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The influence of two-fluid effects on the onset of convection in He- He mixtures is discussed. The
differences and similarities between the descriptions of Steinberg and Fetter are pointed out. The connec-
tions with recent experiments are also considered.
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Recently there has been considerable interest in the
theoretical' ' and experimental' study of the onset of
convection in superfluid He- He mixtures. He- He mix-
tures are a unique system in the sense that it is possible to
change important parameters as, e.g. , the Prandtl number
over many orders of magnitude [it can be changed from
0.01 (for alkali metals) up to values of the order 3 ( for wa-

ter)]. Therefore this system is very convenient to study
nonlinear effects which are Prandtl number dependent as,
e.g. , the influence of vorticity. Since there is an additional
variable in the system, the concentration of 'He atoms
(when compared to pure He), additional types of behavior
such as an oscillatory instability2 and undamped second
sound waves' have been predicted. The purpose of the
present Brief Report is to evaluate the influence of two-fluid
effects on the critical Rayleigh number for the stationary
instability. Among other things, we find that the perturba-
tions of the chemical potential reduce the stability of the
system in agreement with experiment and contrary to the
effects studied by Fetter. Furthermore, we clarify the rela-
tions between the descriptions given by Steinberg and
Fetter.

In contrast to the heat-conducting state in normal-binary-
fluid mixtures we have, in a superfluid mixture, nonzero
values for both the normal-fluid and superfluid velocity, Vno

and V,o, but with zero total mass flux. In detail we have,
since 8 V o/at =0,

( & p4)o= g( 7 P)o= poTg (1)

where y = —(BlnC/Bin T) ~~„, P4 is the chemical poten-

tial, C the concentration, and T the temperature. From
mass conservation we have

with

i +PCS„o=0

1

ky.i= —pD '7C+ —'7T
T

(3)

(4)

where we use, as whenever possible in the following, the
notation of Refs. 1 and 2. Combining Eqs. (3) and (4) we
find, for the normal-fluid velocity in the heat-conduction
state,
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and, correspondingly,

pn—
V, = ——V„so no

ps
(6)

These expressions coincide with those given by Fetter,
Introducing the deviations from the heat-conducting state,

S=SO+S', Vn= Vno+ V„', T= To+T',
V = Vo+ V', C=CO+C'

We arrive in dimensionless variables' at the following
linearized equations for the deviations from the heat-
conducting state:
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where we have introduced the new abbreviation
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one can proceed as follows. We split up Eq. (14) into
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where K = —yC/T Fir. st, we consider for the stationary
instability the case in which superflow is essential and weak-

ly damped. This corresponds to m «1; in this limit per-
turbations of the chemical potential can be neglected, ' i.e.,
i44-0. We then see easily from the last equation (8) that
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Equation (10) is identical to the approximation made by
Fetter, ' ho~ever, in Ref. 3 terms proportional to divV„
have been neglected although they are of the same order of
magnitude as the terms -V„p. If we keep all two-fluid
terms for the stationary instability in the limit m «1 we
obtain, from Eqs. (8),
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( V a) =( V(z), o(z)) exp(ik2r)

we obtain, from Eqs. (11)-(13),
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Except for the term proportional to Sp in Eq. (14) the form
is the same as Eq. (12) of Ref. 2(a). The first part of fp

(due to V„p WO) has been given in Ref. 3 and the second
part of ]p (due to divV„&0) has been discussed in Ref. 2.
Sp is presented here for the first time and contains two-fluid
effects coming from divV„AO. Contrary to this case, Eq.
(14) cannot be cast into self-adjoint form. Nevertheless,

Terms omitted in Ref. 3 include the second term on the
left-hand side and the first term on the right-hand side of
Eq. (12), as well as the second contribution on the left-
hand side of Eq. (13). If we assume

into (19) in order to make a Galerkian-type analysis (we as-
sume, for simplicity, free-free boundary conditions) we ob-
tain
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and where k2=2r'+k22. From Eq. (20) it follows that all

contributions entering (p enhance the critical Rayleigh
number which is obtained from Eq. (20) by minimization
with respect to kj2. Inserting numbers appropriate for the
experiments of Wheatley and co-workers4' (T=0.8 K,
C =0.0024, Pr=0.66), we obtain an enhancement of the
Rayleigh number by 0.01'/0. This result can be expected to
remain qualitatively correct for both rigid-rigid boundary
conditions and a cylindrical geometry. For the latter case,
Fetter, ' taking into account the terms discussed above, also
found an enhancement of the critical Rayleigh number due
to two-fluid effects. The experiments, however, show a
decrease from what one would expect for a simple fluid in
the same geometry. Thus the calculations sketched above
and the results presented by Fetter do not support the hy-
pothesis' that the superfluid 'He- He mixture in the experi-
mental conditions studied by Wheatley and co-workers
behave essentially like a simple fluid. This is also obvious
from the diagram in Fig. 4 of Ref. 7, which shows Nusselt
number versus effective temperature. This diagram can be
converted into a plot Nusselt number versus Prandtl
number, from which it becomes clear that mixture effects
are important. Therefore the assumption that T' is propor-
tional to C' breaks down in this regime of the phase dia-
gram.

From these considerations one is led immediately to two
other possibilities to explain the experiments. The first con-
cerns the assumption m « 1 entering the calculations
made above and containing Fetter's approach as a special
case. This assumption is only valid in a certain range of
values for the concentration and the temperature; outside
this regime the relation C'= kT' breaks down and the per-
turbations of the chemical potential need to be taken into
account leading to a destabilization of the system. This re-
duced stability seems to be a good reason to reduce the crit-
ical temperature gradient and might thus explain the smaller
(compared to a simple fluid) critical Rayleigh number ob-
served by Wheatley and colleagues. There is, however, a
second problem for the comparison between the experi-
ments and the theoretical estimates. All measurements

Inserting & =exp(]pz/2) P into Eqs. (17) and (18) we get
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Contrary to the case studied in Ref. 2(a), Eqs. (19) are not
self-adjoint; therefore it is impossible to establish a rigorous
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have been done in a system with a very small aspect ratio of
order unity, and thus the system behaves essentially as if it
would have only a few degrees of freedom contrary to the
case of a container with a large aspect ratio. Therefore it
would be very valuable to check experimentally for dilute
solutions the stability in a temperature range much wider
(e.g. , 0.1 to 2 K) than that considered in Refs. 4 and 5.
Then it will be much easier to establish quantitatively how

two-fluid effects stabilize the system and how fluctuations
of the chemical potential lead to a reduced stability.
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