
tained. However„ the average difference between these two
profiles is minor and is no greater than 1% of J(q =0).
The difference of the core profiles between free beryllium
atoms and solids is expected to be small. The effect aris-
ing from the core expansion in beryllium metal is less than
1%. Taking the frozen-core approximation, one can ob-
tain the total profile for the beryllium crystal by adding
the atomic 1s Compton profile to the crystal valence pro-
file.

III. RESULTS AND DISCUSSION

For the free-electron gas, the Compton profile is a para-
bola with a cutoff at the Fermi momentum P~. In the
crystal the Bloch functions, with wave vectors k+6, de-
form the parabola and give rise to a tail for q larger than



M. Y. CHOU, PUI K. LAM, AND MARVIN L. COHEN

TABLE I. Calculated valence Compton profiles along six directions. The momentum q is in a.u.

(00.1) (10.0l (10.1) (11.1) (10.(c/aP)

0.0
0.1

0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.5
3.0

1.4154
1.4346
1.3439
1.2427
1.1303
1.0250
0.9109
0.7971
0.6593
0.4107
0.1455
0.0540
0.0300
0.0190
0.0132
0.0101
0.0080
0.0065
0.0061
0.0065
0.0059
0.0021
0.0002

1.4048
1.3768
1.3260
1.2579
1.1724
1.0713
0.9461
0.7927
0.5970
0.3784
0.1771
0.0745
0.0330
0.0179
0.0118
0.0091
0.0082
0.0090
0.0083
0.0071
0.0057
0.0023
0.0002

1.3375
1.3353
1.3279
1.3031
1.2353
1.1156
0.9172
0.7320
0.5564
0.3830
0.2337
0.0723
0.0330
0.0191
0.0118
0.0077
0.0051
0.0036
0.0030
0.0040
0.0061
0.0026
0.0000

1.4062
1.3968
1.3536
1.2883
1.1727
1.0415
0.9089
0.7500
0.5903
0.3989
0.1836
0.0707
0.0331
0.0206
0.0157
0.0130
0.0111
0.0091
0.0075
0.0061
0.0051
0.0020
0.0002

1.4270
1.4025
1.3497
1.2624
1.1586
1.0463
0.9265
0.7745
0.5889
0.3831
0.1864
0.0729
0.0335
0.0201
0.0141
0.0107
0.0089
0.0083
0.0079
0.0069
0.0058
0.0022
0.0002

1.3723
1.3669
1.3498
1.3015
1.2133
1.0855
0.9250
0.7316
0.5375
0.3619
0.2132
0.0881
0.0386
0.0220
0.0144
0.0105
0.0078
0.0064
0.0057

0.0053
0.0051
0.0025
0.0001

PF, as is shown in Fig. 2. For beryllium metal, the sharp
edge at the Fermi momentum {1.03 a.u.) is rounded.

The calculated valence Compton profiles along several
directions are listed in 'Table I. To compare with the ex-
perimental results, the calculated profiles are convoluted
with the experimental resolution functions. Figure 3
shows the total directional profile along the (00.1) direc-
tion compared with the latest experimental results by
I.oupias et ul. The overall agreement is very good. Simi-
lar agreement is also found when comparison is made with
the y-ray measurements of Hansen et a/. However, it is

more appropriate to make detailed comparisons with the
anisotropic profiles, since the systematic deviations in-
herent in both theory and experiment can be removed
when one directional profile is subtracted from another.
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FIG. 3. Comparison of the calculated directional profile
(solid line) with the experiment by Loupias et al. (Ref. 6) (cir-

cles). The theoretical curve is convoluted with the experimental

resolution function.

(a.U. )

FIG. 4. Comparison between the calculations and the mea-
sured anisotropies by Hansen et al. (Ref. 5) (crosses) for (a)
Joo 1

—Jlo,o and (1) Joo i —J~i o. Convoluted theoretical results
are as follows: present calculation (solid line), linear combina-
tion of atomic orbitals (LCAO) (Ref. 7) (dotted line), and pseu-
dopotential calculation by Rennert (Ref. 10) (dashed line). The
LCAO result is taken from Ref. 5.
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FIG. 5. Comparison between the calculations and the mea-

sured anisotropies by Loupias et al. (Ref. 6) {crosses) for (a)

Joo ~
—J]oo and {b) Joo ~

—J~~ 0. Convoluted theoretical results

are as follows: present calculation (solid line), LCAQ (Ref. 7)
(dotted line), and pseudopotential calculation by Rennert (Ref.
10) (dashed hne). The last two sets of data are taken from Ref.
6.

