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A general Hamiltonian for the interaction between conduction electrons and the two-level

system is considered. Renormalization-group equations of second order are constructed
with the use of the multiplicative renormalization-group technique. The mass renormaliza-

tion is treated in detail to determine the effect of screening by conduction electrons on the

energy splitting E. The crossover temperature T» ——D(v "v*}'~2(v"l4v')'r " between the

weak and strong coupling regions is determined, and it is reduced by 2 orders of magnitude

compared to the expression obtained in first-order scaling. The scaled values of the cou-

plings are calculated analytically. In the crossover region the off-diagonal couplings are
v"-v"- —.The crossover temperature can be found in the region of physical interest

(T» & 1 K) if the initial diagonal coupling v & 0.2. In this case, the energy splitting calculat-
ed is reduced by more than 2 orders of magnitude. That reduction results in a large
enhancement in the distribution of the energy splitting at the low-energy side. The position
of the lower end of the scaling region is discussed where scaling in terms of temperature is

hindered by the energy splitting.

I. INTRODUCTION

A general theory of the interaction between con-
duction electrons and two-level systems (TLS) has
been presented in the preceding paper (paper I).'

This theory treats the infrared divergencies at the
Fermi surface which are due to the screening by
conduction electrons. The relevant dimensionless
variables are energies over the conduction-electron
bandwidth cutoff and the logarithmic corrections
depend on those variables. In the noncommutative
model the first-order vertex corrections contain log-
arithmic terms, contrary to the commutative model
and to the Mahan —Nozieres —De Dominicis (MND)
x-ray absorption problem. In the noncommutative
case it has been demonstrated' by constructing a
simple scaling equation in terms of the bandwidth
cutoff D that a weak coupling problem scales to the
strong coupling limit. In a more appropriate theory
the scaling equation has the general form

=p(v),

where the P function is a polynomial of the coupling
v. In the first-order scaling, p is a quadratic func-
tion, and in the second-order scaling third powers

appear as well. In the analytical formulation of
scaling the difficulty is that the P function can be
constructed only in the framework of perturbation
theory. Disregarding the possibility of nonenhanced
couplings, a fast convergence is expected only if
there is a small parameter in the problem such as e
for phase transition in dimension 4-e. Since in the
present problem there is no small parameter, the
fixed points are expected to be either infinite or of
order of unity. Furthermore, considering the Kondo
problem, Anderson and Fowler argued against the
existence of a finite fixed point on the basis that the
problem can be mapped on a one-dimensional prob-
lem, which cannot exhibit phase transition at finite
temperature and, therefore, singularity cannot occur
either for any finite coupling. Since there is a strong
resemblance between the Kondo and the present
problem, this argument must hold here also. Thus
one can expect the fixed points in the infinity and a
scaling to an isotropic problem as has been suggest-
ed in paper I.'

The crossover between the weak and strong cou-
pling regions has already been treated using first-
order scaling in paper I. In higher-order calcula-
tions the crossover temperature T„ is modified.
That has been shown for the Kondo problem by
Abrikosov and Migdal and by Fowler and
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Zawadowski who applied the multiplicative
renormalization-group technique developed by
Gell-Mann and Low for field theory. These works
have been initiated by the scaling argument of An-
derson, Yuval, and Hamann. ' In the second-order
scaling the modified Kondo temperature is

TK ——D(2Jpo)' 'exp( —I/2Jpo), (1.2)

where J is the exchange coupling between the con-
duction electrons and the localized impurity spin
and, furthermore, po is the conduction-electron den-

sity of states for one spin direction at the Fermi lev-

el. In this expression the square-root term is the
correction to the Kondo temperature obtained in
first-order scaling. Furthermare, it must be em-

phasized that the expression (1.2) is correct only in
the case of weak initial coupling, since only the
singular terms of the initial couplings are kept":

1
Tsc Dexp ——— + —, ln(2Jpo)+P(Jpo)

2Jpo

(1.3)

where the correction to expressian (1.2) is analytical
since P(Jpo) is a polynomial. This polynomial is of
importance only if the initial coupling Jpo is not
weak, and that can be determined only by numerical
methods. Since the second-order scaling equations
provide correctly the singular contributions to T&,
there is no reason to perform higher-order scaling in
analytical form.

The first aim of the present paper is to determine
the crossover temperature similar to expression (1.2)
for the present problein. The result of the present
paper" is

T =D(VxVz)1/2( x/4 z)1/4Uz (1.4)

where v' and v are the diagonal and the electron-
assisted dimensionless couplings, respectively. The
correction ta the first-order scaling expression is
essential, because (v"v')'/ —10

The second aim of intraducing the second-order
scaling is to find mass renormalization similar to
those found by Black and the present authors~ far
the cominutative inodel. It will be shown that in the
present case, due to the screening by conduction
electrons, the renormalization of the TLS energy
splitting E can be a reduction even larger than 2 or-
ders of magnitude. Since at a given temperature T
only those TLS can be excited for which E & k~ T, in

determining the number of active TLS the reduction
plays a crucial role. As has been shown in other
problems, the self-energy correction of present in-

terest is connected with vertex corrections by Ward
identities (see, e.g., Refs. 13 and 8). These vertex
corrections of second order will be taken into ac-
count.

