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We consider the magnetic field and temperature dependences of the spin splitting for
an electron localized on a shallow donor, taking into account the s-d coupling with the sur-

rounding magnetic ions. We calculate the probability distribution of the spin splitting 6
with the thermodynamic fluctuations of magnetization included. They are responsible for
persistence of the spin splitting at ambient temperature in the absence of the field. The
probability distribution of the spin splitting is the main factor determining the energy and

the shape of the optical transition line between the spin-split states. We compare our results

with recent experimental results on spin-flip Raman scattering in Cdl Mn„Se. Our theory

provides a satisfactory quantitative description of the donor electron accompanied by a

nonuniform cloud of magnetization in that material.

I. INTRODUCTION

The properties of a shallow donor electron accom-
panied by a nonuniform spin polarization of local-
ized 3d or 4f electrons (hereafter simply called the
spins} have been studied intensively during the last
decade. ' ' Since the s-d (s f) coupling of s-pins to
carriers is important in this case, a detailed analysis
of the influence of this coupling on the binding ener-

gy and on the localization of the wave function of
the impurity electron should be given. The resul-
tant bound state for which both electrostatic and
magnetic (s-d coupling) energies are important is
called a bound magnetic polaron (BMP}.' The im-

portance of the concept of the BMP shows itself
when analyzing the strong transport anomalies of
doped ferromagnetic semiconductors EuO and EuS,
particularly near the Curie temperature and in the
paramagnetic regime. ' ' ' The polaronic effects are
also important when considering the influence of the
s-1 coupling on spin splitting of extended (carrier)
states in these semiconductors. "

In this paper our interest is concentrated on dilute
magnetic semiconductors. The purpose of this
work is to help in understanding the optical proper-
ties' ' of the system Cdi, Mn, Se, with x well

below the percolation limit (x, =0.2} for the onset of
the magnetic order of Mn'+ ions. However, unlike
the previous theoretical treatments of the bound
paramagnetic polaron, ' ' "' we take into account

the effect of thermodynamic fluctuations of magnet-
ization on the binding energy of the electron local-
ized on the donor. ' The new feature of our con-
siderations is based on the observation that a degree
of spin alignment around the donor may be caused
not only by the molecular field produced by the im-

purity electron but also by the thermodynamic fluc-
tuation of magnetization. The infiuence of the latter
factor can be relatively large even beyond the critical
region because of the finite size of the system under
consideration. Additionally, we show how a spuri-
ous phase transition to BMP state, obtained within
the mean-field approximation, ' can be removed
when the thermodynamic fluctuations are treated
more carefully.

The structure of this paper is as follows. We start
with the equation of motion for the donor electron
coupled through the s-d coupling with dilute Heisen-

berg spins and define the spin splitting (Sec. Il).
Next, in Sec. III we derive the Ginzburg-Landau
functional using the rotationally invariant form of
the molecular-field approximation (Sec. III A). This
functional helps us to derive the effective Hamil-
tonian containing the spin splitting

~

b
~

as a vari-
able and the effective Bohr radius a as a variational
parameter. The effective Hamiltonian is averaged

out over all space profiles t M( r) ( of the local mag-
netization of the spins giving rise to a specific value

of
~

6 . The nonvanishing value of M( r ) when the
magnetic field is absent comes from both the s-d
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coupling and the thermodynamic fluctuations. The
latter factor is a decisive one at nonzero temperature
since we do not expect any spontaneous magnetic or-
der at T&0 for the dilute system interacting with
the donor electron within a finite volume (-a')
only. The effective Hamiltonian gives the probabili-

ty distribution P(
~

b,
~

) of the spin splitting, in ac-
cordance with the fact that the probability for a
given fluctuation to appear is given by the
Boltzmann distribution with the energy being the
amount of the free energy needed to create the fluc-
tuation. This probability distribution determines
both the thermodynamics (Sec. IV} and the shape of
the line in optical transition (Sec. V is where the de-

tailed comparison with the experiment is given).
Section VI contains discussion and a short summary
of our results. Finally, the Appendixes A —D give
some details of our calculations as well as some of
the material parameters of the systems for which the
numerical calculations were performed (cf. Appen-
dix D}.

II. EQUATION OF MOTION AND
THE SPIN SPLITTING

We assume that we have an electron on a shallow
donor placed below the bottom edge of the conduc-
tion band, which has its minimum for wave vector
k =0. The Hamiltonian of this electron can be writ-
ten as

H =Hq+Hc+H&, (2.1)

where HII is the band energy near the bottom of the
conduction band, Hc —— e lrrr is the—Coulomb at-
traction energy to the donor, and

H~ ———Jc g S; s;+g'p, &H g s;

is the magnetic part containing both the s-1 interac-

tion with localized moments IS;I (called briefly
hereafter the spins) and the Zeeman term. The situ-
ation is schematically represented in Fig. l. We as-
sume also that the spins are placed on a regular lat-
tice and dilute with nonmagnetic ions so that they
can be treated as a paramagnetic subsystem with lo-
calized magnetic moments.

