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Surface spin waves in antiferromagnets
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A complete theory for dipolar antiferromagnetic surface spin waves is given. Analytic forms are
derived for the dispersion relation and regions of stability. Applications to representative uniaxial
antiferromagnets (MnF2, GdA103, FeF2) are shown and possible experimental methods for verifica-
tion are discussed. The case of exchange-dominated antiferromagnetic surface spin waves is briefly
mentioned.

I. INTRODUCTION

Ferromagnetic surface spin waves have been observed in
ferromagnets (Ni,Fe,EuO) and are well documented. ' An-
tiferromagnetic surface spin waves (ASSW) on the other
hand have not been observed so far. We distinguish be-
tween dipolar ASSW and exchange-type ASSW. The di-
polar ASSW exist for long-wavelength excitations where
the macroscopic dipolar fields set up by the precessing
magnetic moments on each sublattice provide a significant
contribution to the excitation energy of the spin wave.
They are the antiferromagnetic analog of the Damon-
Eshbach modes for ferromagnets. The exchange-type
ASSW have been discussed theoretically in a microscopic
way, ' and we shall comment on these excitations briefly.

It is now well established that dipolar contributions
hyve a measurable effect on antiferromagnetic resonance
spectra in uniaxial antiferromagnets. The modified spin-
wave spectra have been calculated in the continuum limit
and magnetostatic modes have been observed in MnF2. '
Calculations also exist for the long-wavelength surface
magnetostatic mode spectra for antiferromagnets. ' The
purpose of the present communication is to correct some
inconsistencies in these papers, to give symmetry argu-
ments for these ASSW modes, and to give numerical cal-
culations for typical uniaxial antiferromagnets (MnFii
GdA103, and FeF2). On the basis of these applications we
shall comment on the possibility of observing these modes
and the related exchange-type surface modes. In the fol-
lowing section we develop the theory and give the neces-
sary formulas for the excitation frequency, the stability
conditions, and a symmetry argument. Afterwards we
give numerical applications and a discussion.

II. THEORY

The analysis given here closely follows Refs. 6 and 8.
Let the easy axis be the z direction and the sublattices be
denoted by A, B. Then MT ——Mz +M~ with i=x,y.
MT +xxhx + ~+xyhys MT I~xyhx + +yyhy, where the

x J'

susceptibility tensor 7;J reads

1 =X~=1++1, X„y ———Xy„——X+ —X, (1)

with

$2$ Q2p Q2p(1+4+7 ),+, +,=0.
x 2 c)y2 gz2

(2)

For bulk spin waves we make the ansatz Pb
——(()oe'

Insertion of this relation and I from Eq. (I) gives the
bulk dispersion relation

2 . 2
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+2 Hp +4TMH Hpcos 8
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+4m M H, cos 8

Here ~/2 —8 is the angle between the z axis along which
the Zeeman field Hp is directed and the propagation direc-
tion q.

Now we turn to the ASSW. We take as the surface the
y=0 plane and fix the direction of propagation along the
surface plane by the wave vector q~~, which makes an an-
gle 8 with the x direction [see inset of Fig. (la)]. At the
end of this section we shall comment on the configuration
with Hp normal to the plane. For y&0 (inside the medi-
um) we make the ansatz for the magnetic scalar potential

H, Mx+-
Q2 —(to+ yHo )

i

Here (Qly) =2H,„H, + H„where H, is the anisotropy
field, H,„ is the exchange field, Hp is the applied field, M
is the saturation magnetization of one of the sublattices,
and y is the gyromagnetic ratio (negative number). Here
0 is the antiferromagnetic resonance frequency in the zero
applied field, and Qj

~ y ~

is the field where bulk antifer-
romagnetic spin waves soften, and enter the spin-flop
state, which we shall discuss briefly below.

For magnetostatic modes we have the dipolar equations
curl h~ ——0, divb=0, where h~ is the macroscopic fluc-
tuating dipolar field, and b; =h~. + 4m.MT. . With

hd = —grad/, one obtains the Walker equation
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and with 7;J inserted, we obtain the equation for the
ASS%.

2Hocos8 O Hosin 8
+

1+cos 8 y {1+cos8)
' 1/2

8~MH, cos 8
+

1+cos'8

Taking q„=qi~cos8, we notice that the two solutions of
Eq. (6), (co,,/y)(8) for the positive sign, and (co, /y)(8) for
the negative sign, are related by

co, ,(8) co,,(n. 8)—
y y

&f we choose co,/~ y~ to be positive for Ho ——0, we take the
—sign in Eq. {6)and obtain

2Hocos8

1+cos 8

Hosin 8 SmMH, cos 8 1/2

.+
(1+cos 8) 1+cos 8

180 90' 8
I

QO 180 90' 8 Qo

FIG. 1. Frequency of bulk and dipolar surface spin waves as
a function of angle of propagation for various materials and
fields. Arrows indicate points (81,82), where bulk and surface
spin-wave frequencies touch. Inset in (a) indicates geometrical

arrangement of Ho, q ~~.

