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Crossover in diffusion-limited aggregation
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We consider a generalization of the %'itten-Sander model for aggregation to allo~ for a finite density of
diffusing particles. In a continuum treatment we show that for small aggregates we recover the previous

behavior that the density of the aggregate decreases inversely with the radius, but larger aggregates cross
over to having constant density. Our results are in qualitative agreement with numerical simulations of the

discrete model.
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Here D is the diffusion coefficient, a the radius of the parti-
cles, and E the average "absorption" of particles by the ag-
gregate. Equation (la) expresses the conservation of diffus-
ing particles. The form of Eq. (Ib) is discussed in Refs. I
and 3: It expresses the fact that particles can attach to the
aggregate when they are less than a distance a from it. A
simple rescaling of r, t, p, u, and a allows us to put the
equations in the form

Witten and Sander' recently introduced a simple model
for kinetic processes leading to the aggregation of large ran-
dom structures such as soot particles, dust, or smoke. In
this Rapid Communication we consider a simple generaliza-
tion of the continuum model for these processes which ex-
hibits an interesting new crossover behavior.

The Witten-Sander model was based on the assumption
that particle diffusion to the aggregate is the limiting step in

growth. Briefly, the process was the repeated attachment of
randomly walking particles to the growing object. The result
of computer simulations' is that the objects grown were
very diffuse and dilation symmetric; their Hausdorff dimen-
sion is less than the dimension d of space and independent
of short-range details (such as lattice type). These remark-
able facts gave impetus to studies" of a continuum version'
of the model in the limit of vanishing density of diffusing
particles. Here we generalize this continuum model to allow
for the case of a finite density of these particles. The densi-
ty of diffusing particles is represented by u( r, t) and that
of the aggregate by p( r, r) Then the generalized . equations
for diffusion and attachment are given by

p = f(z)—1 Oa)

Here ( is proportional to the parameter by which u is scaled,
and if we take u 1 far from the aggregate ( —u„, where
u is the asymptotic density of diffusing particles before re-
scaling. The Witten-Sander process corresponds to the limit

0 (very few particles diffusing at one time). In this
limit, Eqs. (2) were studied by Ball, Nauenberg, and Wit-
ten, ' and by Nauenberg for the case that u and p are taken
to be functions of radius alone (and time) for dimension
d )2. The result for an arbitrary initial seed is that there is
a growing front for the aggregate that propagates with con-
stant velocity v and width k = u Jt; behind the front p varies
as (d —2)/ur and outside the aggregate u —I —(vt/r)
This behavior can be interpreted as representing the average
of a diffuse, "fractal" object with Hausdorff dimension
d —1. This value does not agree very well with the Haus-
dorff dimensions found in the simulations of Refs. 1 and 2
except for large d. We believe that the spherically averaged
theory becomes a progressively better representation of the
model as d increases just as mean-field theories of phase
transitions are better for large d.

In this paper we present analogous results for. the case of
( finite for any dimension of space, d. We were motivated
by theoretical considerations and by recent computer simu-
lations of Voss and Meakin, ' who found that for a finite
number of particles diffusing at the same time the aggre-
gates are no longer fractal, but approach a fixed, constant
density. We will demonstrate that this behavior follows
from the continuum equations: While initially p drops as
I/r as in the (=0 limit, there is a crossover for times t ) t„
where t, = (d —2)/v'g, to a constant value p equal to g.

To construct an analytic solution of Eq. (2) for the case of
spherical symmetry, we follow the lines of previous work. '4
We will consider long-time behavior only, and assume a
solution of the form
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FIG. 2. (a) Numerical solution to Eq. (5) for the kink f(z), for (=100, a =0.05. (b) Solution for g(z).

tic growth problem. ' In the limit u =0, h goes to zero in

Eqs. (5) to (9) and there will be a change from exponential
decay of u and p to the previously derived behavior, "
f —exp( —z'/2), u —z, where z = (r —vt)/), and )I, = vent,
but v is a different velocity. The length I gives the scale at
which the crossover occurs for the size of the aggregate less
than I, p

—(d —2) u„l/r, but when the size is greater than

1, p
—u . This behavior is evident in Fig. 1.

We can only speculate about further relationships between
this spherically symmetric solution and a solution to the
equations including angular variations. However, it is en-
couraging that we see behavior closely related to numerical
simulations. ' It is tempting to guess that the diverging
length I will also be present in the full problem, conceivably
in the form

approaches I, and then it becomes a solid,
We have attempted to show here that the generalized ag-

gregation model defined by Eqs. (2a) and (2b) has interest-
ing properties which make it well worth further study. Two
particular features are noteworthy. The generalized model
behaves similarly to the Eden growth process, ' in which all

boundary sites are equally likely to grow. This is under-
standable as ( becomes large: u becomes constant every-
where except for a thin boundary layer and feeds all boun-
dary sites equally. Finally, if u is reinterpreted as a tem-
perature field, it can be seen that the model with ( finite
might serve as an alternative approach to the usual Stefan
treatment of the solidification problem. 7 Work on this as-
pect is in progress.
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