PHYSICAL REVIEW B

VOLUME 28, NUMBER 3

1 AUGUST 1983

Quantum-mechanical ground state of cerous magnesium nitrate
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This paper deals with the quantum-mechanical ground state of cerous magnesium nitrate
(CMN). The approximation used is that of Luttinger and Tisza and of Niemeijer, in which
spin correlations for magnetic ions in the same supercell are taken into account, while those
between ions in different supercells are neglected. The method used is that presented in an
earlier paper of the present authors. It is found that the quantum-mechanical ground state
of CMN is a linear combination of the state with spin orientations those of the classical
state found by Niemeijer plus the complementary state. Thus the classical state is a good
approximation for quick results. This state has nearly the same energy as the three mutual-
ly degenerate states belonging to the K, kK and k; representations of the translation group.
These are formed by linear combinations of states with four spins up and four spins down as
is the case with the ground state. The results found fit well with the existing experimental

information about CMN.

I. INTRODUCTION

In this paper the theory developed in the preced-
ing paper, referred to as I,' is applied on the typical
paramagnetic crystal of Ce,Mg;(NO;),;°24H,0
(CMN). The paramagnetic behavior of CMN is due
to the fact that there are three types of dipole-dipole
interactions, i.e., the interaction between Ce'* ions,
between Ce** and protons (nucleons of the water
molecules), and between protons.” The coupling
constant for the first interaction is much greater
than those of the two other interactions.” Thus the
experimentally found transition temperature 1.8 mK
is due to the dipole-dipole interaction of Ce** ions.*
In higher temperatures the crystal has paramagnetic
behavior, but in lower temperatures the system of
Ce’* ions is in its ground state while the proton sus-
ceptibility obeys the 1/T law because its interaction
with Ce’* ions is very weak. The transition tem-
perature of the protons, which is related to the
proton-Ce’* interaction, is about 3 orders of magni-
tude below 1.8 mK, which is the transition tempera-
ture of the cerium-ion system. Thus it is clear that
the interaction between the Ce’* ions is the most
significant. The spin of Ce’™ is %.3“’

The experimental results of Abeshouse, Zimmer-
man, Kelland, and Maxwell® and also of Fisher,
Hornung, Brodale, and Giauque’ suggest that the
ground state of CMN is antiferromagnetic. They do
not, however, agree with the experimental results of
Mess, Lubbers, Niesen, and Huiskamp.* All recent
experimental evidence shows that CMN is antifer-
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romagnetic in its ground state.>®

Many scientists dealt with the ground state of
CMN theoretically. Daniels and Felsteiner’ and
Felsteiner and Friedman,® who used the method of
Luttinger and Tisza, derived an antiferromagnetic
ground state. Niemeijer’s results derived by the ap-
plication of the *‘semiclassical” theory agree with
the above.’

The quantum-mechanical treatment of the prob-
lem by Niemeijer and Meijer gives similar re-
sults.~!'" The application of our theory to CMN
shows also that CMN is in an antiferromagnetic
ground state, as one can see in the last section of this
paper. The difference between our results and those
of Meijer and Niemeijer'' is that we have calculated
with sufficient accuracy in the case of CMN the en-
ergies of the eigenstates by using only the general
approximation used in these cases about the form of
the wave functions | W) (Ref. 1) because our correc-
tion term, for CMN, comes out identically zero.
The Meijer and Niemeijer result does not agree with
our form of the wave function. Also, their final re-
sult for the ground-state energies is very different
from ours as well as from Niemeijer's classical
theory. This disagreement is discussed in Sec. V.

Section II of this paper deals with the Hamiltoni-
an of CMN in the representation discussed in paper
I. In Sec. III we discuss the effect of the correction
term. In Sec. IV the energy and magnetization of
the eigenstates derived from our theory are present-
ed. In Sec. V, the general conclusions are discussed
and compared with the theoretical and experimental
results.
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II. THE HAMILTONIAN OF CMN

The Hamiltonian of the system of Ce ions of the
dipolar crystal CMN is the typical dipole-dipole in-
teraction Hamiltonian'?