l q
i
i' X —Clg

and by using Eq. (2) we obtain

sin 8
cos 8+ 1+4~7

For y &0 (outside the material) V /=0 holds, and with
the boundary continuity conditions for the tangential com-

ponents of hd and they component of b, we obtain

(1 AX„„cos8) .—
+ XX

Illustrative examples for r0, /
~ y (

and sos/ ) y ~

are given in
Fig. 1 as a function of angle 8. The bulk bands in Fig. 1

arise from the fact that we specify in this figure only the
propagation direction parallel to the surface. For bulk
modes there also exist many different allowed values for
the wave vector perpendicular to the surface, and this
leads to a band of allowed frequencies. Turning to the
surface modes we see nonreciprocal features characteristic
of magnetostatic surface waves, " ' i.e., ~( + q

~
~)

&m( —q ~~). In addition we notice that the ASS% do not
penetrate the bulk spin-wave continuum, but they merely
touch it at a critical angle 8] 2. This is exactly analogous
to the case of Damon-Eshbach magnetostatic modes for
ferromagnets. This fact was not explicitly recognized in
an earlier treatment. '

Next we investigate the stability of these ASSW. The
condition is given by a p 0, i.e.,

[1—4m cos8(X+ —I ) ]
1+4m {7++7 )

By eliminating a from (4a), (4b) gives

[1+cos28(1+4~& )]= —2X~cos8[1—2mX~cos8],

This condition ensures that the amplitude of the wave de-
cays exponentially as it moves away from the surface.
This leads to stability regions for ASS% in direct analogy
to the case of ferromagnetic Damon-Eshbach modes. By
putting in the expression for X» we can again use the sym-

(5) metry argument above:
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From Eq. (8) it is evident that if the stability condition
is fulfilled for (co,

, /y)(8), for example, then it is also

fullfiiled for (co,,/y)(n —8), since the only term displaying

nonreciprocal features in Eq. (8) is the second term in the
numerator and

~,,
{8)

cos8
y y

Therefore both solutions and their stability regions are the
same, except if one solution is for q„, the other one is for
—q„. In other words, the wave-type solution (q„x —co, t)
changes to —(q x —~, t), and the two solutions are thus
identical in physical content. These stability criteria were
used properly but not mentioned or not given correctly
in previous work.

The decay constant a determines the penetration depth
of the surface spin wave. It can be calculated from Eq.
(8). It is seen that a is proportional to the magnitude of
the wave vector qll. The surface spin-wave frequency, o
the other hand, is only dependent on the propagation
direction, as long as the frequency is in the magnetostatic
region. The value of q~~ is determined by the experiment
(surface acoustic wave vector for the magnetoelastic cross-
over in ihe case of magnon-phonon resonance or the
momentum transfer in the case of Brillouin scattering}.

For Ho&Q/~ y ~, i.e., in the spin-flop state where the
spins are canted, one has ferromagneticlike susceptibilities.
The surface and bulk spin waves have ferromagneticlike
character. Since they are no longer true ASS% we shall
not pursue this point any further here, but we will give
only the formulas for bulk spin ~aves and surface spin
waves' (for propagation direction along the x axis). The
following is the formula for bulk waves:

'2 '2

m, (m.—8)
=cos(n. —8)

=2H,„(Hocos8+H, cos28)+ 16mMH, „cos 86) qx

. y.

+Sm M(Hocos8+ H, cos28) gy

q

The following is the formula for surface waves:

Hocos8+ H, cos28=(H,„+ AM)cos8+

Here

Ho

2He. —Ha

determines the canting angle of the sublattices. The stabil-

ity region for the spin-flop state is

(2H,„H, +H,'}'"
CX+ 0

~ Ho ~ 2H,„—H, =H3 .

In Fig. 6 we show bulk and surface spin waves for the an-
tiferromagnetic state, the spin-flop state, and the
paramagnetic state. The calculations are made for the
values of GdA103. As in the ferromagnetic case the sur-
face spin waves in the spin-flop region exhibit strong non-
reciprocal behavior. '

While the geometry discussed above is the most interest-
ing one for nonreciprocal features or for experimental ob-
servation, there are other possible configurations. %'e

only mention that for the easy axis and for Ho being per-
pendicular to the surface, there do not exist stable ASS%
if only dipolar interactions are included, again a result
identical to the ferromagnet.

III. NUMERICAL RESULTS FOR UNIAXIAL
ANTIFERROMAGNETS

We would like to apply the results derived above to typ-
ical cases which might be checked experimentally. We
give results for three antiferromagnets which are well
characterized and sufficiently different in their physical
parameters so that they exhibit features which might be
detectable using low-frequency ultrasonics, ' microwave
techniques, Brillouin scattering, ' or by far-infrared exper-
iments. In Table I we list physical properties of MnFz, '

GdA103, ' and FeFz. ' All these substances can be classi-
fied as uniaxial antiferromagnets. For GdA103 with its
orthorhombic crystal structure there are some small
differences from uniaxial behavior' which we neglect for
our purposes. GdA103 has an easily accessible antifer-
romagnetic resonance and spin-flop field of -12 kOe;
MnFz has a spin-flop field of 93 k0e, still accessible with
superconducting magnets; and for FeF2 with a spin-flop
field of 506 kOe, infrared techniques are called for.

