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The T =0 dynamics of a family of one-dimensional quantum spin systems with fully ordered (fer-
romagnetic or spin-flop) ground states is investigated. By rigorous calculations, it is demonstrated
that the T=0 dynamic structure factor is, in general, not a 8 function as predicted by linear spin-
wave theory but characterized by more complicated structures with nonzero linewidths. The exact
result approaches the spin-wave result in the classical limit s — 0. The results of this study demon-
strate how quantum effects may invalidate spin-wave theory even in the presence of saturated mag-
netic long-range order. Hence the failure of spin-wave theory is not necessarily linked to the absence
or strong reduction of long-range order typical for one-dimensional quantum spin systems. The un-
reliability of spin-wave theory has therefore to be suspected also for the dynamics of three-
dimensional quantum spin systems where the long-range order is always strong at T =0.

I. INTRODUCTION
Spin-wave theory"? is based on the expansion of any
given quantum spin Hamiltonian H in terms of boson
operators. In the linear spin-wave (LSW) approximation,
all terms but the harmonic term are neglected. Anhar-
monic corrections may then be treated as perturbations.
Optimal circumstances for the use of LSW theory are
found in situations where the ground state of H is fer-
romagnetic. The LSW approximation then gives the exact
ground state. The excited states of H, on the other hand,
are replaced by noninteracting spin-wave states (magnons),
which obey Bose statistics.” At T=0, only the one-
magnon states contribute to the dynamic structure factor*

Suu(d,0)=N""3 exp[ —iG-(R; —R;)]
)
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Hence in the LSW approximation, S,,(q,®) as a function
of w for fixed q has the characteristic form

S,(4,0)=27®,,,(4)8(0 —€(§)) , 2

where €(q) is the dispersion of the one-magnon states and
®,,(q) is the integrated intensity.

Spin-wave theory is a major theoretical tool with a wide
range of applications in the study of magnetism as a
cooperative phenomenon.! However, the reliability and
accuracy of theoretical predictions based on spin-wave
theory cannot, in general, be tested because exact results
for realistic magnetic model Hamiltonians are scarce.
This is particularly the case for applications in spin
dynamics where spin-wave theory and, in particular, the
LSW approximation are widely used. In fact, rigorous re-
sults for the dynamics of quantum spin systems are limit-
ed to one dimension (1D).> In 1D, the limitations of spin-
wave theory have indeed been demonstrated.® However,
the reason for its failure has been attributed to the fact
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that in the ground state of 1D quantum spin systems,
there are strong quantum fluctuations which reduce the
magnitude of the order parameter considerably below its
saturation value or, in some cases, destroy long-range or-
der altogether.

The 1D s =+ XXZ model

N
H=—JY (SISF +SIS!, | +ASiSi, 1) 3)
=1

is a typical example of a model which reflects this connec-
tion between the degree of ordering in the ground state
and the accuracy of the LSW approximation: For A> 1,
the ground state of (3) is ferromagnetic and the T=0
dynamic structure factor has the form (2); LSW theory is
exact. For A <1, on the other hand, the ground state is ei-
ther not ordered at all (—1<A < 1) or only partially or-
dered (— w0 <A < —1). In both cases, it is well establish-
ed that the LSW prediction fails; S,,(¢,0) has a much
more complex structure than given by (2). In the limit
A— — w0, the order parameter is gradually saturated and
Syuu(g,@) again approaches the form (2). All this is in sup-
port of the widespread belief that the LSW prediction for
the dynamic structure factor becomes very accurate if only
the reduction of the order parameter (called spin reduc-
tion) caused by thermal or quantum fluctuations is very
small. This belief, in turn, has led to much confidence in
the LSW theory for three-dimensional (3D) magnets be-
cause of the experimental and theoretical evidence that
there the spin reduction at low T is usually very small.”