The wave function of the electron can be written
as"

n, o
(2.2)

PIIH g (r}

+ —,Jc- g (S„H y„=0 . (2.3)

This is the Schrodinger equation in real space, so
I „ is the overlap integral between the Wannier

states 4c.(r —R ) and roc(r —R„) for the conduc-
tion band, ec is the position of the bottom edge of
the conduction band, rr is the static dielectric con-
stant of the medium, Jz is the exchange constant of
the contact Fermi interaction between localized

spins ( S; I and the donor electron, and r =(r„,r„, r, )

are the Pauli matrices. In what follows we will con-
sider a large-polaron case. Then, using the continu-
ous medium and effective-mass approximations, we

get

where qr„ is the amplitude of electron on site R„,
with spin o, a„ is the creation operator of electron
on this site and

~
0) means the vacuum state, with

no electron present. Here we consider a single elec-
tron on donor. The wave function leads to the fol-
lowing Schrodinger equation for the electron':

2

'&r}rV'nrr g ~mnpmrr EC V'nrr

m(nj R„

CONDUCTION
BEANO

rp (r, t)
Kf'

ifiBiq (r, t)= V q (r, t)—
g2 2

2m»

~ggmeV f 4 OCCUPIED SHA LL OW
DONOR LEVEL

CONTACT (s dJ EXCHANGE-

"~e". ~~ t4! f f Am~ic SPINS Wn")
VWL~CE POSIV ION (H ND'S RULE

84IVD OBEYED)

+ —,g'pIiH g(r) rP (r, t)

(2.4)

FIG. 1. Schematic representation of the situation con-
sidered in this paper. We disregard the thermal activation
of the donor electron.

We make one further approximation. Namely, we

replace the spin field S(r, t) by its quantum-
mechanical average. This is the so-called
molecular-field approximation and it means we
neglect the spin-flip processes, i.e, the processes of
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the exchange of unit spin between the subsystem of
the spins and the donor electron. Also, we assume
that the time evolution of the spin subsystem in the
large-polaron case considered is slow enough so that
we can regard it as a static subsystem (stationary
states considered only). These facts are in agree-
ment with the observation that the donor electron
"sees" a large cloud of spins which therefore can be

regarded as an effective classical spin S,ff~oo. So,
both the spin-flip processes and the time evolution
of the individual spin out of the cloud are regarded
here as irrelevant to the problem, and therefore the
thermalization process of the donor electron is as-

sumed to take place for every configuration of the
cloud.

Thus we seek a solution in the form

The wave function of electron on donor is as-
sumed to be of the s type

g(r )=(ma') ' exp( r—/a), (2.10)

fi
H~ ——

2m ~a Ka

'r y r M r +g~p&H
gPa

We can rewrite this Hamiltonian in the form

(2. 1 1)

with a being here a variational parameter to be
determined later. We have neglected the field in-
cluded ellipticity, i.e., (cR/eH) '~

& a is assumed.
Substituting (2.10) into (2.9), we get

iH, t
p (r, t)=exp p (r), (2.5) Hc =FD(a)+ —, i b, , (2.12)

where the electronic Hamiltonian H, of our system
1S

2 2

H, = — V — + —,aM(r ) re

2m ~ ~r

where

iri'
Fg(a) =

2m ~a

2

Ka

is the Coulomb part of the binding energy of the
donor electron, and

+ 2g ppH 'T

with local magnetization

no(S(r) )
M(r )= —gpss

Vo

(2.6)

(2.7)

b, —= 6[M(r )]

r r Mr +gpss
gpss

(2.13)

and

Jc vo

no
(2.8)

The value 6—:b,
~

is the spin splitting of the donor
state under the presence of the local magnetization

M(r ) within its orbit and in the applied magnetic

field H. Strictly speaking, it is composed of two

Hc ——J( d r y~(r )H, rp(r ) . (2.9)

We are considering a single donor in a semicon-
ductor with ND such impurities in unit volume, each
occupied by an electron. What is of interest to us,
therefore, is a range of concentrations below the one
determining the Mott transition in the impurity
band for those donors (i.e., the average distance be-

tween impurities d, =ND ' &2.5a, where a is the
effective Bohr radius of the donor electron).

where Vo is the volume of the elementary cell con-
taining no cations, g and ge are the Lande factors
for the spins and the donor electron, respectively.

Next, to make the problem tractable we decom-

pose wave function p (r ) into space and spin parts,
i.e., q ( r ) =p( r )a, and define the spin Hamiltoni-
an Hc for the donor electron as Hamiltonian (2.6)
averaged over space variables, i.e.,

Qco')Phf( ~7 —
H, J

directions of I
magnefzafi'on
atdlffere~ pyints'

FIG. 2. Components of the vector h. Magmtude 4 of
4 is the spin splitting of the donor electron.
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parts: One is given by the presence of local magneti-

zation M(r ) weighted by probability
~
p(r )

~

of
finding an electron and the other is the ordinary
Zeeman splitting.

The direction of 6 supplies a local quantization
axis for the electron spin (cf. Fig. 2).

The quantity 5 is of special interest to us because
it is available from the spin-flip Raman scattering"
and the absorption' measurements. To calculate it
we must determine the shape of the local rnagnetiza-

tion M(r). More precisely, due to the presence of
thermodynamic fluctuations in the system, we
should determine the probability distribution

P [M(r )] of given fluctuation characterized by

M(r ) to appear, and subsequently get P(h), which
determines the intrinsic shape of the spin-flip transi-
tion line. This problem is discussed in detail in the
next section. However, it is important to note here
that the theory can give only the probability distri-
bution of the spin splitting since the cloud surround-

ing the donar does not order either by itself or by s-d
coupling at any nonzero temperature. It still does
not rule out a possibility of the existence of the most
probable value b, of b„as we shall see next.

1S

M, [M(r )]=a~~ jt d r[M[~(r ) —Mo]

+a~ rMg r

y'd f d r(VM(r)] (3.2)

with M~~ and Mi being the parallel and perpendicu-

lar components of M(r ) with respect to the field-

induced macroscopic magnetization Mo,
' —1 —1

r)MO 1 Mo

2 BH
'

2 H
az ———

(3.3)

and 4 being the exchange stiffness canstant. In
(3.2) we have included only the terms quadratic in
magnetization since we limit ourselves to the case
when the contributions coming from the presence of
the donor electron and from the fluctuations are
small compared to the saturation value M, of Mo.

