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Holstein-Primakoff theory for many-body systems
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We discuss the relationship between generalized coherent states and suitable extensions of the

Holstein-Primakoff theory of quantum spin systems, illustrating the common origin of a variety

of semiclassical approximation schemes encountered in many-body theory.

A~=a; 'a~, [a, ,a~ ') =5,~5 ~,
p, cr =1, 2, . . . , n, n =2s+1

where enclosure by the curly brackets denotes the

(2)

A diversity of apparently disconnected approxima-
tion schemes [the semiclassical I/s expansion for
magnetic systems, the Bogoliubov theory of the Bose
gas, the generalized random-phase approximation
(RPA) for Fermi systems, mean-field approaches of
the BCS type, the I/N expansion in quantum
mechanics and field theoryj may all be based on the
theory of generalized coherent states. While the de-
tails of an overcomplete set of coherent states denot-
ed by [z) depend on the particular system under con-
sideration, the associated dynamics is governed by a
Lagrangian of the general form

'I

L=z ——-H z
I d (1)
2 dt

where 0 is the Hamiltonian. Lagrangian (I) has
been the starting point for the derivation of the
time-dependent Hartree-Fock approximation
(TDHF), recently reviewed by Kramer and Sara-
ceno, ' which is but the Gaussian approximation
based on Eq. (I). On the other hand, the same
Lagrangian occurs in a phase-space path integral in
the sense of Klaudert suggesting that Eq. (I) is an
essentially exact statement. In fact, an exact operator
formalism may be abstracted from Eq. (I) which is a
generalization of the Holstein-Primakoff (HP)
theory developed some 40 years ago for the study of
spin systems.

The HP theory has already received considerable
attention in its original context as well as in the study
of nuclear models in terms of pseudospin algebras.
Applications have also included the I/N expansion in

quantum mechanics and field theory. ' Although
the relevance of generalized coherent states is impli-
cit in the above work, the precise relationship is often
obscured or ignored in the literature. The purpose of
this Brief Report is to shed light on the precise con-
nection in the context of many-body theory.

Thus we consider systems whose Hamiltonian
H = H (A ) may be expressed entirely in terms of the
bilinear operators

[~jj ~k/1 gj ~k(7 Sll~kj (3)

which is formally identical to the pseudospin algebra
occurring in the description of the Bose gas. Howev-
er, the representations of the pseudospin algebra that
are relevant for Fermi systems are different.

Strictly speaking, an infinite number of irreducible
representations of (3) are relevant for the description
of Fermi systems, in analogy with the ordinary
Schrodinger equation where an infinite number of
angular-momentum sectors is necessary for the
description of an atom. To make the analogy more
complete, we note that the symmetry group of a
Hamiltonian of the form H =H(A) defined in
terms of operators (2) is the unitary group

U(n) —U(1) x SU(n), with n =2s + I, which
should be clearly distinguished from the "pseudo-
symmetry" (3). The U(1) component is the usual
number symmetry, whereas the non-Abelian com-
ponent SU(n) pertains to the spin degeneracy. It
should be noted that the SU(n ) "flavor" group is
larger than the normally expected SU(2) group asso-
ciated with spin rotations, except for the special case
of spin-

2 particles. This situation is somewhat analo-

gous to the n-dimensional harmonic oscillator whose
symmetry group is U(n ) that contains the group of
O(n ) rotations as a subgroup.