In the present paper, a simplified version of the
Gell-Mann and Low renormalization group is ap-
plied which has been proposed by Salyom studying
the problem of one-dimensional conductors with
Menyhard' (see also Ref. 15). The new feature of
that method is that the existence of scaling is a
priori assumed and later checked in the approxima-
tion used. The elimination of the unimportant part
of the phase space is associated with introducing
new couplings. The reinaining differences are incor-
porated in the multiplicative renormalization con-
stants which depend only an the ratio of the new
and old cutoffs and on the couplings.

The commutative model has been first attacked,
using the renormalization group, by Black and
Gyorffy' applying a method suggested by Ander-
son, Yuval, and Hamann. ' Later, Black and the
present authors applied the method of Solyom in
more detail and the technique for the mass renor-
malization has been worked out. The behavior of
the commutative inodel is relatively simple, because
the combination of the couplings (v") +(v') is in-
variant under the scaling, which does not hold in the
present case. The cammon feature, however, of
these problems is that starting with a diagonal TLS
Hamiltonian (LV=b,"=0) the renormalizatian leads
to off-diagonal self-energy terms. Thus in every
step of the renormalization group the off-diagonal
terms generated must be transformed out by a rota-
tion in the quasispin space of the TLS.

The paper is organized as follows. In Sec. II the
Hamiltonian is given in terms of same new nota-
tions introduced for convenience; furthermore, the
basic schema of the renormalization-group transfor-
mation is presented. In Sec. III the second-order
self-energy and vertex corrections are calculated and
a set of renormalizatian-group equations is con-
structed. In order to determine the correct expres-
sian for the crossover temperature these equations
for the couplings are solved analytically in Sec. IV.
In Sec. V the scaling equations for the mass renor-
malization are discussed and solved for the energy
splitting in two limiting cases; furthermore, the role
of the energy splitting in the lower limit of the scal-
ing region is discussed. The main results of the pa-
per are discussed in Sec. VI. Some mathematical de-
tails are presented in the Appendix. The study of
different measurable quantities is left for the third
paper of this series (paper III).'
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II. HAMILTONIAN AND GENERAL FORM
OF THE MULTIPLICATIVE

RENORMALIZATION-GROUP
TRANSFORMATION

V~ i, can be expanded in terms of an orthogonal set
2 1

of wave functions f ( k ) of spherical type ( k is a
unit vector), and following Eq. (3.5) of paper I one
can have the form

The general Hamiltonian for the conduction elec-
tron and TLS can be written as

V12gi = VI", j = gf~( k2)V~PfIi( ki),
a,P

(2.6)

H =H, +HTLs+H),

where the electron Hamiltonian

H = g Eyag~y

(2.1)

(2.2)

where the coupling V p is given in matrix form.
In the following calculation the thermodynamical

Green s-function technique is applied. The discrete
fermion energy values are labeled by ai„. The elec-
tron and pseudofermion or tunneling-atom Green's
functions are

is the expression (2.3) of paper I, with electron ener-

gy eI, and with electron creation and annihilation
operators ai, and ai, , respectively. The
conduction-electron band is taken with uniform en-

ergy density po (for one spin direction) and a sharp
and symmetric bandwidth cutoff D is assumed. The
Hamiltonian for the TLS is given by Eq. (2.1) of pa-
per I as

and

G
1

co —Ei —Xe

co —A,» ——, g b'cr' X(co)—

(2.7)

(2.8}

[(gx)2+ ( g»)2+ ( gz)2] 1/2 (2.4)

If closed pseudofermion loops appear in the calcu-
lation, then the result must be normalized by
2cosh( —,Ep) exp( —pA»), where p ( = 1 ik~T) is the
inverse temperature. It has been pointed out in Ref.
2 that this normalization factor is not associated
with any further renormalization in the leading and
in the next-to-leading logarithmic approximations.

The electron-TLS interaction has been given by
Eq. (2.6) of paper I as

H, = g (ai, ,~V/, ,i, ,ai, ,~)bIio~b
k), k2, cr,

i =x,y, z

(2.5}

where V~ I, is the interaction matrix element cou-
2 1

pled to the Pauli operator o~ describing the TLS.
Following paper I, it is assumed that Vi, ~ depends

only on the directions of vectors ki and k2', thus

HT s ——A» g bah~+ 2 g b'b~cr~pb~, (2.3)
a, P,

i =x,y, z

where b and b are the tunneling-atom creation
and annihilation operators at position a (if there is
more than one atom tunnel, then they are related to
the relevant collective coordinates) and A,» is the fic-
titious chemical potential for which the limit
A.»~ m must be taken in order to avoid the occupa-
tion of both sides with a=1,2 simultaneously.
Furthermore, rV describes the energy splitting and
b," and 6» are the tunneling amplitudes between the
two sites. This Hamiltonian (2.3) can be diagonal-
ized, and the eigenvalues are A,»+ , E, where—

respectively, where instead of iai„ the energy vari-
able co is used, which results as an analytical con-
tinuation of ice„and, finally, it is taken to be real
with a small imaginary part. X, and X are the self-
energies for the electrons and TLS, respectively.
The denominators of 8 and X are matrices.

The renormalized electron-tunneling-atom vertex
function I'Incr' with four branches is given by I'~
which can be written as a product,

(2.9)

where at least two of I I'pi start with uni~t in the
perturbation theory, and the indices of I are in
parentheses to avoid summation with respect to
them. For the time being let us assume that
V'~&0, which assumption will be dropped later.
The vertex part proportional to 5,p is not considered
here because that part is not renormalized (see, e.g.,
Ref. 8).