In this paper we demonstrate that the limitations of
LSW theory for the T=0 dynamics of quantum spin sys-
tems are not necessarily linked to the presence of strong
quantum fluctuations causing spin reduction in the
ground state. We investigate the T=0 dynamics of a fam-
ily of 1D quantum spin systems with fully ordered (fer-
romagnetic or spin-flop) ground states® and show by
rigorous calculations that the T=0 dynamic structure fac-
tor differs dramatically from the LSW prediction. This
implies that the failure of LSW theory is related, more
directly, to the nonlinear nature of the underlying equa-
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tions of motion, i.e., to the anharmonic correction terms in
H which are neglected in the LSW approximation.” Since
these nonlinearities are also present in higher-dimensional
systems, there is no reason a priori to believe that their ef-
fects which are manifest in the exactly solvable 1D case
should be less pronounced in its two-dimensional (2D) and
3D counterparts.

II. THE ANISOTROPIC XY MODEL

In this section we investigate the adequacy of LSW
theory for a family of quantum spin system with the prop-
erties of (i) having a fully ordered ground state and (ii) be-
ing amenable to rigorous calculations. The system under
consideration is the 1D anisotropic XY model in a magnet-
ic field A described by the Hamiltonians

N
Hy=%J 3 [(1+9)SSf +(1—
=1

VSISt 1— hES,,

4)

with 0<y<1, J>0. Here H_ characterizes the XY anti-
ferromagnet and H _ the XY ferromagnet. The canonical
transformation

N
im 3 IS |, (5)

=1

U =exp

which has the effect of rotating every other spin by 180°
about the z axis, maps the two models onto one another
(we consider only even N)'°:

UH U '=H_. (6)

Hence, glven the eigenfunctions | Ay, A=12,.
(25 + 1)V, and energy eigenvalues E} of H 4+ the elgen—
functions of H_ are obtained as |A)_=U [A), having
the same energies E;y =Ej}.

For s = %, the ground-state properties of (4) are exactly
known.!! This is not the case for s > 5. Only recently it
has been shown for arbitrary s that at the special value

h=hy=2sJ(1—y?)!"? (7

of the magnetic field, the ground state of H_ can be ex-
pressed as a direct product
|GY,=|61)0|6f)8 - -®|0k), 6f=(—1)0
(8)

of single-site states'>!3
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Here | m) are the 25 +1 eigenfunctions of "s, and S} with
eigenvalues s(s +1) and m, respectively. The ground state
|G)_ of H_ is then'*

|G)_=U|G),=|67)8|6;)® -

07 =6=const .

®[6y)
(10)

|G),, the ground state of H_, is a spin-flop state with
sublattice magnetizations

M4 =,(G|Sy_,|G),=(—ssinb,0,s cosh) ,

(11a)

M3 =,(G|S;|G),=(ssinb,0,s cosh) , (11b)

and |G)_, the ground state of H_, is ferromagnetic in
the sense that all spins are aligned. The magnetization of
| G)_

{G|S/|G)_=

is saturated as are the sublattice magnetizations of |G) .
In these states, which we call fully ordered, the quantum
fluctuations are minimal; they are reflected only in the
fact that the magnitude of the sublattice magnetizations
K'Ii,l—\:ll_’,_ and of the magnetization M_, all given by
| (S;)|=s, falls short of the total “spin length”

s(s +1). We now proceed to study the properties of the
T=0 dynamic structure factors Sm,(q,a)), uw=x,y,z, of
this system, where quantum effects will be much more
pronounced.

(s sin6,0,s cosf) , (12)

A. S.(q,0)fors =%

An implication of (6) is that the dynamic structure fac-
tor S;(g,w) is the same for H, and H_. For the s =+
case we are in the fortunate situation that the importance
of quantum fluctuations can be demonstrated by explicit
rigorous  calculations: The time-dependent spin-
correlation function (Sf(¢)Sf, ) of (4) with s =+ and
7,h arbitrary can be expressed as a dens1ty density correla-
tion function of a system of noninteracting fermions.'®
The corresponding expression for the dynamic structure
factor at T=0 reads

