
PHYSICAL REVIEW B VOLUME 28, NUMBER 3 1 AUGUST 1983
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We have extended series expansions for both lattice animals and percolation (which model branched po-

lymers and gels, respectively), and also have obtained Monte Carlo simulations of systems 1000 times

larger than hitherto studied (17x10 sites). We find more precise estimates of the corresponding

"correction-to-scaling exponents,
" and calculate the "correction-to-scaling function" fi(z) for the first

time.

As the critical point is approached, the asymptotic
behavior of a critical quantity Q(x) is described by an equa-
tion of the form

Q (x) = Bx"(1+B'x"+ )

where x =0 at the critical point. The "scaling" exponent p, ,
and the "correction-to-scaling" exponent 0 are believed to
be universal, while the amplitudes B and B' are not.
Correction-to-scaling phenomena in thermal phase transi-

tions have recently been considerably clarified. ' ' The
same cannot be said for the sort of "geometric" phase tran-
sitions characterizing aggregation phenomena. 4 Indeed,
measurements of the scaling exponents themselves are no-

toriously difficult in large part due to the absence of a clear
picture of the correction effects. ' This work represents a
contribution to this end for branched polymers and gels-
two important classes of aggregation phenomena modeled

by lattice animals and percolation, respectively.
To study this problem, we have used two methods of sta-

tistical mechanics —series expansions and Monte Carlo com-
puter simulations —generally reliable in evaluating ex-
ponents and subtle correction effects. We have extended
the series for both lattice animals and percolation, and have
performed Monte Carlo simulations at the percolation
threshold for a system of 17&10' particles, roughly 1000
times larger than previously published.

Lattice animals In the lattic. e animal problem, Q(x) =A„
the number of animals made of s elements (sites or bonds);
this quantity is singular in the limit x =1/s 0 and p. =8.
First, we extended the series for the triangular lattice by one
additional term. Specifically, we calculated A„, the number
of clusters with s =15 sites and t perimeter sites. The calcu-
lation, with the use of the Martin algorithm, ' required 55 h

on the IBM 370/168; the next order would require roughly
300 h and was not attempted. We also calculated

A, = g, A„, the total number of lattice animals, regardless of
perimeter, to order s =17~ The new results are given in

Table I.
Directed lattice animals. Suppose that clusters can grow

into only one of the 2" octants of a hypercube. Then we
have the directed lattice animal problem, which is related to
a large number of natural phenomena ranging from directed
polymers to river networks. It appears that the scaling ex-
ponent 8D(d) is given in terms of the exponent 8(d+1)
for the isotropic animal problem by the relation
80(d) =8(d+I) —1, '0 where 8(d=2) =I and

8(d =3) = —, are exact. " This problem is particularly attrac-

tive for the present study, since the coefficients A, are
known exactly for all s for the square, triangular, and

honeycomb lattices" for which only the analytic corrections
are present. For this reason, our series analysis methods
were first tested on these systems [Fig. 1(a)]."

Applying these same methods to the isotropic animal

problem, we find [Fig. 1(b)]

0 =0.86 +0.05 (2)

The result is based not only on our extended series for the

triangular lattice but also on a recently extended series for
the square lattice. "

Percolation. In the percolation problem,

n, (p) = QA„p*(I —p)' (3a)

Since x = I/s, Eq. (I) predicts that N, (p, ) —s' ', where

p, =r =2+1/5. Hence the data plotted in Fig. 2 would be

expected to display a plateau for large s corresponding to the

expected asymptotic behavior. Previous data for L up to

4000 do not display a clear plateau, ' while we find a plateau

TABLE I. The cluster numbers A„calculated for the triangular

lattice, where s is the number of cluster sites (s =15) and t is the

number of perimeter sites (17 ~ t ~ 34). We also confirmed

A &6
=4 474 080 844 and found the new result A i 7

= 21 866 153 748

(R f. 8).

A„ As A,(

17
18
19
20
21
22

42
759

5 774
34164

153406
589094

23
24
25
26
27
28

1 936836
5 521212

13 878 262
30 469 044
58 629684
98 009 115

29
30
31
32
33
34

140 848 650
170 827 614
170 852 124
133 777 587

72 798 008
20478999

is the number of clusters with s sites, normalized by the
number of lattice sites, and Q(x) = n, (p, ). From our new

A„we extended the series for n, (p) for the triangular lat-

tice, but even the extended series do not provide highly ac-

curate estimates of 0,. Therefore, we carried out Monte
Carlo simulations of an L xL triangular lattice for a range

of L from 1000 to 130000. This is much larger than previ-

ously published n, (p) percolation calculations

(L (4000)." It is customary to calculate the partial sums,

(3b)
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I.O I

0.99

I
I

I for our systems with I = 35 000, 70 000, 95 000, and
130000 (Fig. 2). The deviations from the plateau for smaller

sizes s can be fitted to an s ~ law, and from the data we
find a result somewhat lower than previous calcula-
tions'" " (but see Ref. 18),

0.97 Qp =0.64 +0.08 (4)
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—0.93
(9 0.90

I I I

I
l

I
~

I

The actual statistical errors were much smaller.
The situation for p slightly different from p, is more com-

plex than for p =p, . ' If we assume a constant effective A~
throughout the critical region, then the one-variable scaling
law in (1) is replaced by the two-variable ansatz"

n, (p) = s '[fo(z) +s 'f~(z)] .
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FIG. l. Successive estimates for the correction-to-scaling ex-
ponent 0& for (a) directed site lattice animals on square and tri-

angular lattices, and (b) isotropic lattice animals on the same two
lattices. We see that the method predicts the correct value,
Az =1, for (a). Plotted is the function jeff(s) = —2+in Y/lnX,
where Y = (R, —1)/(R, ~

—1) and X = (s —1)/s. Here

R, = W, + ~ W, ~/ W, and W, = s~A, . We found results consistent
with (2) using other extrapolation methods, and also using the
exponential form of correction to scaling (Ref. 14).

IO-1 & y7g

Here z=(p —p, )s is the scaled variable, fo(z) the "scal-
ing function, " and ft(z) the overall effective correction-
to-scaling function. While fa(z) has been calculated previ-
ously, ' ' f~(z) has not been calculated for any critical
point. We calculated both fo(z) and f~(z) from the inter-

cept and slope, respectively, of plots of s'n, (p, ) vs s
(Fig. 3).

In summary, we have extended the series expansions for
lattice animals and percolation on the triangular lattice, and
obtained Monte Carlo cluster counts on the triangular lattice
for much larger system sizes than hitherto studied. Analysis
of our new results (and other recent enumeration data) re-
veals more precise estimates of the correction-to-scaling ex-
ponents for lattice animals and percolation. Moreover, the
correction-to-scaling function ft(z) has been calculated for
the first time for any second-order phase transition.
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FIG. 2. Dependence of log2s of s' 'N, (p, ), obtained by Monte
Carlo simulations for an L XL triangular lattice, for a sequence of
increasing values of L. Approximately 26 h of central processing
unit time on a CDC 7600 were required for the case L =130000.
The points for L =4000 are from Ref. 16.

FIG. 3. Scaling function fo(z) and correction-to-scaling function
—fi(z) obtained by Monte Carlo simulation on the triangular lat-

tice normalized by 1.4. Two different trial values of B~ were used
in calculating fi(z), 0~=0.6 (x), and 0~=0.7 (+); the function

fo(z) was not visibly different for the two cases. Note that f~(z) is

not monotonic and hence is not proportional to fo (z).
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