The fact that both the algebra of the symmetry
group and the pseudospin algebra (3) are unitary is
merely an accident. Nevertheless, an important link
between the above algebras exists, in general, when
the question of specific representations is addressed,
because the generators of the pseudospin algebra are
invariant under transformations of the symmetry
group. The Fock states associated with the original
Fermi operators may be classified according to their
U(n) quantum numbers that reflect the underlying

usual anticommutator and summation over the re-
peated spin index a- is assumed. The spin s of the
particles involved is taken to be arbitrary, whereas
n = 2s + 1 stands for the spin multiplicity. For con-
venience we assume that the indices i,j, . . . take over
discrete values the total number of which may be in-
finite. It is a simple exercise to show that the operators
A;, close the unitary pseudospin algebra
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symmetry, in particular, according to the total particle
number N and the total spin, which should be dis-
tinguished from the spin multiplicity. The essence of
pseudospin algebra (3) is that it allows classification
of states with definite U(n ) transformation proper-
ties but varying "radial" quantum numbers within

the same irreducible representation.
Our intention here is certainly not to provide a

complete reduction of the Fock space according to
the irreducible representations of the pseudospin
algebra, but to concretely implement the above gen-
eral discussion in specific examples of low-lying sec-
tors (with small total spin) which are the most relevant
for physical applications. In fact, explicit results are
derived only for the singlet sector that encompasses
N-particale states with vanishing total spin. We fur-
ther restrict ourselves to systems with a total number
of particles N that is an integer multiple of the spin
multiplicity:

N = nNp= (2s + 1)Np

where Np is an integer. [For an electron system
(s = T~)N is taken to be even. ] Hence the filled Fer-

mi sea described by the N-particle state,

NO n

(f)o) = II II nJ"(vac) (5)
j 1~ i

carries vanishing total spin (singlet state).
A complete set of N-particle singlet states may be

obtained by repeated application of the operators
A,&, A~I, . . . defined from (2) on the state } Op).
However, we shall prefer to describe the singlet sec-
tor through the covercomplete set of generalized
coherent states

sea will now be denoted by p„, v, . . . ~ No+1,
whereas indices inside the sea will be taken to be
a, P, . . . ~Np.

The (normalized) coherent states (6) read

lz) =[det(1+z z)] "i'exp gz„A„(Qp)
p„a

(z(z) =1, n =2s +1

The matrix z z is the N0 x N0 matrix defined from

(z'z). tt
——Xz„'.z„a

(7)

Lp= —gz„(z(A~, (z) +H.c.
p, , a

The evaluation of useful matrix elements in the
basis of coherent states is facilitated by various iden-
tities derived by Perelomov'p (currently adapted to
account for the spin multiplicity):

A~„(z,z") = n

A s(zz') = n

A„(z,z') = n

A.„(z,z') = n

(z(1+z z) 'z }„„
((I +z'z) '}n. ,

((I+z z) 'z'}

(z(1+z'z) -'}„. .

(10)

where the asterisk denotes ordinary complex conjuga-
tion whereas the dagger also implies transposition of
indices [(z').„—= (z )„.].

The time-dependent dynamics associated with the
overcomplete set of states (7) is governed by the
Lagrangian (1) written as

1 'I

L = z ———H z =Lp (z(H(z—)
I d

2 Ch

oo N 0

}z)=constexp X Xz/JAjj (Qp)
i N0+1 J 1

(6)
We are now able to derive an explicit form for the

Lagrangian Lp of Eq. (9), namely,

which are essentially the coherent states introduced
by Thouless, except for the ramifications concerning
the spin multiplicity discussed above. The same au-
thor pointed out the relevance of the states (6) for
the derivation of the RPA as a time-dependent
Hartree-Fock approximation. Those and related
results on quasiboson representations will be
strengthened here to obtain a complete HP theory
that may be used for the derivation of systematic
corrections to the RPA by means of ordinary pertur-
bation theory in inverse powers of the spin multiplici-
ty.

To motivate the HP theory a more detailed study
of the coherent states is required than that given by
Thouless. Fortunately, coherent states analogous to
(6) have been studied by Perelomov in his work on
pair creation of Fermi particles in an external field, '

which applies to the current problem with suitable
adaptations. Indices taking values outside the Fermi

(=z[n'i (I +z z) 'i ]

It is a simple exercise to show that

(12)

Lp= —, tr(gg —gg ) = i $ ((„g„—(—„g„),(13)
p„a

whereas the diagonal matrix elements (10) transform

Lp= n tr(z(1+z z—) 'z }+H.c. (11)

where tr stands for the usual trace of matrices and in-

volves summation over all particle states, including
the summation over hole states implied by the matrix
multiplication in (11).