Sa(g0)=1 [ dk[1—f(k,)8lw—e(k,q)) , (13a)
e(k,q)=J({[h +cos(k —q/2)1*+ysinX(k —q/2)} "2+ {[k +cos(k +q/2)P+ysin*(k +4/2)}'72) , (13b)
Flhg)= [A+cos(k —q/2) 1[4 +cos(k +9/2)]—7%in(k —q/2)sin(k +q/2) (13¢)
{[A +cos(k —q/2)2+y%sin*(k —q/2)} ' *{[ K +cos(k +q/2)P2+7y sin2(k +q/2)} /2
with A=h/J. For h =hy, the evaluation of this expression is very simple'®;
201_ 2 _ _ 2
Salg)=—L— [P0 =pleosa /D —@=2D" 012y 2210000 /2)— (02071 . (14)

1—y?  [w—2Jsin%(q/2)]*+J% %sinZg
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Sz(g,®) is nonzero in the two-parameter continuum

lo—2J | <2J(1—92)"2cos(q /2)

of the (¢,) plane as illustrated in Figs. 1 and 2. For fixed
4, Sz(q,0) is characterized by a rounded peak close to the
lower boundary and a tail out to the upper boundary. As
q approaches , the peak rises steeply while its width di-
minishes.

We note that despite the realization of a fully ordered
ground state, the dynamic structure factor (14) differs a
great deal from the LSW prediction which is'?

S2(g,0)=2n[sy/(1+7)]8(0 —€(q)) , (15a)
€wlq)=2sJ[(1+7y)—(1—7)cosq] . (15b)

The spin-wave (sw) energy, also shown in Fig. 1, does not
coincide with the peak frequency of (14) except at ¢ =.
Here, the two expressions (14) and (15) are equivalent.

B. S.(q,0) for arbitrary s

Although we know the exact ground-state wave func-
tions of (4) for arbitrary s, we are unable to derive an exact

expression for the T=0 dynamic structure factor for
|
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s > 3. Nevertheless, we can deduce valuable information
on S(q,») from (8)—(10).

In a recent paper'’ an infinite set of sum rules has been
derived for the dynamic structure factor of quantum spin
chains. The major result is that the nth (n =1,3,5,...)
frequency moment of the T=0 dynamic structure factor
S,u(q,0) is a polynomial in cosq of degree n with coeffi-
cients determined by static m-point correlation functions'®
(m=12...,n+1):

= do

K:":(q)z fo - o"Syu(q,0)

n
= 3 Ancos™q, n=135,... (16a)
m=0
w7 BocB 8.,
Ar,r‘lz Ebj( )<SIOOSIII te Slm ) s
j
10S11S Slmy Im—logn. (16b)

For the system under investigation the coefficients 4,,
can be evaluated explicitly using the exact ground-state
wave functions (8) or (10). The results for n=1,3 read

KJ(@=2sU[y/(1+1[(1+y)—(1—y)cosq] , 17)
KJ(q)=41y/(1+9)]{25* [(1+9) — (1 —y)cosq]?
+25°Y(1—y)(1+cosq)[2(1+7) —(1—y)cosq] —sy*(1 —y)(1+cosq)} . (18)
From (8) or (10), we can also calculate the integrated intensity
© do — z2Qz z z
D,(q)=K q)= fo E;Szz(‘bw)= %6’ R(SiSF R ) — (ST (STyr >)=sl_i/—y (19)

For s =1, the sum rules (17)—(19) are verified by the
corresponding frequency moments of (14). Note that the
spin-wave result (15) also satisfies (17) and (19) for arbi-
trary s, but it does not satisfy the sum rule (18). K3'(q)
has a nontrivial s dependence which comes from correla-
tion functions in (16) containing noncommuting spin
operators. In the classical limit s— o0, all terms in (18)
except those multiplied by the largest power of s are negli-

FIG. 1. Spectrum of the dynamic structure factor S,,(g,w) at
T=0 of H+ for s -——%, h=hy, y=—;—. The shaded area corre-
sponds to |w—2J | <2J(1—9*)'"%cos(q /2), where Sp(q,0) is
nonzero. S(q,w) as a function of w for fixed ¢ has a peak at
the energy characterized by the dot-dashed line. The dashed line
denotes the spin-wave energy Eq. (15b).