The probability distribution of M(r ) is defined
through the canonical distribution summed up over
donor spin degrees of freedom

III. THE PROBABILITY DISTRIBUTION
OF THE SPIN SPLITTING

M( r ) = r)
~
y( r )

~
+Mo(H ), (3.1)

In order to determine the probability distribution
P(4) of the spin splitting b„, we have assumed
in our previous paper that

where C is a normalizing constant, and Tr means
summation over r, =+1 for the donor electron

when the direction of Z is chosen as a quantization
axis. Then, the explicit form of (3.3) is

A, [M(r)]9' [M( r )]=C exp
krr T

where rI is the amplitude of the local magnetization
caused both by the thermodynamic fluctuations of
magnetization and by the molecular field coming
from the presence of the donor electron. In this pa-
per we would like to avoid this sort of assumption
and treat the whole problem more systematically.
Namely, since our aim here is to determine the prob-
ability distribution P(h) we construct the free-energy
functional [the so-called effective Hamiltonian'

4 (b )], taking into account all possible space pro-

files of local magnetization M(r ) with appropriate
weights.

The starting total effective Harniltonian ~M(r )]
is composed of two parts: the electron part (2.11)
and the localized-spins part P, [M(r )] having the
Ginzburg-Landau form. The latter one is discussed
in detail in Appendix A. For a paramagnetic system
and in the magnetic field, the lowest-order contribu-
tion to the Ginzburg-Landau free-energy functional

b, [M(r )]
2k T

(3.4)

The probability distribution P(Z) of the spin split-
ting b, is obtained from (3.3) by the appropriate
change of variables

p(r )= f %[M(r )]()[()—()[M(r )]]O'M(F) .

(3.5)

The meaning of the transformation (3.5) is as fol-
lows. We would like to calculate the contributions

coming from all profiles of magnetization, IM(r ) j,
giving a contribution to given Z of the spin split-
ting. This necessitates the functional integration

over all possible "paths" of M(r ) with the weighting

factor %[M(r )].
Therefore, the transformed effective Hamiltonian

can be defined (up to an irrelevant constant) by
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4 (b, )= —kiiTlnP(4) . (3.6) aild

In order to perform the functional integration con-
tained in (3.5), we develop first the Fourier series of
the involved quantities, i.e.,

(3.&)

g ri exp(i q. r ) (3.7)
where V is total volume of the system. Then the ef-
fective Hamiltonian in the new representation be-
comes

~I', I =+'[Xi '(q)
I ri, , I'+Xll'(q)

I ri, I']—kgTln 2cosh
q

+ g'Re(ri b' )2a gpa aT-
(3.9)

where g' means that the summation is taken over half of the first Brillouin zone [this is because M(r ) is a

real function so ri =ri, and thus i} and ri are not independent variables],
q

Xi '(q)=2(ai+Sq ),
+&q

(3.10)

(3.11)

a
Mo+g*psH . (3.12)

I

Hence the new effective Hamlltonian (3.6) in the same representation take the fo~ (f =f +in- )
q q q

r

P'(Z)= —ksTlc 2ccsh f ' ''dsq' dssl"

q

& i—io — g'Re(il .b* )
kgT gp q q

+ED(a) .

After some algebra (for details see Appendix 8) we

get up to an additive constant

A (5)= kqTln 2cos—h
2

(3.13)

I

lute paramagnetic system, one can assume that the
gradient term in the expansion (3.2} is unimportant
(4=0). Additionally, neglecting the field-induced
anisotropy in [i.e., assuming that —,ai '= —,all

' =—g
=(BMo/BB)], we get

+ED(a) (3.14) M(4)= ksTln 2cosh-
2kii T

I

CX

2 X ~&,ll(q}Ib- I

2(gi a}' -,
(3.15)

where Zi and b'll re the components of Z perpen-
dicular and parallel to ho, respectively. Since in the
further analysis we limit ourselves to the case of di-

with

(i —io}'
+ +ED(a),

2

&p= z
2' Ib-, I'.

2(gi a}' -„

(3.16)

(3.17)
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Assuming that the average distance between the
magnetic impurities is much smaller than the Bohr
radius, we get for the hydrogeniclike wave function
(2.10)

Q
2

32ma '(gpB )
(3.18)

The result (3.16) with ez given by (3.18) coincides
with the one obtained previously' employing the
ansatz (3.1). The effective Hamiltonian (3.16) will
be used in the following discussion of the spin-
splitting distribution and its most probable value b, .
The latter will be discussed first in the mean-field
approximation (MFA). The more general case of
the effective Hamiltonian (3.14) with aiba~~ but
with 4 =0 is discussed briefly in Appendix C.

A. Mean-field approximation

To have a contact with the mean-field approach
devised by other authors, "' we note that in that
approximation the expected value Z of spin splitting
b, is obtained by a minimalization of the effective

Hamiltonian 4 (b, ). In other words, in the MFA we
take only one particular value of 6 when describing
the properties of the system. The specific value of b,

is taken as the one which corresponds to the leading
term in the partition function.

Then, one gets the following equation for b, :
r

~0 rx)(/gPB +g PB=0
1 F~/k—BT 1 ep/—kBT

(3.22)

We see that the cloud susceptibility diverges as

kBT~e~, even though the susceptibility I of a di-
lute paramagnet as a whole does not. So, the pres-
ence of a donor electron coupled through s-d ex-
change with spins leads to a continuous phase tran-
sition at a finite temperature T~=eB/kB One. can
expect that this result is simply untrue for this sys-
tem (BMP) which is of finite size. We will show in
the following that the inclusion of the thermo-
dynamic fluctuations washes out this transition en-

tirely.
For the sake of completeness as well as for a com-

parison with a better approach that we are going to
study next, we have plotted in Fig. 3 the field depen-
dence of b, . The parameters taken are those for
Cdo 95Mno osSe (cf. Appendix D).