The information summarized in Eqs. (10) and (11)
will be sufficient for the derivation of the HP theory.
As expected, the phase space implied by (11) is non-
linear; namely, the canonical momenta associated
with the dynamical variables z„are nonlinear func-
tions of the latter, We thus seek a stereographic pro-
jection that linearizes the phase space:
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into

A~ =X@-&- ~

a

A p=ng p
—/gpss„

A„=XgpR p
P

A,„=QRp („p
P

(14a)

where R = (R p) is the No x No matrix

R =(nI g'g—)'" . (14b)

Furthermore, the Lagrangian (13) implies the (Bose)
commutation relations

(4- &:pj =4 8-p (14c)

Equations (14a), (14b), and (14c) provide the HP
representation suitable for the description of the
singlet sector of a Fermi system interacting through a

spin-independent potential.
However, the preceding derivation hides an impor-

tant fact associated with the ordering of operators in
(14a). In view of nonlinear coordinate transforma-
tion such as (12) one would normally expect that or-
dering difficulties beset the validity of (14). While
the expressions (14a) close to the unitary algebra at
the level of Poisson brackets essentially by construc-
tion, the transition to operators implied by (14c) may
not preserve the correct commutation relations.
Nevertheless, the ordering of operators judiciously
chosen in (14a) can be shown to provide the correct
HP representation, whose validity must be estab-
lished by an independent proof.

Because of the matrix stucture associated with (14)
such a proof is not straightforward. Since nontrivial
examples have already been worked out in a related
context, we shall restrict ourselves to the descrip-
tion of some important checks of consistency of (14).
Thus the matrix in (14b) may be approximated by a
series expansion in inverse powers of the spin multi-

plicity:

(15)

(16)

Xgee

C2= —X g ~g~ +(n +N +oA) Qg
a, p

(17)

where No+ A is the total number of available levels
(which may be infinite) and Q o are the generators
of the U(n) symmetry:

gap g & a+&p
l

W'e thus find that the Casimir invariants of the pseu-
dospin algebra may be expressed in terms of the
Casimir invariants of the underlying symmetry.
Furthermore, the eigenvalues of C~ and C2 that
characterize the N-body singlet subspace may be
identified from

(18)

Ctlf)o& =NI IIo&, C~l IIo& =(n +A)NI IIo&, (19)

which may be established by a simple calculation.
Equations (16)—(18) were derived using properties

of the original Fermi operators alone. On the other
hand, one may write

I

R p= Jn 8 p
——$(„g„p+I

a pa

Substitution of (15) in (14a) allows for an explicit
(albeit tedious) verification of the commutation rela-
tions (3) to any desired accuracy, for the various par-
titions of indices shown in Eq. (14a). In fact, Eqs.
(14) become useful for practical purposes through an
expansion of the form (15).

Other checks of consistency involve calculating the
Casimir invariants from (14) and showing that they
are identically equal to their eigenvalues characteriz-
ing the N-body singlet subspace. Thus the first two

invariants of the pseudospin algebra (3) read

C) ——XA;;, C2 = QAoAJ;.
i i,)

It is not difficult to rearrange the above definitions to
obtain

C i
= xA;; = XA ~„+ $A I, C2 = XAoAJI = XA „„A„„+xA ~pA p + x ( A„N„A+„A, ~A„) (20)

a, P is, a

and substitute the HP representation (14) for A„„,
A &, A„, and A „. A relatively simple calculation
employing only the commutation relations (14c)
shows that C~ and C2 are identically equal to the c-
numbers

C)=N, C2=(n+A)N (21)

which coincide with the eigenvalues of the Casimir
invariants found in Eq. (19). The preceding calcula-
tion confirms our earlier assertion that the HP
representation (14) is a restriction of the pseudospin
algebra to the N-body singlet subspace.