T
gible. K.)(g) is then equal to the third frequency moment
of the spin-wave result (15).

Thus the T=0 dynamic structure factor S, (g,©) of the
model (4) at h =hy, which has the quasiclassical (fully or-

FIG. 2. Dynamic structure factor S, (q,w) at T=0 of H + for
s = %, h=hy, y= %, as a function of frequency for wave num-
bers ¢ =nw7/10,n=0,1,...,9.
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dered) ground state (8) or (10), is nontrival for all finite s.
The spin-wave result (15) is recovered in the classical limit
after rescaling of the energy unit J: s— «, J—0 such
that J' =2Js stays constant.

Using the exact sum rules (17)—(19) we may define the
following two quantities:

2,(q)=(w),/2s, T,(g)=(o’),—(0))'3/2s,
(20)

with
("), =K (@)/K(q) . 1

In a situation where I',(q) <<Q,(q) holds, the spectral
weight is concentrated in a relatively narrow frequency
range for fixed g. Then, Q,(g) can be interpreted as a re-
normalized “line frequency” and TI',(¢q) as a measure for
the corresponding “linewidth.” We have

Q,(9)=J[(1+7)—(1—y)cosq] , (22)
T,(q)=Js ~3{p(1—)(1+cosq)
X[2(147)—(1—y)cosqg —y/2s]}'/3.
(23)

Evidently, 2sQ,(¢q) coincides with the spin-wave fre-
quency (15b). The g dependence of both Q, and I', are
plotted in Fig. 3 for various s. I',(q) vanishes at ¢ =7 ir-
respective of the quantum number s, indicating that
Sg(m) is a 8 function for any 5. The condition I'; <<,
is generally not satisfied for s < 2, i.e., for low-spin quan-
tum numbers typically encountered in real magnets.
Hence the physical interpretation of the dynamic structure
factor cannot be interpreted in terms of “line frequency”
and “linewidth” unless s is fairly large.

C. A remark on S, (q,0) and S,,(q,®)

For s =5, (SHtS{.z) and (S}(t)S{.r) are again
correlation functions of a noninteracting fermion system.
In contrast to {Sj()S7,r ), however, they are related to
fermion correlation functions involving, in general, an in-
finite number of field operators. In fact, (S7(¢)S{, g ) and
(S7(t)S7 . r ) could be expressed in terms of infinite block
Toeplitz determinants for arbitrary 7,4.'> No explicit ex-
pressions for S,,(¢q,w) and S,,(q,w) have been evaluated.
No results exist for s > 7.

From the exactly known ground-state wave functions
(8)—(10) at h =hy, we can derive explicit expressions for
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FIG. 3. Linewidths I';(q) (solid curves) and renormalized line
frequencies Q,(q) (dashed curve) as defined in Egs. (22) and (23)
for the T=0 dynamic structure factor S;(q,w) of the anisotropic
XY model in a magnetic field h =2sJ (1—%?)"/2 for various s and
Y= % Note that 2,(q) is not s dependent.

the transverse components of the sum rules K L’:}(q), where
p=x,y and n=0,1,3. We find that all of them are simply
related to their longitudinal counterparts (17)—(19): For
H_ we obtain®

KM =[(1—7)/2y]1KM )
K@) =[(1+7)/2y]KP(g), n=0,1,3. (24)

It is therefore tempting to conjecture that the same
structural similarity as observed in (24) for the frequency
moments also holds for the three components of S,,(q,»)
itself. This conclusion, however, would be in apparent
contradiction to rigorous results found by McCoy et al.'
Syx(g,0) and S,,(q,0) of the model (4) at h =hy are the
subject of planned further investigations.
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