For completeness sake we show in Fig. 1(a) bulk and
surface spin ~aves for Ho ——0 for MnF2. The ASSW are
stable in the whole region. In Figs. 1(b)—1(d) we give cor-
responding results for a small applied field of Ho ——1 kOe.
%e notice that the critical angles 8i 2, which for Ho ——0
are at 8=m/2 split to 8i z&n./2. The ASSW spectrum
does not intersect the bulk spin-wave band but touches it
at these two points. The stable region for ASS% is then
between m —8i and 82—0 (solid lines in Fig. 1), and the
unstable region is between 8& and 82, n/2 included (dotted
lines). Notice the strong analogy to Damon-Eshbach
modes for the ferromagnetic case. Also notice that the

TABLE I. Physical properties of GdA103, MnF2, and FeFq.

FeF2

Neel temperature T~ (K)
Exchange field H,„(T)
Anisotropy field 8, (T)
Sublattice magnetization M (6)
Spin-Aop field 0/y (T)

3.87
1.88
0.365

624
1.226

67
55
0.787

600
9.337

79
54
20

560
50.6
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maximum splitting between bulk waves and ASSW is for
H=n. about 50 Oe for MnFq, about 500 Oe for GdA103,
and about 350 Oe for FeFz. These are rather small split-
tings for optical measurements. Therefore we present re-
sults for higher fields close to the spin-flop transition.

In Figs. 2 and 3 we present stability curves for ASSW
as a function of applied fields for MnF& and GdA103, the
case of FeFq being quite similar. The lower branch be-

longs to the angular region m —0& and the higher branch to
8&—0. The regions of stability are found from Eq. (8). As
seen from these figures the branches are quite narrow,
becoming even narrower in the intermediate-field region.
But near Ho ——0/~y~ the region of stability expands
again. These stability regions are somewhat different
from the stability regions given in Ref. 6.

In Fig. 4 we show bulk and surface spin waves for
MnFz for Ho ——93 kOe, 370 Oe below the spin-flop transi-
tion. In Fig. 4 we concentrate on the lower branch where
cob/

~ y ~

=615 Oe and co,/
~ y ~

=692 Oe for 8=m Such .a
splitting can be detected in principle by Brillouin scatter-
ing spectroscopy, but the spin-flop transition is not very
sharp. '4

The case of GdA103 is more advantageous. For
Ho ——12 kOe, i.e., 260 Oe below 0/~ y~ the resulting
spin-wave spectra are shown in Fig. 5. We notice, for ex-
ample, for the 8=m geometry a bulk spin wave at 803 Oe
(16 Gc) and a ASSW at 1420 Oe (28.4 Gc). Such modes
could be detected by Brillouin scattering techniques. In
addition an applied field of 12 kOe can be generated by
electromagnets. Figures 5 and 6 demonstrate that the
ASSW could be observed either by Brillouin scattering or
by microwave techniques. Figure 6 shows the antifer-
romagnetic state and the spin-flop state for GdA103 with
spin-wave propagation along q„. The spin-flop region
Hg &Ho (H3 and the paramagnetic region H & H3 will be
discussed in greater detail elsewhere. '

In the case of FeFq a higher magnetic field does not
help because we had to use inaccessible fields to bring the

iyl

(kG)

20

15

12 l03

10

spin-wave spectra down to about the microwave region. If
we apply a 100 kOe field, the splitting of the bulk spin
wave and the ASSW is only 12 Oe compared to 350 Oe for
1 kOe. We conclude that dipolar surface spin waves are
rather difficult to observe in materials with a large energy
gap such as FeFz. The most promising case seems to be
GdA103, as discussed above. Brillouin scattering or mi-
crowave experiments should enable one to observe ASSW.
Magnetoelastic interaction with ultrasound' still proves
to be difficult because we had to move too close to the
spin-flop transition which always was somewhat smeared
out.
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FIG. 3. Region of stability for ASSW as a function of applied
field for GdA103.
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FIG. 2. Region of stability for ASSW as a function of applied
field for MnF~.

FIG. 4. Frequency of ASSW near spin-flop field (lower
branch) in MnFz.
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FIG. 6. Bulk spin waves (shaded area) and surface spin waves

(in the x direction) for the antiferromagnetic region H &HsF
(where HsF represents the spin-flop field) and the spin-flop re-

gion H2 WHO gH3 for GdA103.

Finally we would like to comment on exchange-type
surface spin waves. These are modes which can best be
studied with Ho parallel to the easy axis, and the easy axis
preferably normal to the surface. Notice that the dipolar
ASSW described above are unstable for this configuration.
It has been shown theoretically that there exists a surface
spin-flop field '

and that for Ho & QI/y, the flopped state increases in size
proportional to (0/y —Hp) '. However, for actual fields
rather close to 0/y, the volume involved is still rather

small" ( & 100 atomic layers). We conclude that it is ex-
tremely difficult to observe these exchange-dominated sur-
face spin waves.
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