The construction of scaling equations is very simi-
lar to the method applied in Ref. 2, and they are
constructed in the framework of the simplified ver-
sion of the multiplicative renormalization group
developed by Solyom. ' ' The basic idea is the fol-
lowing. It is assumed that the system at small ener-
gies behaves with a reduced cutoff D' in a similar
way as it does with the original cutoff D, but the
couplings V'

~ and the TLS energies b, ' must be ap-
propriately changed as well. The difference between
the original and scaled Green's and vertex functions
can be given by multiplicative factors Zi, Z2, and

Ziti, respectively, which are called renormalization
constants. The multiplicative renormalization-
group transformation can be given as
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G. . .V', b' =Zi, V G, —,V, b

(2.10a)

S~p, , V', 6' =Z2, V 9 p —,V, b,
co, , D N
D'' ' D D

(2.10b)

and

—(» ~ (» i D —(»I ~p, , V' =(Z(Izp)), V I (Izp) D, V, b,D' D

»i —1 —1 (i) i
V~p —Z i Zp Z(~p) Vggp

(2.10c)

(2.10d)

where for the sake of simplicity only one energy
variable of the vertex is indicated. The new scaled
couplings V'p and parameters b," are labeled by
prime. The b, '~h" mapping is not simply multipli-
cative; therefore, it will be given only along the de-
tailed calculation. It is important to point out that
the renormalization constants depend only on the
relative change of the cutoff D'/D and on the cou-
pling V'. The aim of the renormalization-group
transformation is to eliminate the irrelevant part of
the phase space for the conduction electrons, but the
procedure can be applied only as far as D'& krr T,E',
where

Ei2 ( gix)2+ ( gi»)2+ ( giz)2

The electron Green's-function renorrnalization
does not play any role, as the electron self-energy
contains a closed pseudofermion loop; therefore, the
self-energy tends to zero as A,~~Do. In this way
Zi ——1 holds.

There is an essential simplification if b; is dif-
ferent from zero only, and b;=b,»=0. In this case
the tunneling-atom Green's function 9 p is diago-
nal if the self-energy term is dropped in Eq. (2.8).
b," and b,» can always be eliminated by a rotation
around the y axis and x axis in the fictitious spin
space of the TLS.

The scheme of the renormalization-group
transformation consists of two separate steps. At
the start it is assumed that b," and b, have already
been eliminated by appropriate rotations. Then the
steps are the following:

(i) Reducing the cutoff by a multiplicative
renormalization-group transformation given by Eqs.
(2.10a)—(2.10d). It will be shown, however, that the
transformation b, '~b, " is such that 5'" and 6'» are
generated even if 6 and b» were zero before the
transformation.

(ii) By a pair of appropriate rotations 5'" and b, '»

are eliminated. These rotations are associated with
the transformation of the couplings V'

p with
respect to their upper indexes. The new set of the
parameters 5' and of the coupling V'

p are labeled as
5'" and V~p, where b,""=b,"»=0.

The present definition of the renormahzed vertex
with the renormalization constants ZI~p) contains an
assumption that V~p&0, which does not hold in the
general case. In order to avoid the introduction of
Z('p) by Eqs. (2.10c) and (2.10d) it is better not to
use the notation I ("p) [see Eq. (2.9)]. As an alterna-
tive we can get a more compact scaling equation for
the vertex by multiplying Eq. (2.10c) by V,''p and by
inserting the definition (2.10d) for V'

p into the
right-hand side of the equation that has been ob-
tained. Thus the following general scaling equation
can be derived:

T T

I

I"p, , V' =Z2 ', V I'
p —,VD'' D ' D'

(2.1 1)

where Eq. (2.9) and Zi ——1 have been taken into ac-
count. This set of equations can be considered as a
new definition for the renormalized coupling V'p
which can be applied even in the case where some of
the couplings V'

p are initially zero.

(a)

FIG. 1. Vertex corrections: (a) first-order correction;
(b) second-order correction of parquet type; (c) non-

parquet-type second-order correction. The diagrams (a)
and (c) contribute to the P function of the
renormalization-group equation for the couplings.
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III. CONSTRUCTION OF THE
RENORMALIZATION-GROUP EQUATIONS

In order to construct the renormalization-group
transformations given by Eqs. (2.10a)—(2.10d) and
(2.11) the perturbation theory must be applied;
therefore, the result to be derived is not valid in the
region of strong coupling. The vertex corrections of
first and second order are shown in Figs. 1(a)—1(c).
The diagrams of type (a) are those which have been
taken into account in the first-order calculation
developed in paper I. Furthermore, the diagrams of
type (b) will not be calculated because they belong to

I

the class of parquet diagrams and their contribu-
tions are exactly generated from the first-order dia-

grams by the scaling equations (2.10a)—(2.10d) and
(2.11). The only second-order diagram of non-

parquet-type is shown in Fig. 1(c). The analytical

part of this diagram gives a simple logarithmic con-
tribution (see, e.g., Refs. 2, 8, and 13) and one
should deal with care only concerning the coupling
part. If the couplings do not have any angular
dependence, then the results agree with those given
in Ref. 2. The calculation will be presented only for
the self-energy in more detail. In this way the ver-

tex correction can be given as

I'~@~' ——V~p~' —g 2pa(rr'o" 5j—i, ) g ( Vj~r Vrti) ln

r

i( k J i - kgl)VJ yy(V~kV/ )1
j,k, l y 5

+ 0 ~ ~

where the ellipsis stands for the contributions of second-order parquet diagrams and the typical energy variable
is ro, 5,