Moreover, the small amplitude of anisotropic profiles (less
than 5% of the peak of the total profile) demands very
high accuracy in both theory and experiment. Figure 4
shows the comparison of the experimental anisotropies ob-
served by Hansen et al. (y-ray) with several theoretical
calculations. The solid line is the present calculation. The
Joo &

—J&oo profile is shown in Fig. 4(s), and Joo ~
—J~~ 0

in Fig. 4(b). Similar comparison with the experiment by
I.oupias et aI. (x ray) are shown in Figs. 5(a) and 5(b). It
can be seen that the present results are in excellent agree-
ment with both experiments, better than any previous cal-
culations. The oscillatory behavior agrees not only quali-
tatively, but also quantitatively, including the amplitude,
the peaks, snd the zeros, This indicates that the present
theoretical method is capable of reproducing the fine de-
tails of the electron momentum distribution.

It has been pointed out previously that the general
feature of the anisotropic profiles arises from the special
shape of the second Brillouin zone. If the plane-wave
states are used to fill the first two Brillouin zones, ~ the an-

isotropies thexein are similar to those observed in the oscil-
lation behavior and positions of maxima, minima, and
zeros. In a real beryllium crystal, the second band is par-
tially filled and some electrons exist in the third band.
Therefore, the magnitude of the anisotropies gives a cru-
cial test of the correctness of the shape of the Fermi sur-
face as well as the electron momentum distribution.

Despite the overall agreement, there is still s small
discrepancy between theory and experiment when the
directional px'ofiles are compared on a finer scale. Figures

FIG. 6. (a) Differences between the calculated (this work) and

experimental [Hansen et al. (Ref. 5)] Compton profiles for the

(00.1), (10.0), and (11.0) directions. (b) Differences after the
correlation correction is added.
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FIG. 7. (a) Differences between calculated (this work) and ex-
perimental [Loupias er al. (Ref. 6)] Compton profiles for the
(00.1), (10.0), and (11.0) directions. (b) Differences after the
correlation correction is added.

6(a) and 7(a) show the difference between experiment and

the present calculation for several directions. These

differences are too small to be seen in Fig. 3. The overall

magnitude of the discrepancies seems to be independent of
direction, hence only an isotropic correction is needed.
The difference, which is especially large for q near the
Fermi momentum I'F of the free-electron gas (1.03 a.u. for
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Be), suggests that the correction from correlation effects
may be important. This contribution can be estimated by
considering the momentum distribution for a correlated
homogeneous electron gas as proposed by Rennert':

en out, and therefore the profiles are underestimated for
large q and overestimated for small q.

IV. CONCLUSION

n(p)= '

1 —a P
PF

for g 1
PF

a
~ p

(b —1) pF
for 1( P (S

PF

The value of a was taken to be 0.16 which is consistent
with the random-phase-approximation (RPA) calculation

by Daniel and Vosko and b=1.476 as required by nor-
malization. This correction is added to the calculated pro-
files of beryllium as an estimate of the effects of electron
correlation. Figures 6(b) and 7(b) show the final differ-
ences between the theory and the two experiments. A sig-
nificant improvement is found, and the discrepancies are
reduced almost by a factor of 2. This comparison indi-
cates that even a rough estimate of correlation contribu-
tions can explain the main part of the discrepancies ob-
tained previously. However, more advanced theories of
electron correlation appropriate for anisotropic inhomo-
geneous systems are needed in order to obtain further
corrections. The remaining differences between theory
and experiment are consistent with what we would expect
in this theoretical approach. With the use of the pseudo-
potential scheme, oscillations near the core region are tak-

In summary, the calculated and observed Compton pro-
files of beryllium are in excellent agreement. Even
without the addition of a small correlation contribution
the results are very good. This agreement indicates that
the local-density-functional scheme together with the
pseudopotential approach can give accurate wave func-
tions describing the behavior of valence electrons in the
solids. Having accurate directional profiles, it should be
interesting for future studies to examine the relation be-

tween the momentum distribution in k space and bonding
in real space.
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