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We investigated the stationary nonequilibrium states of a lattice gas of interacting particles subject to an

external field E. The dynamics of the system are given by hoppings of particles to nearby empty sites with

rates biased for jumps in the direction of E. This system is often used to model fast ionic conductors. Us-

ing computer simulations of a two-dimensional lattice with nearest-neighbor interactions we studied the

dependence of the structure function, current, etc. , on temperature and E. We found evidence for a tran-

sition line in the temperature-field plane at which the system develops (anisotropic) long-range order. E
enhances the transition for attractive interactions and represses it for repulsive ones.

I. INTRODUCTION

There is little known about microscopic correlations in

stationary nonequilibrium systems. We therefore carried
out computer simulations of such a state in a system con-
sisting of a hypercubic lattice in v dimensions with periodic
boundary conditions (torus) containing N = L" sites, and cN
particles. The microscopic configuration of the system is

specified by giving the occupation at all lattice sites,
C= {e;}, c;=0, 1, . . . , with g, , c;=cN The statis.tical

state of the system is described by a probability distribution
on the configurations of the system p, (C).

The configurations C evolve according to a stochastic
hopping dynamics. In the absence of an electric field, this is

the familiar kinetic lattice gas or Ising model with
Kawasaki-type dynamics which leads to an equilibrium sta-
tionary state specified by

p,„(C)= exp[ —PU(C) ]/ /exp[ —
P U(C) ]

where p is the inverse temperature. The interaction U is as-
sumed for simplicity to involve only nearest-neighbor sites,
with periodic boundary conditions,

U = —4J &c-c-
I j

For e =0.5, v=2, the case we shall study here, the (infin-
ite) system undergoes a phase transition at a critical tem-
perature T, = {J}/0.44.

The field induces a preferential hopping in one direction
leading to a stationary nonequilibrium state in which there is

a net current. Previous studies of this model, used to
describe certain fast ionic conductors, "have been primarily
concerned with the effects of small electric field. We be-
lieve this is the first study of the stationary state characteris-
tic for large electric field.

To specify our model more precisely we have to give the
transition rates. In the absence of an external electric field
these are assumed to satisfy detailed balance, i.e. ,

W(C C '')/W(C '' C)=e

Here e is a unit lattice vector, ( i,e) is a bond incident on
the site i (there are 2v such bonds), C ' ' is the configura-

I

tion obtained from C by interchanging occupations at sites
i and i +e, W is the rate for this transition, p is the in-

verse temperature, and 4U is the change in the interaction
energy resulting from this exchange. Since hU depends
only on the c-;'s at sites neighboring the bond ( i,e) it is

generally assumed that W(C C ' ') also depends only on
the configuration at these sites. This still leaves an enor-
mous choice of rates satisfying (2), Refs. 1-4.

When there is a uniform external electric field E on a
torus, the stationary, current-carrying, nonequilibrium state
will no longer satisfy any global detailed-balance condition.
We expect, however, that W~ will satisfy a "local"
detailed-balance condition, i.e., one that would be valid if
locally the field were the gradiant of an external potential 4.
In that case, A4 in the transition C C ' ' equals
—(c-, —c-, +,-)e ~ qE, where q is the charge. This yields

WE(C C ' ')/WE(C ' ' C)

=exp[ —P[AU —(c-, —c-, +;)qe E]} . (2)

Transition rates satisfying (2) (with Wq & 0) can be prov-
en to have the following two desirable properties': (i) For a

finite torus there is a unique stationary state p, E which is

spatially uniform. There is no detailed balance in the sta-
tionary state except when E = 0, in which case p p p eq. (ii)
The Einstein relation o-=XD is satisfied, where cr is the
zero-field conductivity, X the equilibrium compressibility,
and D the bulk diffusion coefficient. Furthermore, the
Kubo formula holds in the sense that XD is given by the
space-time integral over the current-current correlation
function.

II. COMPUTER SIMULATIONS

We carried out computer simulations on an L =30 (or
40) square lattice with periodic boundary conditions at a

density c =0.5. The values of K —= pJ ranged from —0.5 to
0.5 and that of qpE, in the y direction, ranged from zero to
50 (effectively infinite). Our transition rates, in units of at-
tempted exchange per bond, were chosen in the manner of
Metropolis, with b, 4 added to b, U,

1,
W, (C- C ')= if AU —(c=, —c-, ;)e qE-0

exp {—p [5U —(c —,
—c —;+,-)e q E]} otherwise .

t

(3)
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Starting with an "equilibrium" configuration of 450 parti-
cles, we turned on the field by implementing (3) and waited
long enough, about 15000 time steps (attempted exchanges
per site), for the system to come to a stationary state. We
then collected our data as time averages over about 25000

t

t t
t

t t

additional steps. We also averaged over 2-5 runs at each
point in the T-E plane.