&
is the Kronecker symbol, and e is the Levi-Civita symbol. Carrying out the spin algebra for the

Pauli operators a simpler form is obtained:

I'
~——V'

p
—g 2i p0 g ( VJ r Vrp)e'i" ln + g 2p0[2 VJ p Tr( V' VJ) —V'

p Tr( VJ VJ)] ln

(3.2)

where the trace is taken in the matrix space of the couplings. It is important to point out that here it has been
assumed that D &

~

co ~,
~

co
~

& E, and, furthermore,
~

co
~

& k&T; in the opposite case (k& T &
~

co
~

), the energy
co must be replaced by kii T under the logarithm symbols in Eqs. (3.1) and (3.2).

The self-energy diagram is shown in Fig. 2, and its contribution is given in a detailed form as

dik, d'ki 1X(m)= —2f,j,(Vi Q rr)', (Vi,q, rr )nF(eq, )[1—nF(Ea, )],
(2ir) (2ir) ' '

cg+Ei, —Ei, —
i iso' —Aps+l5

where the energy denominator corresponds to the intermediate state of the self-energy and depends on the
direction of quasispin in the intermediate state and the prefactor of 2 is due to the electron spin.

The integral with respect to the electron momentum is performed as an electron energy integral and an in-

tegral with respect to the solid angle dQ~', thus

d'k 10',
& JdEf 4

(3.4)

It has been shown in many papers (see, e.g., Ref. 2) that the integral in Eq. (3.3) vanishes if co ——,&'0' —~~,
is zero. This expression is small brause it is zero on the energy shell. We can expand this integral in te~s of
this quantity, and the result is well known as

p(~) = —g 2pag g( V' ~V~, )o'[(co A, )I —,6'o']a' —ln— (3.5)

which after performing the spin algebra has the detailed form
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X(co)= —g 2poln [(co—1,) Tr( V'V')I —5'cr'Tr( V'V' —V"V"—V&V&)

—2b'o" Tr( V"V') —2iVo'~Tr( V&V')],

where I is the unit matrix. We can see that the self-
energy contains off-diagonal terms proportional to
0' and ~T&.

I

and

b, '~= —dF4po ln Tr( Vi'V')+0( V') .
D

A. Reduction of the cutoff

First let us perform the first step (i) of the scaling.
We perform this step in the second order of pertur-
bation theory.

Let us start with the self-energy correction which
is of second order; therefore, V'= V can be inserted
in the scaling Eq. (2.10b). If

'=0, (3.7)

using the correction (3.6), Zz can be easily deter-
mined from Eq. (2.10b) and one gets

D'
1+4p In Tr( V'V + V"V")

Z&, V' =1—g 2poln Tr( V'V'),D', . D

(3.8)
which is real and gives back the special result ob-
tained earlier for the commutative model [see Eq.
(16) in Ref. 2], where a factor-of-4 difference is due
to using the Pauli operators in the Hamiltonian (2.5)
instead of spin operators.

In the case when rV&0, we use the following pro-
cedure. We choose the renormalization factor Z2 to
be independent of rV; thus Zi is given by Eq. (3.8).
In order to satisfy the scaling Eq. (2.10b) with
Green's function (2.8) and self-energy (3.7) a new set
of parameters b, ' is introduced:

=E 1+4poln Tr( V"V"+ V"V~)
D'

+0(V'), (3.10)

where E=b'. This result shows that the effect of
TLS-electron interaction is a screening for E; thus
E'&E, as Tr( V"V"+Vi'Vi') y0, because for the in-
teraction matrices V'~ ——V~, holds [see Eq. (2.7) of
paper I].

The renormalized coupling V~'p can be obtained
from Eq. (2.11) after inserting the perturbational re-
sults given by Eqs. (3.2) and (3.8). It will be as-
sumed that 1n(D'/D)-1; thus the renormalization-
group transformation is carried out in small steps.
In this case the first-order correction to V'~ itself
satisfies that part of the scaling equation which is
due to the parquet diagrams. The correction of
second order arises from the non-parquet-type ver-
tex correction given by diagram (c) in Fig. 1 and
from the self-energy diagram (see Fig. 2). For the
scaled coupling the final result of a straightforward
calculation is the following form:

I

V~'p= g V~p+2ippg ( V~~rVyp)e'J" ln
i, k y

(3.9c)
The absolute value of the splitting E given by Eq.

(2.3) changes as

[(gix)2+(giy)2+(giz)2]1/2 glz

+0(V ),
I

b, '"=—LV4poln Tr( V'V')+0( V'),

(3.9a)

(3.9b)

+4po[V ~ Tr( VJVJ)

—VJ
p Tr( VJV')] ln

(3.11)

FIG. 2. Second-order self-energy correction for the
pseudofermion Green's function.