The appearance of the parameter A ( ~) in (21)
is an artifact associated with the definition of the
Casimir invariants of the pseudospin algebra which

bear no direct physical significance. The parameter A

never appears explicitly in calculations involving the
HP representation (14). Furthermore, it was noted
earlier [cf. Eq. (17)] that C~, C2, . . . are related to the
Casimir invariants of the underlying symmetry group
which do possess direct physical significance. Thus
the total number operator is equal to Ct(= N),
whereas C2 contains information about the total spin.
We illustrate this situation for the simplest spin-

2
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S'= —~~ a;""cr' a,&,
A,p

i, X, p

a =1,2, 3 (22)

where cr'=(a'&~) are the familiar Pauli matrices. A
simple calculation shows that the total spin S'S' may
be expressed in terms of C~ and C2 according to

case for which n =2s +1 =2, and the spin generators
are defined from

body condensate. The HP representation (24) coin-
cides with that derived earlier by Okubo" for the
symmetric representation of the unitary algebra.

The effective N-body Hamiltonian for the interact-
ing Bose gas may then be written as

r

Vp $ Vk+ x k 6kfk+ Pkp k-N N

k k&0, V

pk=(N ~'r)'"rk+~'k(N ~'C)'"
S'S'=

2
(2+Np+A) C& —

4
Ci' —

2 C2 (23) + $ (p tp+k (26)

a relation that is valid for all sectors. On the other
hand, if the eigenvalues (21) with n =2 and N =2Np
are inserted in (23), one finds that S'S'=0, which is

characteristic of the singlet sector.
The HP representation (14) is the main result of

this Brief Report. Given a Hamiltonian H = H(A ),
its restriction to the N-body subspace with vanishing
total spin is obtained by the simple substitution
A A (g, g') from Eq. (14). This results in an exact
effective Hamiltonian for the description of the
singlet sector. The ensuing method of calculation is

briefly illustrated here in the case of the interacting
Bose gas for which the HP theory may be obtained as
a special case of (14). Hence a Bose system may be
viewed as a degenerate Fermi system with a number
of flavors n that is equal to the particle number N.
Then N = nNo = n ~ No = 1, and the No x No matrix

g g in Eq. (14) becomes a scalar. Using an obvious
change in notation Eqs. (14) reduce to

Aoo = N —4 ( A~ =
gp (~ for pq &0

A,~ = (N —('() ' (~, A~ = (~ ( N —("g) '~2 for p A 0

(24)

The operators jt:~ and g~ are defined only for nonvan-
ishing momenta and satisfy the usual Bose commuta-
tion relations

(25)

We have also used the abbreviation ('g
= $& ~p g& g&. Roughly speaking, the operator g~ ex-
cites a particle with momentum p ~ 0 from the N-

Eg.s. =Np y y' + — y + '''2 4 3/2 1 1 2

3m 6
, (27)

where p =N/Vis the density of the system and y is

the dimensionless coupling constant y =g'/p. The
result (27) agrees with the numerical solution of the
Lieb-Liniger equations. '
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p&0
p+k WO

where Vk is the Fourier transform of the potential
and Vis the volume of the system. A systematic for-
mal expansion in inverse powers of N and ordinary
perturbation theory yield a method of successive ap-
proximations in complete analogy with the 1/N ex-
pansion studied in Refs. 6—8. The leading approxi-
mation coincides with the familiar Bogoliubov theory,
whereas higher-order corrections are free of ordering
difficulties that have been known to occur in the
closely related hydrodynamical approach of Bogo-
liubov and Zubarev. ""We have checked the
current procedure with a detailed calculation of the
ground-state energy in the Lieb-Liniger model" for
which an exact solution was obtained through the
Bethe ansatz. Taking Vk =g2 and restricting (26) to
one dimension yields, after a long calculation,
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