RESULTS

We measured a variety of quantities related to the micro-
scopic structure but restrict our attention here to the current
J(E) and the structure factor S(k). J(E) is defined
operationally as the total number of jumps in the +y direc-
tion minus those in the —y direction during the time of the
run divided by the time and by the number of bonds in the

y direction. The structure factor S ( k ) is the Fourier
transform of the pair correlation function,

S(k) = —${exp[ik ( j —I )]j(c-,c
~

——,') (4)
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where k is in the first Brillouin zone.
In Fig. 1 we show three typical configurations, corre-

sponding to (a) K =0.2, E =10, (b) K =0.35, E =0, and
(c) K =0.35, E =50. We note first that for small K (high
temperature) even enormous fields (E & 5 is effectively the
same as E = ~) produce little change in the appearance of
typical configurations. They are similar to the equilibrium
state E=0, being isotropic and disordered. At K =0.35,
however, the large-E stationary state looks very different
from the equilibrium E =0 state at that temperature. While
the latter, being above the Onsager transition temperature
K =0.44, is still isotropic with some local order, the former
appears to be highly anisotropic and ordered with some
columns almost entirely occupied and others entirely empty.

This kind of ordering leads to a drastic reduction in the
current and gives a large maximum in S ( k ) for
(k„,k~) = (2vr/30, 0). In order to see whether this really
corresponds to the system having undergone a phase transi-
tion, we plotted in Fig. 2 the value of the maximum of
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FIG. 1. Typical stationary state configurations at (a) K =0.2,
E =10, (b) K =0.35, E =0, and (c) K =0.35, E =50.
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FIG. 2. Structure function S(k) at the value k„=27'/30 ky 0,
as a function of K =PJ, for various electric fields. The crosses cor-
respond to E = 0, the open circles to E = 0.75, and the asterisks to
E =50.
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FIG. 3. Current as a function of electric field for various values
of K.
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S(k) vs K for the equilibrium state E =0 and some current
carrying states E & 0. The sharp increase in S(k) suggests
the existence of a transition at a "critical" K,(E) which de-
creases from K, (0) = 0.44 (the Onsager value) to
K, (~) =0.32. [K,(E) may be defined by the maximum
value of S(k), being equal to the value it takes in our sys-
tem in equilibrium at K,(0), approximately 50]. The struc-
ture of the low-temperature phase depends on E—being
hightly anisotropic for large fields.

Figure 3 shows the current as a function of PqE for vari-

ous values of K. It is seen that J(E) saturates for large
fields, PqE & 5. We call J,„(K)the saturation current.
This is plotted in Fig. 4 where we also show the zero-field
conductivity a(0). There "appears" to be a break in the
slope of J,„(K) at K,(~). We also measured the specific
heat at constant E. Its peak is shifted to higher tempera-
tures consistent with our data on S(k). However, the peak
is broader than the corresponding one at the equilibrium
transition. This makes it hard to determine the critical tem-
perature with accuracy. In particular, we did not try to
determine critical exponents.

For repulsive (antiferromagnetic) interactions, K & 0, the
equilibrium state at E =0, K (K, = —0.44 has one of the
sublattices preferentially occupied. The field E appears to
destroy this order. The maximum of the staggered structure
function at E =50, K = —0.44 is of the same magnitude as
the maximum at E =0, K = —0.2. These results are con-
sistent with Fig. 16(b) in the report of work prior to publica-
tion, by Murch' and the discussion there.

CONCLUDING REMARKS

(i) We are quite confident that our simulations really

represent the stationary state. Varying the initial configura-
tions and going to a larger-size lattice (40X40) does not af-
fect the results significantly. Our estimated error for the
30&30 simulations are no larger than the size of the data
points on the graph.

(ii) The choice of dynamics is important for nonequilibri-
um behavior. ' It can drastically affect the stationary states

ppp
I Q ~ I I

-0,& -0,2 0,0 K 0.2 0.&

FIG. 4. Crosses represent the saturation current Jm, „. The full

circles represent the zero-field conductivity o.(0).

for E =0. Thus for E directed in the diagonal direction and
jumps restricted to nearest-neighbor sets or rates (6) would
become independent of E when E becomes infinite. This
would lead, in that limit, to the unphysical model in which

p, ~ is the same as p, „at infinite temperatures. '
(iii) We have also carried out simulations and exact

theoretical computations for one-dimensional models, the
results of which will be published along with further details
of the two-dimensional simulations. Simulations in three-
dimensional systems are at an early stage (with J. Marro).

(iv) The modification of the transition in our system
caused by E should be compared to the effect of a shear
flow on the demixing transition in a binary fluid studied in

Ref. 6. The flow there, which affects both components
equally, causes a lowering of the critical temperature and a

change in the critical exponents. As indicated earlier, how-

ever, we have not yet made a systematic study of the ex-
ponents in our nonequilibrium transition. We plan to study
this in the future.
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