B. Rotation around the x and y axes

It has been shown that the renormalization-group
transformation generates the parameters b'" and 5'"
even if they were equal to zero before the transfor-
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mation [see Eqs. (3.10b) and (3.10c)]. In this step a
rotation is carried out around the x and y axes to
eliminate the small parameters 6'" and b, '". The an-

gles of the rotations are

and

V "p ——V' p+4po Tr( V'V') V'& ln +0( V~)
D

and

a„=4poln(D'/D) Tr( V~V') (3.12a)
(3.14}

for i =x,y. Furthermore, the transformed values of
b,"J's are

az —— 4po—ln(D'/D) Tr( V"V') . (3.12b)
I

6'"=4"=b,' 1+4p'ln Tr( V V + V&V~)

The new couplings obtained by rotation of the

coupling V' given by Eq. (3.11) are labeled as V'"

and their values are (3.15)

V "p ——V'
p
—[4po Tr( V"V') V"p

I

+4po Tr( Vi' V') V» p] ln

and

(3.16)

+0(V') (3.13)
I

Finally, after elimination of the intermediate cou-
pling V", the scaling equations (3.11} and
(3.13)—(3.16) can be written in a differential form:

= —g 2ipoe'J" g ( VJ rvr~) 4po
—Tr( VJVJ) V'p

j,k y

and

+4poTr( V'VJ)V p+4po[Tr( V V')V'p+ Tr( Vi'V')V p] (3.17}

—g 2ipoe'J" g (VJ zvrp 4poTr( VJ—VJ) V' &+4poTr( V'VJ) VJ ~
—4po Tr( V'V'} V'~

i j,k y

(3.18)

for i =x,y; furthermore,

= —4a'Tr( V"V"+ V&V&) (3.19)

and

rV= b,"=0 . (3.20)

The equation clearly shows that the splitting b; is
reduced by the scaling due to the screening by the
conduction electrons. In the present considerations
the particular properties of the couplings have not
been exploited. As discussed in paper I, the starting
Hamiltonian shows time-reversal symmetry, and so
the scaled Hamiltonian must also. The important
consequence of this symmetry is that
V

krak/
V—k/ —kp Vkgk/ V—k/ —kp

[see Eqs. (2.8a)—(2.8c) of paper I]. Thus the rota-
tion is always in the x-z plane as Tr( Vi'V') =0 and,
therefore, a"—:0 according to Eq. (3.12).

It is interesting to note that the rotation does not
appear if V' ~= V'o'

~ where o' is a representation
of the Pauli operators. This situation will be real-
ized in two limiting cases to be discussed in Sec. V.

I

This is not, however, the case when the bare cou-
plings show these properties but instead b;,dP&0,
because then a rotation must first be performed to
diagonalize HtLs, which modifies that structure of
the couplings. This behavior shows a strong resem-
blance to the commutative model discussed in Ref.
2, which is actually a particular limit of the general
model studied here. Furthermore, as the rotation
cannot be larger than n/2, the rotation must satu-
rate as the strong coupling region is approached by
scaling. Thus the scaled strong coupling Hamiltoni-
an must not lead to any rotation, as that really fol-
lows from the fixed-point structure of the coupling
V'

&
—V o '

~ (see Sec. III B in paper I}.

IV. CROSSOVER TEMPERATURE

The next part of the calculations is to determine
the crossover temperature Tz. If the cutoff is in the
range of the crossover temperature then, the first-
and second-order corrections on the right-hand side
of the scaling Eqs. (3.13) and (3.14) are of magni-
tudes of the same order. As we have seen in the
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duzpldx = —g 2l6 v~pvi, Ii
j,k

—+4v' pTr[vjuj(1 —5i)], (4.1)

preceding paragraph, the renormalization of b, af-
fects the couplings as a rotation, which must leave
the crossover temperature unchanged. Thus the
crossover temperature T~ can be determined in the
absence of b, . In this case the scaling equations are
somewhat simpler as the last terms can be dropped
in Eqs. (3.17) and (3.18}. Furthermore, at the start
of the calculation, the rotation of the initial coupling
parameters does not occur either; thus we can as-
sume for the initial values of the couplings that
V'» V" and V'» V hold. The main steps of the
calculation follow closely the earlier one focused on
the leading logarithmic order and presented in Sec.
IV of paper I. The scaling interval can be divided
into two parts as before, namely, (i) where
V" & V « V', and (ii) where V —V" & V'(these ine-

qualities have only qualitative meaning, because V
is a matrix). The solutions of these two regions are
matched at a point x =x, .

Let us consider the two regions separately:
(i) Region V~(x) & V"(x) && V'(0). In Sec. III C

of paper I, the relevant two-dimensional subspace
has been determined where the increase of the cou-
plings is the fastest. First, the right-hand side of the
scaling equation has been linearized in terms of V
and V". The equations (3.17) and (3.18) have the
following form for the dimensionless coupling ma-
trices v'

~ ——V' ~po.

u"p(x) = u'p(0)coshI2[u~(0) —u'(Q)]x I

X exp[ —4 Tr( v'u')x],

v~ p(x) = iu "~(0)sinhI 2[up(0) —v' (0)]x ]

X exp[ —4 Tr( v'u')x],

v~(x) =v~(0),

(4.3a)

(4.3b)

(4.3c)

1 2v'(0)
ln »x, .

4u'(0) [1—2u'(0) ] u "(0)

The solution (4.3a)—(4.3c) at the point x, is

v'(x, ) = —,v'(0)expI4v'(0)[1 —2v'(0)]xi ),
(4.4a}

which are similar to Eqs. (3.17a}—(3.17c) of paper I.
In a similar way as in paper I only a pair of indices
a and P are kept for which

~
vp(0) —u'(0)

~

is the largest. Furthermore, it will be assumed here
also that u'

p =v'cr~~ii (no summation for index i) and
v'&0. As we have discussed in paper I, this as-
sumption does not mean any restriction on the gen-
eral applicability of these results.