1 | . . (,Ji'ﬁij)(ﬁj'Rij)
H<1=%2—3 i fj—3 =
i Rij R}
i#]
(1)

The Niemeijer approximations™'! that the expecta-
tion value of spin has twice the periodicity of the
cerium-ion lattice, with the additional assumptions
of the preceding paper' that there is no correlation
between the spins of the same sublattice and that the
correlation between spins of a different sublattice is
independent of the exact site of the spin, leads to the
following Hamiltonian:

Ho=7 3 A¥ 5 S%5%
R, R
a,B=x,y,z
+1 2 A% (V|S% |W)SE . (2

a.B x,y,z

The eigenvalues of H are the expectation values of
the energy per ion.! Because of the nonlinearity of
the second term of the Hamiltonian H,, we treat it
as a correction term as discussed analytically in the
preceding paper.! The quantities A ﬁ ., which are
elements of a matrix 4, are deﬁned in Refs 3 and
12.

By using group-theoretical methods one can show
that the first term of the Hamiltonian H,, i.e., the
Hamiltonian with the correction term omitted, can
be written'

(3)

The quantities }‘IT( are the eigenvalues of the matrix
A, and their definition and values in the case of
CMN are given in Refs. 3 and 12. The quantities
cpk , are the components of the directional part of
the eigenvectors of 4.3

In the preceding paper' we dealt with the method
of solution. The basis we chose is the same as that
of Meijer and Niemeijer!! apart from notation and
the choice of quantization axis. In this paper the x
axis of the crystal was chosen as quantization axis
instead of the z axis chosen in Ref. 11. The ap-
propriate definition of the basis of the space enabled
us to avoid the difficult problem of diagonalizing a
256256 matrix. Instead we must diagonalize

several matrices of dimensions 30X 30 and one ma-
trix of dimension 46 x46. The last is the matrix of
the identity representation. In addition to the nu-
merical simplification, one gets more physical in-
sight into the problem by the method adopted in this
paper. It must be noted that we have used only the
general translational symmetry of the lattice. The
full spatial symmetry of the cerium-ion lattice of
CMN,? which can be derived by using the D3; sym-
metry of the unit cell, was used as a check of our
calculations.

III. THE CORRECTION TERM

The correction term of the energy defined in the
preceding paper,' which by means of the eigenstates
of Hy gives the eigenvalues of H, by first-order per-
turbation theory, has a simple form in the case of
CMN.

Because of the fact that g, =0 (Refs. 3 and 13) in
CMN, only terms which involve the quantities
A%, A%  and A} ; appear in the Hamiltoni-
an of the system.’ However the element 4% RIS
zero for CMN. Then the form of the correction
term, after taking into account that 4% ¢ is in-

R
dependent of R and (S% Y2=—,is

X N=7 3 ASH((X |68 [ X))
a=x,y

> A5% - 4)

a=x,y

The term 3 _,  AG5 does not change the eigen-
states of H, but it increases by the same quantity
all the eigenvalues of H,. The other part of the
correction term can be written as a function of the
magnetization of the crystal and can be calculated
by means of the eigenstate |X ).

In fact, in the case of CMN, because g,5=8,8,g,
g.:=0, and g,=gg= =g,,>!® the magnetization per
cluster can be expressed as

M%=mpg (X b5 | X)), a=x,y . (5)

From Eq. (4) the final form of the correction term is

E(Xg)=——75 3 A55M*? 3 455

a=x,y a=xy
(6)

The quantity — > A4§% has the value —0.269 mK.
Thus we must raise all eigenvalues of H, by —0.269
mK. For the other part we can make an estimate by
calculating its maximum value.

Because the quantities 4%} and 4%, are equal,’
the maximum value of the correction is defined by
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the maximum value of M"2+My2, which is the
square of the magnetization, with maximum value
16mpg?, when | X ) is the vacuum or the full state!
(see the preceding paper). Thus the maximum value
of the significant part is 0.135 mK, which when ad-
ded to the value of — Y A5 gives —0.134, mK,
which is much smaller than the value of the ground
state, which is —16.59 mK.

IV. THE GROUND STATE AND
THE EXCITED STATES

Having the appropriate basis and the action of the
Hamiltonian on the basis from paper I, we can cal-
culate the matrix elements of the Hamiltonian for
this basis and diagonalize the resulting matrix. In
this way one can find the eigenvalues and eigenstates
of energy. Then it is easy to find directly the com-
ponents of magnetization, and from Eq. (6) the
correction term. The computation has been carried
out by the use of the CDC 3.300 computer system of
the Nuclear Research Center “Demokritos.”