The reason why we should include fluctuations in

i}i a.a�~a——

zm�

i.e., above Tz we get the Bohr radius for an ordinary
donor level.

To visualize critical behavior of a BMP state in
the mean-field approximation in a more direct way
have calculated the static susceptibility of our sys-
tem. Namely, expanding tanh(x)=x in (3.19) for
b,o&0, we get for T & Tz

b, —b,o
—2' tanh

2kB T
(3.19)

For either T~O or strong fields (ho&e~, kBT}, we

get Z=b, o+ 2@~

For H=O (b,o
——0), Eq. (3.19) has a form of the

mean-field equation for magnetization. Expanding
tanhx=x —x'/3 for small 6/kB T, we get

1/2

5=kBT (e~ kBT)—1
(3.20}

m*

2

a+ a (e —kBT)=0,1

48
(3.21)

thus, as T~T~,

So, we get the classical critical exponent P= —, for
the temperature dependence of the zero-field split-
ting. In particular, there exists a critical tempera-
ture TB =eB/kB at which spins of the cloud sur-

rounding the donor get disordered. The equation
determining the effective Bohr radius a in the region
where b, (T} is given by (3.20) can be obtained substi-
tuting (3.20} into (3.16}and setting BA ( Z )/Ba =0.

We then get an equation for variable a

(cmt)

/
/

/
/

~ /
I /

/

/

~ / /
/ / l

5+g
il t

/ /
/

ll p
~/

10—

/
/

/
/

/

/
/

/
/

/
/

/
/

ggP%oP'
~ T= 1.5 K

0T= 2.2K
A T= 4.2K

o, h( I

0 Q2 Q3

Magnetic field(T)

FIG. 3. Applied field dependence of the value of the
spin splitting (Z} in the MFA. The parameters are those
of Cd~ Mn, Se with x=0.05 (cf. Appendix D).
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the subsystem of spins is very simple. Namely, a
BMP composed of the donor electron and a cloud of
magnetization surrounding it is a system of finite
size embedded in a heat bath.

Fluctuations of magnetization beyond the critical
region are also of a finite size. So, they can have an
important contribution to the localized states even

though their part in macroscopic magnetization of
the whole sample may be negligible. Additionally,
fluctuations may show themselves at relatively low

temperature because the dilute system of spins below
the percolation threshold does not order by itself at
any finite temperature.

To incorporate the thermodynamical fluctuations
of magnetization into our scheme, we proceed as fol-
lows. The probability distribution of fluctuation oc-
curence at given temperature and volume of the sys-
tem is [cf. Eq. (3.6)]

bp —— Mp(H)+g~PBH&0 .
gPB

In the limit H ~0 we get

P(h)
~ H p ——C"b, exp

Q2
cosh

Sap kB T 2kB T

(3.27)

This formula can be interpreted as follows. The fac-
tor b, comes from the density of states in space of
b, with given

~

Z
~

. The next factor is a Gaussian
distribution of the local magnetization of the cloud
treated classically and accompanying the donor elec-
tron. The last factor comes from the s-d coupling of
spins with the donor electron. Because coshx &1,
the s-d coupling enhances the magnitude of the spin
splitting created by the fluctuation.

P(b, )=Cexp A(h)
kBT

(3.23) C. The most probable value

of the spin splitting

The normalization constant is to be found from

(3.24)

The most probable configuration h, of b, is found
from the condition

dP(b, )

Since the spin splitting of the electron is determined

by
~

b ~, we integrate over polar (8) and asimuthal

(y) angles.

B. Inclusion of thermodynamic fiuctuations

which leads to

M(h)
~ g

——0. (3.28)

At finite temperature the region of parameter b,

beyond the minimum of A ( b, ) is also accessible to
the system. This is due to the presence of the ther-
modynamic fluctuations of the local magnetization

M(r ) and the finite size (-a) of the BMP.
We then get the probability distribution of spin

splitting [we integrate (3.23}over the angles]
6 —2' b, tanh

2 BT

r

Ahp
b,h ptcho-.

4Fp BT

We see that the minimal work involved to create a
fluctuation' of ainplitude Z is equibalanced by the
thermal motion (-kBT). So, the results of this sec-
tion and those of mean-field approach coincide only
for T=O. Equation (3.28) has the following form:

where

)(exp
Sap BT

32m.EpkB TC'= C exp
b,p

b, 5p
P(h) =C'b, sinh cosh

4ep B B

(3.25)

ED(a )

kBT

(3.26)

4epkBT=—O . (3.29)

The parameter ep appearing in this equation still
contains unspecified effective Bohr radius a [cf.
(3.18)]. It can be found by minimizing the free ener-

gy dd' of the system. The explicit expression for
~, which includes the fluctuations, will be given in
the next section. Before analyzing Eq. (3.29) numer-

ically, we will discuss some particular cases which
can be solved analytically.

1. CaseA: H=O

The formula (3.25) gives the probability distribution
of the spin splitting 6 in the presence of applied
field H; i.e.,

Taking in (3.27} first the limit bp~O and then
T~O, we get 6=2'. This result coincides with
the MFA. Furthermore, taking into account the
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term in T in (3.29) we get the low-temperature limit

Sks T
5 =@~ 1+ 1+ (3.30)

In the opposite limit T~ oo (i.e., for ez &&ks T), we

et

Sky TEp ks T
=Sepks T=

1 eel—kqT 4~a' (gps)

(3.31)

we have

, I—ho+2m,+ [(ho+2m, )'+16m, k~ T]'"j

4epks T
=2m, +to+

b p+ 2'
(3.33)

Z-do ——

gma
Mp+g~psH .