The matching point xi must be chosen in that
way, so that the cosh and sinh functions can be re-
placed by exponentials; furthermore, v'«v' holds.
Thus

1
x) p)

4v'(x, )

and

where the terms due to the rotations are dropped.
This equation has the linearized forms

v"(xi) =v~(xi),

v'(xi)=v'(0) .

(4.4b)

(4.4c)
x

= —2i (v~v') —4u Tr(u'u'),

dv" = —2i(v"u') —4v Tr(v'u'),

(4.2a)

(4.2b)

(ii) Region V"(x)-Vi'(x}& V'(0). In this region
there are only two quantities to be dealt with, v' and
u' (since v"=v }. The scaling equation (4.1) has the
form

and

Z

=0, (4.2c)

u'=4(u") —16u'(v )

v"=4u"u' —8u"[(u ) +(u") ],

(4.5)

(4.6)

where the matrix notation is used for the coupling

In the following it is assumed that a representa-
tion is used in which v' is diagonal; thus
v'~ ——v'~5 ~. The initial conditions for the cou-
plings are u~p(x =0)=u~(0)5~~, u~~~(x =0)=0, and
v'~(x =0)=v'(0}5 ~. The solutions of the equa-
tions [(4.2a)—(4.2c)] satisfying the initial condition
given above are

with the boundary condition given by Eqs.
(4.4a)—(4.4c). The solution of this system of equa-
tions will be given in the Appendix. The nontrivial
fixed point of Eqs. (4.5) and (4.6) is v =u'=

~ .

A. Crossover temperature

The next step is to match the solutions of regions
(i) and (ii). Keeping only the terms singular in the
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coupling, xi can be expressed from Eq. (4.4a) as
T

1x,=, ln
4v'(0) [1—2v'(0) ]

2v'(x i )

v"(0)

ln
1 v'(x) —v'(0)

Sv'(0) v'(x)+ v'(0)
(4.8)

By adding the results (4.7) and (4.8) the following re-
sult is obtained:

2v'(x i )
+ —ln (4.7)

4v'(0) 2 v'(0)

for v~(0)=v*(x, ) &&1. The singular part of the
solution of Eqs. (4.5) and (4.6) can be given by using
the exact solution (A5) derived in the Appendix;
thus one obtains

1 1, 1x —x i ——— ln[2v'(0) ]— ln[ v'(x i )]4 v'(0) 4v'(0)

——,ln[v'(0)] ——,ln[v'(x i )]
T

The last term is a correction to the result of first or-
der given by Eq. (4.11) in paper I, and that has a
strong resemblance to the similar expression (1.2) in
the spin Kondo problem. '"

B. Discussion of the results obtained

In our discussion of regions (i) and (ii), in Sec.
IV A, and in the Appendix, the scaling equations for
the couplings have been integrated in the different
regions. In order to plot the couplings as functions
of x the different regions must be considered
separately.

In the region v (x) &v (x) «v'(0), which holds
for 0 &x &x i, the couplings are given in an explicit
form by Eqs. (4.3a)—(4.3c). The difference between
v "(x) and v"(x) is so small for v (0)« 1 and
v~(0) =0 that it cannot be presented on a reasonable
scale. According to these equations v (x)=v~(x)
holds for x &2/v'(0). The upper boundary of this
region is in the range

1 4v'(0)
ln

4v'(0) v (0)
——,ln[ v "(0)v'(0) ]

2 1 1 4v'(0)
&x& + —ln

v'(0) 4v'(0) 2 v "(0)

+ ln
1 v'(x) —v'(0)

Sv'(0) v'(x)+ v'(0)
(4.9)

which is an implicit equation for v'(x) as a function
of x. With the use of equations (Al) and (A2), v'
can also be expressed by v'(x) as

v'(x) = [v'(x)]

—
I [v'(0)] —[v'(0)] I

1 —4v'(0)

1/2

(4.10)

It is important to note that v"(x i ) drops out from
the final result; thus this result is independent of the
actual value of the matching point xi. It is impor-
tant to note that the dropping out of xi is indepen-
dent of the approximation v"(0) «1, as can be seen

by adding Eqs. (A5) and (4.7).
The crossover region is characterized as the region

where the renorrnalized coupling is not small
anymore. Thus in this region the second term on
the right-hand side of Eq. (4.9) can be ignored.
The crossover temperature is defined as
x =1n(D/kri T~), typical of the crossover region.

In this way the crossover temperature TK is ob-
tained from Eq. (4.9) as

z 1/4u~(0)

[vx(0)vs(0)]1/2
kii 4v'(0)

(4.11)

and it can be chosen as an arbitrary point x i.
For the region x &xi, Eqs. (4.5) and (4.6) have

been analytically integrated in the Appendix. Com-
bining Eqs. (A5) and (4.7), x can be given as a func-
tion v'(x). We have already pointed out that the
matching points x i and v "(xi ) do not appear in this
solution. Furthermore, if for a given x, v'(x) is
known, then dv'/dx can be calculated by Eq. (A3)
and, finally, v" is obtained in terms of v'(x) and
dv'/dx by Eq. (Al).

The results of these analytical integrations are
shown in Figs. 3 and 4 for different initial values of
the couplings. The crossover temperature Tx calcu-
lated in the limit v*(0) «1 and given by Eq. (4.11)
is also indicated.