The results show that for any eigenstate of CMN
the magnetization is zero. Thus the significant part
of the correction term is zero, and the correct eigen-
vectors and eigenvalues of H are those of H,.

The eigenstates and eigenvalues are tabulated for
the various irreducible representations of the transla-
tion group in Ref. 14.

V. DISCUSSION

According to the preceding section, the calcula-
tion of the eigenstates and the eigenvalues of H,
from those of H; does not introduce errors. The
D, point symmetry of the crystal CMN suggests?
that the eigenstates of CMN have various degenera-
cies. In fact, the states of the identity representation
of the translation group will be singly or doubly de-
generate. On the other hand, there exist degenera-
cies between the states of the kl, kz, and K 3, Tepre-
sentations and between the states of the K’ 1s k 5, and
k j representations. The states of the k, representa-
tion have the same behavior as those of the identity
representation.'!2

As one can see from Tables I-VIII (Ref. 14) the
states of different representations found numerically
are in agreement with the above results of group
theory, and this confirms that our calculations are
correct.

The ground state determined by using our method
is doubly degenerate; it belongs to the identity repre-
sentation and its energy is —16.59 mK. It is lower
than the energy of the “semiclassical” ground state
of Niemeijer, which has the value —15.001 mK, be-
longs to the k, representation, and is degenerate to

the Ez and §3 representations.” '

The fact that the quantum-mechanical ground
state has lower energy than the ‘“semiclassical”
ground state was expected because the space of the
wave functions of the “semiclassical” method is a
subspace of the quantum-mechanical space (see the
Appendix). In fact, the quantum-mechanical
method leads to Niemeijer’s semiclassical ground
state if one takes as the space of the Hamiltonian
the subspace of the purely antiferromagnetic and
ferromagnetic wave functions only. This is because
the matrix elements of the operators that change the
number of spins in this subspace will be zero. Be-
cause of some computational error Niemeijer and
Meijer!' have found in their quantum-mechanical
treatment of the ground state of CMN greater ener-
gy than that of the “semiclassical” ground state.

As one can see from Table 1,'* the main com-
ponent of the ground state is the antiferromagnetic
state | @o(Ry,R3,R;)). This state, according to its
definition [Eq. (30) of Ref. 1] can be written analyti-
cally as

| ‘Po(Rz,RaaRl )= ‘/-

+5% S%.5%.10))

i.e., it is a superposition of the state which has spin
up at the sites O,R,,R;,R; (see Fig. 1 of Ref. 1) and
at the other sites spin down, plus its complementary
state.  But  there is another state, the
]¢Y(R2,R3,R k)), which is degenerate to the states
belonging to the k2 and k3 representations, with en-
ergy —16.202 mK which is very near to the doubly
degenerate ground state. Its analytical form is

| (R, R3,R})) = —=(S¢ o’ St s+ S |0))

‘/—
+ o+ ¢+ o+

The ground state and the above-mentioned states
having nearly the same energies permit us to assume
that the CMN crystal at 0 K will almost fit the fol-
lowing physical picture. The ground state of the
system is fivefold degenerate, with two of the states,
SJSiS%JS%} |0) and s%zs*ﬁésggs*ﬁl [0),

being purely antiferromagnetic. These states are
mutually complementary.

The above-mentioned picture is in absolute agree-
ment with the “semiclassical” result of the ground
state, which suggests that the expectation value of
the spins of the cluster has the same behavior as the
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above-mentioned absolute antiferromagnetic states.

The fact and the near coincidence of the
quantum-mechanical and “semiclassical” energy
suggest that the classical theory of Niemeijer® is
very useful as a first approximation of the ground
state of dipolar crystals.