For T=O or H~ oo Eq. (3.33) reduces to mean-field
result. We see that the spin splitting

Noting that

gPa
(M),

So, the field dependences of splitting follows rough-
ly the Brillouin curve for the strong fields.

For low fields (H ~0), (3.29) can be written as

where (M ) is an average magnetization within the
Bohr radius, the above result can be compared with
the most probable amplitude of fluctuation of mac-
roscopic magnetization' ' in the paramagnetic re-

gion

E —2' b, tanh
2

6 b,o
Sr~ k—s T=0

12 ksTep

(3.34)

So, for b,ge~kq T && 1 we have

2k' TX
M (3.32) Sky T

b,=e, 1+ 1+ (3.35)

where V is volume of the system under considera-
tion. This means that the spin splitting Z in the
high-temperature region kqT »ez is solely due to
thermodynamic fluctuations as has been shown by
an example of simple reasoning. '

In particular, because for T~ ao, X- iiT, we see
that

1jm kg TX =CM & 0,
T~ 00

b, in this region depends only weakly on H (the re-
gion of plateau). So the interpolation formula for
h(H) should give a plateau of Z(H) first, then a
linear dependence (5-H) and the approximate Bril-
louin law Z-Bq~z[9p&Hlks(T+ To)] as H~ oo.

3. Case C: H+0, T~ oo (i e , e& &. &. kg T)

where CM is the Curie constant of the susceptibility.
Hence, the spin-flip energy is nonzero even for
kz T »es, i.e., far above the mean-field critical tem-
perature T~. In other words, the donor electrons
lowers its energy, aligning its spin along the instan-
taneous magnetization of the cloud. Such a situa-
tion certainly takes place if the relaxation time for
the cloud decay is both much longer than the period
of the Larmor precession of the electron spin in the
effective field produced by this fluctuation and
larger than the spin-relaxation time of the donor
electron. It has been pointed out before (cf. Sec. II)
that since the polaron is large the individual spins
may relax much faster than the whole cloud.

ut

+2

4' ks T

b,p

2k' T

we have

1—
kgT

Ab, o 4epkgT=0 .— —

Since ezlks T«1,

For T~ ao and for strong fields, i.e., for

(3.36)

2. Case B: H+0, T~O (i e , e& &&k. g. T)

Now we will analyze fully Eq. (3.29), first for
T~O. In strong fields, i.e., for

~o ~o
+ +4e~k~T

' 1/2

(3.37)

hh, p

4' kg T

Comparing (3.37) with (3.33) we see that the latter
equation is a good first-order formula for a strong
field in the full temperature range.
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FIG. 4. Most probable value Z of the spin splitting as

a function of temperature T for various fields as specified.
The parameters are those for Cd& „Mn„Se with x=0.05.

~ T= 1,

g T= 22K
4 T= 4.2K

For low fields, starting from (3.34) we get

Z =SepktiT 1—
ks T 12 ks Tep

2
e'p 1 ~P

=SepkgT 1+ +sT 12 iiTEp
(3.3S)

So, we see that Eq. (3.35) is a good first-order inter-
polation formula between the region T~O and
T~ ao for low magnetic field. In order to illustrate
the temperature and field dependences of the most
probable value b, of the spin splitting b =b, (T,H) we
have calculated it numerically. The results are
shown in Figs. 4 and 5. The parameters of
Cdi „Mn, Se are as specified in Appendix D. The
results shown in Figs. 4 and 5 will be discussed in
connection with the spin-flip Raman scattering ex-
periments. " However, one should also include the

I

0 i I 1 I I

0 Qt Og Q3

Magnetic field ( 7)
FIG. 5. Same as in Fig. 4 but as a function of applied

field. The temperatures are specified. Note that points
on the curves are representing theory.

occupational probabilities of the spin-split levels
when calculating the optical transition probabilities
(see Sec. V).

IV. THERMODYNAMICS

Suppose we have ND isolated and occupied donors
per unit volume. Then one can calculate a contribu-
tion b, F to the free energy of the system, introduced
by the presence of the donor electron which had
formed the BMP. It is defined as a difference be-
tween the free energy when donor is present and the
spin part when donor is absent, i.e.,

kF= —keTln Tr ) d 6 exp
(T')

(A, +M, )
1

BT
+ kelTnf d'd, exp

kgT
(4.1)

g2 2p-
2m+g2 Kg 2

0—ksTln 2cosh
2k' T

Substituting (3.16) for the effective Hamiltonian

A, +A, and (3.2) transformed to 6 variable for
A „we find

I

This formula does not depend on 6 and is the one
we minimize with respect to a to get the effective
Bohr radius. The equation for a thus obtained must
be solved numerically in the general case. However,
for both low and high temperatures (ep»ks T and

Ep « ks T, respectively) and for the applied field
equal to zero, we can get analytical results. Namely,
for T~O,

4' bp
+& sinh

2k T
(4.2)

ep /2+A(a) king
—T ln2, —

while in the opposite limit
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b F= —, e—p+ED(a) k—&TIn2 .

Then for eplkii T »1 (T~O), we get
' 1/2

aii ep(aii )

while for ep/kqT«1 (T~ao)
' 1/2

aB ep(aii )a= 1+ 1 —9
2 ED(aii )

(4.3)

(4.4)

db, F

which is for H=O

b,S=kiiln2 +kiiln 1 +
kqT

kiiop 1—
kqT+ep

Ep T BX

k T2XBT

(4.9)

(4.10)
where

a~X
~p(a~) =

(gluii ) 327Tas
(4.5)

Having the entropy, one can calculate the internal
energy hU and get

ED(ag ) =
2Kas

(4.6)

and aii fi xlm*e——is the Bohr radius of the first or-
bit when the dielectric constant is Ir and the electron
mass is m~. Note that for the parameters character-
izing Cd& „Mn„Se (cf. Appendix D) the correction
to the effective Bohr radius a coming from the s-d
coupling is up to 2% of aii. Thus to a good approx-
imation one can take a =aii.