With the use of the scaling equations of first or-
der, it has been found in paper I that the scaled cou-
plings diverge as the crossover temperature or ener-

gy is approached. In the present case there is a
stable fixed point (v")"=(v )

~ =(v') ~ = —,. In the
region v'(x)=v~(y)- —, the first- and second-order
terms on the right-hand side of the scaling equations
become the same order of magnitude (region of
crossover temperature); thus the perturbation theory
cannot be applied for lower temperatures. The ap-
pearance of a finite fixed point is an artifact as has
been discussed by Anderson and by Fowler in the
case of the spin Kondo problem; thus a correct cal-
culation valid for arbitrary strong couplings should
give the infinite strong coupling fixed point. It has
been shown by Wilson, " however, that the second-
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Furthermore,

[u (0)v'(0)]'~ -2@10 U'(0) .

In order to get the crossover temperature in a tem-
perature region easily available by experiments,
k&T~&1 K and U'(0)&0. 25 must be satisfied.
Thus a reasonable value of the coupling is
U'(0)-0. 3. It has been seen that even in this region
the expression (4.11) works fairly well; thus it does
give the crossover region correctly. Finally, it may

be mentioned that the initial Hamiltonian does not
show the invariance with respect to rotation in the
quasispin space, but the scaled Hamiltonian is iso-
tropic below T~.

V. RENORMALIZATION OF THE ENERGY
SPLITTING

From the point of view of determining the num-
ber of TLS which can be excited at a given tempera-
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ture T, the renormalization of the energy splitting E
is of crucial importance. The main question to be
answered is how much reduction is expected in the
energy splitting when the system is cooled down to
the crossover temperature. The basic scaling equa-
tion for the energy splitting is given by (3.19), but it
is hard to solve for the general case. An important
step of the renormalization procedure developed is
that at each step a rotation is carried out to bring
the splitting b, ' into a diagonal form (6"=b,"=0},
and it has been seen that this transformation must
be carried out at the beginning of scaling transfor-
mation as well. The scaling will be discussed for
two cases in great detail. The initial values of the
splittings are the following in these cases: (i) b;&0
and b, =b, =0; (ii) 5 &0 and b"=b;=0. It will be
assumed as well that V'p ——V'cr'

p (no summation
for i) and this assumption makes these two cases
solvable. The later assumption does mean a serious
restriction for the system, but it does hold for the
case where only a single atom tunnels [see Eq. (4.2)
in paper I]. The treatment of these two limiting
cases provides an insight into the general behavior
of screening.

A. Case (i): b'+0, b'=6"=0

In this case there is no need for rotation at the
first step. The scaling equations (3.17)—(3.19) show
that v'

p
——u'cr'p holds at the beginning, then this

form maintains during the whole scaling procedure;
furthermore, the rotations (3.12a) and (3.12b) do not
occur either. Thus in order to get the renormalized
5', Eq. (3.19) must be integrated in a similar way as
it has been performed in the preceding section.

In order to estimate the renormalization of b, an
upper limit will be given. With the use of the fact
that v"(0)=0, which has been generally accepted,
thus (v") &(u'), and using scaling Eq. (3.19) one
gets

ing (v') from Eq. (Al). Thus one gets

ln & ln
b,'(0) 1 —4u'(0)

iV(x) 1 —4u'(x)
(5.2)

This expression can never be large even for
v'(x) ——,; therefore, in this case the renormalization

cannot reduce b,' more than by a factor of 2.

c) in',
c)x

c) in', '
4 T (

x „~~)
c)x

=g[(v")'+(u')'] . (5.3)

The scaling equations for u" and u' have been
given in Sec. IV. It has been used in case (i) that
(u") & (v") and it has been shown that even for the
upper bound for u~ there is no essential renormaliza-
tion. Thus we can approximate Eq. (5.3) as

c) in', " (, ~ (5.4)

which can be rewritten by inserting Eq. (A3) as

B. Case (ii): b"&0, iV=EF=O
(symmetrical case}

In this case one must start with a rotation around
the y axis by n/2. In the rotated frame, instead of
v~p =v'o~p we have v~p

—— u'—cr~p, v p v~o, p-—,
and v p =u'u"p. The matrices ( o', c—r",o') can be
considered as another representation of the Pauli
operators (o",o",cr') with the same commutation
relations. Thus u'p ——u'o'p, where u'=u* and
v'=u (u =v~) and b;=6', b,"=b, =0. It holds
again that the matrix structure does not change and
there is no further rotation due to the scaling. The
scaling equation (3.19) can be written as

8 inde
&STr(u u")=16(u") (5.1)

(5.5)

This equation can be integrated easily by replac-
I

Straightforward integration and making use of ex-
pression (A4) for C gives

gx( ) gx(0)
1 —4v (0)

'2
v (0)/[& —2v~(0)]

u "(0) u'(x)+ v'(0}/[1 —4v'(0)]
4u'(0)[1-2u'(O)] u'(x)-u'(O)

(5.6)

2ui(0)

b, (x)=h (0)
4v'(0)

(5.7)

which can be approximated in the region where
u "(0)« v'(0) « 1 and u'(x) &&v'(0) as

where only the terms singular in the initial couplings
are kept.

This result shows that the screening of the direct
tunneling rate b,' can be reduced essentially, because
u (0)/4u*(0)-10 is a typical value. The results
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given by Eq. (5.6) are also shown in Figs. 3 and 4. It
is interesting to note that the simple expression (5.7)
gives the correct order of reduction due to screening
even in the region where u'(0) =0.15, but Eq. (5.6)
gives smaller reduction by an order of magnitude for
u'(0) =0.25.