The small difference between the doubly degen-
erate _ground state and the triply degenerate
| @ (Ry,R3,R;)) is possibly due to the accuracy of
the measurements of the lattice constants of CMN,
which have been carried out at a finite temperature
(Zalkin et al.).? As has been noted in the preceding
section, the expectation value of magnetization per
cluster of the ground state and of the other eigen-
states is equal to zero. This is in absolute agreement
with the experimental results of Abeshouse et al.®
and Fisher et al.,’ and with the whole of theoretical
results. It is in disagreement with the experiments
of Mess et al.*

For the excited states we can only make a conjec-
ture about their physical significance. In a planned
future publication,'> where with a simple thermo-
dynamic model we study the crystal at finite tem-
perature by means of the excited state energies
found here, we find a transition at a temperature of
1.85 mK, which is very close to experimentally
found transition temperatures of 1.8 mK (Ref. 4) or
1.9 mK (Ref. 5). There is also a coincidence of the
theoretical and experimental forms of specific heat
as a function of temperature.’ These facts enable us

to suggest that the density of states, which was pro-
duced from the excited states presented in this pa-
per, gives the main contribution for small energies
relative to the transition temperature.

APPENDIX

Theorem I. Suppose that we have a spin Hamil-
tonian H and the N-spin space S. Then the
minimum of the functional (W |H |¥) in S, under
the condition (W | ¥) =1, is smaller or equal to the
energy of the classical spin system.

Proof. Consider S’ a subset of S. If the minimum
in S’ is assumed for a state | '), this state belongs
to the space S as well since S’ is a subset of S. But
there may be states belonging to S but not to S’ for
which the functional (W |H |¥) assumes smaller
values. Therefore the minimum in S is smaller or
equal to the minimum in S’. Consider now the set
of states consisting of single products of N one-spin
states. Obviously this is a subset S’ of the space S of
all N-spin states, as no linear combinations are in-
cluded in the set S’, i.e., linear combinations of
states in S’ do not belong to S. Since all classical
spin states can be realized by substituting the classi-
cal spins by the spin expectation values (W' |S,¥’)
with |W¥') belonging to the set S’, then the
minimum of H in S’ which is equivalent to the clas-
sical minimum, is larger or equal to the quantum-
mechanical minimum. Q.E.D.
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stitute, National Hellenic Research Foundation, 48
Vassileos Constantinou Avenue, Athens 501/1, Greece.

1S. Thanos and A. Theophilou, preceding paper, Phys.
Rev. B xx, xxx (1983).

2A. Zalkin, J. D. Forrester, and D. H. Templeton, J.
Chem. Phys. 39, 2881 (1973).

3Th. Niemeijer, Physica 57, 281 (1972).

4K. W. Mess, J. Lubbers, L. Niesen, and W. J. Huiskamp,
Physica (Utrecht) 41, 260 (1969).

5R. A. Fisher, E. W. Hornung, G. E. Brodale, and W. E.
Giauque, J. Chem. Phys. 58, 5584 (1973).

%D. J. Abeshouse, G. O. Zimmerman, P. R. Kelland, and
E. Maxwell, Phys. Rev. Lett. 23, 308 (1969).

7J. M. Daniels and J. Felsteiner, Can. J. Phys. 42, 1469
(1969).

8). Felsteiner and Z. Friedman, Phys. Rev. B 7, 1078
(1973).

9P. H. E. Meijer and Th. Niemeijer, Phys. Rev. B 7, 1984
(1973).

10Th. Niemeijer and P. H. E. Meijer, Phys. Rev. B 10,
2962 (1974).

ITp, H. E. Meijer and Th. Niemeijer, Phys. Rev. B
2612 (1975).

12A. K. Theophilou and S. Thanos, J. Chem. Phys. 72,
(10), 5649 (1980).

13p, H. E. Meijer, R. G. Lockhart, and Th. Niemeijer,
Solid State Commun. 18, 873 (1976).

145ee  AIP document no. PRBMD-28-1544-26 for 26
pages of the tables of eigenvalues and eigenvectors of
H for CMN belonging to the various irreducible repre-
sentations of the translation group (in all there are eight
tables, one for each representation). Order by PAPS
number and journal reference from American Institute
of Physics, Physics Auxiliary Publication Service, 335
East 45th Street, New York, NY 10017. The price is
$1.50 for a microfiche, or $5.00 for a photocopy. Air-
mail is additional. Make checks payable to the Ameri-
can Institute of Physics.

15S. Thanos (unpublished).

|'—‘

]