Having calculated the BMP contribution hF to
the free energy of the whole system, one can calcu-
late the various thermodynamic quantities. For ex-

ample, the static magnetic susceptibility of the BMP

b U =ED(a)
2

3+Ep/kiiT 7
1 ——

I+ep/kgT X dT
(4.11)

B

' —1

T2 a2X

2X BT2

This quantity gives us the specific heat
C„=(Bb,U/BT)„. In calculating C„we assume that
the effective Bohr radius is independent of tempera-
ture. We then get

1S

Xd —— ND—
2

T,H =0
(4.7)

I —( T/X)( t)X/& T)
1+eplkg T

(4.12)

&Dye , aX
X'=4k T '+

B gPa

This formula is not very transparent. For T»Tp
(i.e., for Ep/ksT «1), however, and assuming that
X=C~I( T + Tp), we get

1+ Ep

3k' T
Ep

kqT
(4.g)

Hence at high temperature (eplkqT «1), the total
susceptibility is composed of two parts: the unper-
turbed spin susceptibility X and the susceptibility of
the localized donor electron (the standard Curie law)
with the effective Lande factor g,fr

——g*+ aX/gp~.
Also from (4.8) we see that the critical behavior ob-
tained in the MFA [cf. (3.22)] is washed out com-
pletely by fluctuations. However, at low tempera-
ture (ep/k~T &&1) we obtain, unlike in the MFA, a
finite value of Xq even though the spin splitting is
much larger than ksT This is because .the applied
field aligns partially the quantization axes of indivi-
dual BMP's.

We calculate also the entropy per donor

NDep

Ep

kii T

'2

kii T
(4.13)

U. COMPARISON %ITH EXPERIMENT

The direct optical transition between spin-split
levels of the donor state is not allowed by the selec-
tion rules. However, it can be allowed either via in-

volvement of intermediate states (as happens in

spin-flip Raman experiments) or if the s-type wave

Also, we get asymptotically C, & 0 as T « Tp - 1 K.
One must be careful in taking the last result too seri-

ously because for very low temperatures the Curie-
Weiss law for X may not be fulfilled.
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function has an admixture of higher ones (2p, 3p,
etc.). The transition involving the spin flip of the
electron on the donor level will be influenced by the
direction of applied magnetic field with respect to
the geometry of light beam (s).

To show the usefulness of the concept of the
BMP in explaining the experimental results, we will

discuss the data of Nawrocki et al." concerning the
spin-flip Raman scattering in Cdo95Mnop5Se. It
should be emphasized that this method, as well as
recent optical absorption data of Dobrowolska
et al. ,

' provides a direct measurement of the spin
splitting h(T, H). In the following we concentrate
on the former experimental results only. The shape
of the spin-flip Raman line I(b, ) is represented by
P(b, ), given by Eq. (3.25), multiplied by probability
that the donor electron has its spin aligned or an-

tialigned with the direction of effective field b, (T,H)

acting upon it

I(b, )=CP(b, )exp +
2

1 2 cosh
2 iiT

dI(b, ) (5.2)

Then the appropriate equation for 6 is

b, +2ezh b, b,ocoth — 4e~kjiT=—O,
4e ktiT

(5.3)

&40

c|:Na= 280 m e

F100

~ 80
U

~ 60

wgp

O O.g ~.0 ).5 2.0
MA6NETIC FlELD (T)

FIG. 6. Applied field dependence of the Stokes line po-
sition for Cdo»Mn005Se in the high-field region. Experi-
mental points are taken from Ref. 11, while the continu-
ous line represents the theoretical dependence of 6, vs H
for aNO ——280 meV.

(5.1)

where C is a constant related to the scattering cross
section, and + refers to the: Stokes and anti-Stokes
components of the line, respectively. The peak posi-
tion of the line is therefore supplied by the condition

/
S;t /

i

/ /
/

(

Q
/ I I I 1

0 0.1
bQGjVi ttC RELQ (g

FIG. 7. Applied field dependence of the Stokes line po-
sition for Cd~ „Mn„Se with x=0.05 in the low fields and
at various temperatures. Experimental points, after Ref.
11. Solid lines, theory including fluctuations. Dashed
lines, MFA.

where + corresponds as before to the Stokes and
anti-Stokes components. Equation (5.3) predicts an

asymmetry between the components with respect to
the central line. This prediction differs with that
given previously, ' which assumes that all donors

are aligned with b, in the initial state. ' Nonethe-
less, the difference between the peak position ob-
tained from (5.3) and the most probable value b, of
spin splitting given by Eq. (3.29) should be small,
particularly for e~ &&ktiT. In the high-temperature
regime (ezlkti T && 1) and bo ——0, we have

b, =+e~+ (e~+ 8E~kti T) '/ (5.4)

This differs by ez with the value 5 obtained in the
same limit [cf. (3.38)]. In the opposite limit,

ez/ktiT»1, we get from (5.3) the result b =b, ,
where 5 is given by (3.35).