The conclusion can be drawn that the reduction of
the energy splitting is the larger the more symmetric
the potential well is. The renormalization for the
symmetric case can be a reduction of order 10 in E.

VI. DISCUSSION

The multiplicative renormalization-group method
has been applied to the noncommutative model.
The scaling equations (3.17) and (3.18) are derived
for the couplings in the second-order approximation,
which is equivalent to summing up the leading and
next-to-leading logarithmically divergent diagrams.
These scaling equations provide the correct range of
crossover between the weak and strong coupling re-
gions. The crossover temperature Tz is given by
Eq. (4.11), which is very sensitive to the initial cou-
pling values. The estimations show that only for
u'&0. 2 can one expect to have Tx &1 K. In the
crossover range v"-v~- —, and in this case the
terms due to the first- and second-order scalings are
of the same magnitude in the P function. Thus in
this region the perturbation theory breaks down.
The spurious divergence in the couplings at a finite
temperature does not occur contrary to the first-
order scaling. Below Tz the couplings approach a
fixed point (u )~= —,, which is an artifact of the
second-order scaling. In an exact theory the cou-
plings must asymptotically approach the axis T =0
and must tend to infinity as T~O. The scaled
values of the couplings are calculated analytically
and results are shown in Figs. 2 and 3.

The derivation of the scaling for the energy split-
ting E is the most significant result of the present
paper. In the general case, the mass renormalization
is somewhat complex, because a rotation in the
quasispin space of the TLS has been applied con-
tinuously. That rotation corresponds to a TLS
wave-function renormalization. However, the shape
of the wave function is not so interesting, since the
structure of the TLS itself is not specified except in
the case of the model of the single tunneling atom.
The essential result is that the TLS energy splitting
E can be substantially renormalized due to the
screening. Two special cases have been treated in
Sec. V, where b,"=hi'=0 and 5'=0, respectively.
The first case is rather obscure as the electron-
assisted tunneling is taken into account by having
v'&0, but the intrinsic tunneling (rV, rV) is ignored.
Thus for a strong coupling TLS the second case is

more realistic where E can be reduced roughly by 2
orders of magnitude. This will be important to
determine the amount of the thermally activated
TLS at a given temperature.

It must be emphasized that the temperature is the
relevant scaling variable as far as T &E. Since the
decrease in E is slow, by lowering the temperature a
crossover can be expected below which E& T and
the TLS is frozen by E. This freezing is significant
if it occurs at T & Tz, since in the opposite case the
TLS has already been scaled into the strong cou-
pling region; thus E has a smaller effect. In this

way, only those TLS scale into the strong coupling
region for which the splitting E is smaller than a
critical value E, . For TLS with E=E, the cross-
over E(T)—T occurs at T= Tz. Taking the renor-
malization E(T)/E(0) from Figs. 3 and 4 the E,
can be given as

E, =Tz E(T)
E(0)
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Furthermore, since a uniform distribution of E(0) is
usually assumed, the TLS near this critical value
(E & E, ) plays the dominant role in the strong cou-
pling region.

Finally, it is worth mentioning that an interesting
theoretical problem remained without an answer. In
the case E =0 scaling can be continued to zero tem-
perature as the exact ground state is formed. In the
present work only the two dominant conduction-
electron channels are considered, although, at very
low temperature the couplings for the other chan-
nels increase as well (for a discussion, see paper I).
Thus the real ground state must show a more com-
plicated structure, which cannot be studied by the
method applied here. The structure of the ground
state, however, could likely be attacked by the Bethe
ansatz method developed independently by Andrei'
and by Wiegmann' for the spin Kondo problem.
The application of that method for the present prob-
lem would be interesting in order to learn how the
couplings for the other channels develop at low tem-
peratures. The application of the presented results
for observable physical quantities is the subject of
the third paper. '
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APPENDIX or by integrating one gets

This appendix is devoted to the solution of the
system of equations given by (4.5} and by (4.16).
First v is eliminated. From Eq. (4.5) it follows that

1 dv'/dx
4 (4v' —1) 4v' —1

(A3)

dv /dx
4(4v' —1)

(Al)
where C is given by the initial values taken at x

~
as

v'(x& ), v'(x) ~, and (dv'/dx), which is expressed by

v"(x~ ) using Eq. (Al). Finally, C has the value
and then this is inserted into Eq. (4.6) which is mul-

tiplied by V". Then both sides of Eq. (4.6) are a to-
tal derivative; thus

1 d dv'/dx 1 d (v')
8 dx (4v' I)z 2 dx 4v' —1

v'(x i ) —v "(xi )
C2

1 —4v'(x
~ )

In order to obtain v', Eq. (A3) must be integrated;
thus one gets

1 —4v'
X —X]=-

2v'(1 —2v')

2v'(1 —2v')
ln

1 —4U'

1 —4v'(x)

1 —4v'

[v'(x)+ v'/1 —4v'](1 —4v')

2v'(1 —2v')

1 [v'(x) —v'](1 —2v')2v'
ln

4(1—4v') v "(x i ) (1—4v')
(A5)

where v'= v'(x
&

) =v'(0) according to Eq. (4.4c). Assuming that v'(0), v'(x~ }&& 1 one can keep only the singu-
lar terms in the result (A5); thus one obtains Eq. (4.8).
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