The quantitative comparison of our numerical re-
sults obtained from solving Eq. (5.3) and the effec-
tive Bohr radius adjustment [minimization of (4.2)],
with the experimental data of Nawrocki et al. ,

" is
given in Figs. 6 and 7. In Fig. 6 we have plotted the
field dependence of the Stokes line for
Cdo 9sMno psSe. These results were used to deter-
mine the value of the s-d exchange constant
aNo ——280 meV. The overall field dependence, par-
ticularly for stronger fields, follows the Brillouin
curve (Dl) (cf. Appendix D), as expected from the
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MFA picture of the donor spin splitting. However,
in the region of relatively small fields H &5 kOe
there is an essential departure from the Brillouin law

(Dl). Namely, the spin splitting levels off as H~0
at a nonzero value for the whole temperature range
studied. The field dependence of the position of the
Stokes component in that region is shown in Fig. 7.

From the comparison with the data we draw a
conclusion that our theory provides an appropriate
quantitative description of the spin splitting for the
donor electron, without invoking the concept of the
long-range magnetic order in these dilute magnetic
systems. For field H~O, the donor electron aligns
its spin with the direction of magnetization coming
from both the effective field provided by the s-d
coupling and by thermodynamic fluctuations of
magnetization of the surrounding cloud of spins.
The former effect is predominant at low tempera-
tures (T(1.5 K), while the latter one is predom-
inant at higher temperatures (T & 4.2 K).

The contribution to the peak position coming
from the fluctuations decreases with increasing
field. This is because applied magnetic field induces
a macroscopic magnetization which fixes the quanti-
zation axis for donor spins and thus the effect of
fluctuations averages out to zero. The field depen-
dence in the low-field region is approximately para-
bolic and concave [cf. Eq. (3.38)]. Eventually, for
still stronger fields the fluctuations are suppressed,
and b, approaches the value 60+ 2' [cf. Eq.
(3.33)], i.e., the mean-field value. It is worth noting
that the effect of fluctuations on the BMP discussed
in this paper is of importance when analyzing the
data concerning the transport properties of
Cdi, n„Se (Ref. 20) and Cd& „Mn„Te (Ref. 21).

VI. DISCUSSION

Let us recapitulate the main assumptions of our
work. Firstly, we have taken into account the polar-
ization of the cloud of spins, treating the spins as
classical vectors. Also, the polarization of the cloud
is regarded as small with respect to its saturation
value. Hence the continuous medium approxima-
tion is used throughout the paper. Within this ap-
proximation the magnetic properties of the medium
are characterized by susceptibility X(T,H) available
from independent measurements.

From (4.3) we see that we can treat the donor as
creating a large polaron provided that aii is large,
i.e., either a is large or m is small, or both. Addi-
tionally, it must be true that

1

e~(~~)/ED(~~) && —, ,

i.e., the magnetic energy of the donor electron is

much less than its electrostatic energy.
Moreover, we have supposed that the neighbor

donor states do not overlap appreciably with each
other. This means that we are well below the criti-
cal concentration for the Mott transition. The mag-
netic (s-d) interaction shrinks the donor orbit so it
shifts the transition to a slightly higher donor con-
centration. Also, we neglect the exchange interac-
tions between electrons placed on neighboring
donors.

Furthermore, the thermal activation to the con-
duction band has been neglected. In general, the
number of occupied donors depends on the tempera-
ture, ND ND(——T), according to the thermal-
activation law, but with magnetic free energy
——ez/2 included.

Each of these assumptions can, in principle, be el-
iminated. In particular, one can consider the influ-
ence of fluctuations on the BMP in the ferromagnet-
ic case. The procedure is quite analogous well above
the Curie temperature Te [with X=C~/(T 8) for—
H=O]. However, around Te one should include the
higher-order terms in the Ginzburg-Landau func-
tional (3.2) for the spins.

Finally, the donor-electron magnetic moment is
regarded as being in a thermal equilibrium with the
surrounding cloud of spins. This is an assumption
made to simplify the problem and it should be valid
for a large-polaron case (cf. the relevant discussion
in Sec. II). However, at the present moment an ap-
propriate estimate of the relaxation times involved is
not available.

The bound magnetic polaron (BMP) state dis-
cussed here can be interpreted as follows. The pri-
mary force supplying the localization of electron on
a donor is the Coulomb attraction to the donor. The
s-d coupling provides an additional potential well

which increases the donor-electron binding energy.
The local magnetization which gives rise to the ad-
ditional potential may be decomposed into two
parts. One of them is created by a molecular field
produced by spin of the donor electron. The
remaining part is supplied by a random alignment of
the spins within the Bohr orbit of the donor and
caused by a presence of thermodynamic fluctuations
of magnetization. The role of the latter factor in the
magnetic part of binding energy (b,) can be decisive,
as in the case of Cdi, Mn„Se at higher tempera-
tures.
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APPENDIX A: FREE-ENERGY
FUNCTIONAL FOR THE SPINS

We have included the s-d part in the donor-
electron part. So, to avoid the double counting of
this interaction, we consider here only the spin part
of the Ginzburg-Landau functional, i.e., the part

dependent only on local magnetization M(r)

and

BF,
Xii(T,H) =

BM,
' g,

(A7)

Ba BM

BM, g, BM BM, g
(AS)

Now we will find an explicit expression for Xii and
Assume that volume of the system is V=1.

Then

A, [M(r )]= f d r f[M(r)],
where

f[M(r)]= —M(r).Hg@[M(r)]

+C[VM(r)]

(A 1) Thus

BM M,

since

We expand f [M(r )] around Mp, at a given value of
external field H. We have

=1.
BM,

Additionally,
M(r ) =Mp+ t)(r ) .

Thus we have

f[M(r)]=f[Mp]+r)(r) V- f[M] i

(A3)
B'C BM

BM,' M, BM' M, BM, Mo

Hence

BE/ B2M

BM M, BM,' M,
(A9)

Noting that

7-f[M]i - =0,

(A4)
B~F, B2cy

BM, M() BM M()

Analogically,

(A10)

we get

F,[M(r)]—:—M(r) H+C)[M(r)]

r);pi B F,[M]
BM BM

E, J M 0

or, since B F,
i
BM;BMJ =0 for i&j,

2 2

F Mr =F
2 X,(T,H) X i(T,H)

+ e ~ ~ (A5)

BF,

BM,

and

ut

BM, Be BM
BM„BM BM„

'+
Be BM
BM BM„

B'a BM

BM„' M, BM M,

B@ BM+ 2BM M, BM g

Mo

(A 1 1)

(A12)

where

BF BF
Xi(T,H)=

BM M BM M
(A6)

BM
BM M

BM 1

BM2 g Mp( TH )

(A13)
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So, finally

dF, H 1

M, M (T,H) X (T,H)
(A14)

we have

84 1

Mo
(A18)

dF,
~H2 M

For this we calculate

(A15)

It still remains to prove that Xll(T, H) defined
through (A10) is identical to the isothermal longitu-
dinal susceptibility defined as the second derivative
of free energy.

which provides the desired relation. It should be
pointed out here that our expansion (A4) or (A5) is
also valid for a magnetic phase provided

~

ri
~

&&
~

Mp ~, i.e., beyond the critical region or for
sufficiently strong fields.

APPENDIX B: PROBABILITY
DISTRIBUTION IN GENERAL CASE

and

dF,
gHz M,

a'M, aM,

dH M dH M

dF, ~M. a~ aM
dH

'
dH BM dH

= —M, H— (A16)
Applied magnetic field H is creating an axial an-

isotropy of various quantities even though the medi-
um by itself is isotropic when the field is absent. In
this appendix we consider an influence of this aniso-

tropy on the effective Hamiltonian 4 (Z). The full

form of A (b, ) is

84 BM

BM Mo

fi24 (b, )=
2m ~a

4ira

KQ

—BT n 2cosh
B

'2

(Z —Zp)2
a

84 dM
BM Mo BH2 Mo

(A17)
2

gPB -2 1 1
+4ma b, ia Xz(T H) Xll(T H)

and since

(AM BM BM,

dH M, BM, - dH M,

We get the previous form (3.16) assuming that
Xi=Xll. The form (Bl) leads to the probability dis-
tribution corresponding to (3.25) then

&(b, ) =const' cosh exp
2kB T

r

4rra gI2B

Xll a

2
Q2

kBT

1

X x exp

2 ~~p, 2x
4m.a 2 Xll

—Xi
(1—x )

+p XJXll
(B2)

where const contains all terms independent of b, . So, the probability distribution of spin splitting b, is given by
the error function.

APPENDIX C: DERIVATION OF THE EFFECTIVE HAMILTONIAN A (5}

The effective Hamiltonian (3.2) is composed of two parts: the donor-electron part

kBTln 2cosh-
B

+ED(a)
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and the spin part

(6)= J 'd g' d g" exp (C2)

In what follows we evaluate the integrals involved in (C2) analytically. The first step is to integrate over one of
the variables, i.e., rj

qo

We introduce the notation 6 = [6; ), 6 p
——( b,p; ), and

gVa(~; —~p;)
(C3)

After integration we get

3 l'

exp —P g"X; (q)(rl,
' -+r) "-. )+X:. b A.; —Re+"g.-b"-

i=1 q q

—3ksT ln
gPa

2ab

(C4)

for i =3
for i =1,2 .

(C5)

where [ "
and g-" mean that the factor and term-q q

containing il' are omitted. Additionally,
qo

I

The first two terms in (CS) give, after integration
over yj, an irrelevant constant in A, (h) so we disre-

gard them. The last term is a constant in the in-

tegration procedure and it contains the information
relevant for us since A, =A,(b, ). Therefore, finally

2
We rewrite the numerator of the exponential func-
tion contained in (C4) for each component i in the A, (h)=

Sepi
(C9)

f((q, j = gX, 'gj'+X:, 'b . 'A, —gg, b,
' where ezi

l l

is given by (3.15). Hence adding up (Cl)
and (C9) we get the effective Hainiltonian represent-
ed by Eq. (3.14).

We get then

Xl.bjl,
J

(CZ)

f [y, )
= QX,. 'y,'+X-, 'b'- gb y

J J

where the new variable j runs over (N —1) points

q&qp in the first Brillouin zone. The quadratic
form (C6) can be transformed to a form which does
not include the linear terms by ill —

yj + aj, where

APPENDIX D: MATERIAL PARAMETERS
OF Cd& „Mn„Se

The theory presented in this paper contains the
following parameters: the field-induced magnetiza-
tion for the spins Mp(T, H), the Lande factors for
spins (g) and the donor electron (g*), the effective
mass of electron at the bottom edge of the conduc-
tion (I 7) band m*, and the static dielectric constant
a.. In the temperature range 1.5—2.4 K and up to
field H= 60 kOe, the field dependence of magnetiza-
tion can be parametrized by the Brillouin func-
tion '

Mp(T, H) =
2 gp gxNpBsyq[gpsH/kg(T+ Tp)],

(Dl)
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with g =2, and No ——no/Vo is the number of cations
per unit volume. The quantities x and To are [T.
Dietl, M. Otto, H. Pawlowska (unpublished), and
Ref. 23] x=0.027, 0.041; To=1.2, 2.15 K for the
concentration of magnetic (Mn +) ions x=0.05 and
0.1, respectively. The other quantities are

g~=0.52L m~/mo ——0.13, and a=9.4, which gives

att ——38 A. For the sake of simplicity we assume
that the magnetization Mo(T, H) is described by Eq.
(Dl) up to T=10 K. This underestimates the mea-
sured value of Mo (T=10 K, H) by 10%.
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