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Ferdinand and Fisher have analyzed the finite-size behavior of the two-dimensional Ising model

with periodic boundary conditions for 1 near T, . In the thermodynamic limit, the leading correction
term to the specific heat has an unusual and unexpected behavior as the shape of the m X n lattice is

changed. For shape parameter s =m /n = 1, the peak in the specific-heat correction term occurs at a
reduced temperature ~,„=2K,n(T —T, )/T, &0. With increasing s the peak moves to negative ~
values and then increases to 0. We show that this effect may be understood by keeping only the two

largest eigenvalues of the transfer matrix. To this approximation, which is good for s =1 and im-

proves exponentially with increasing s, all the shape dependence of the free energy is due to a factor
that can be expressed entirely in terms of a domain-wall energy. Furthermore, the functional form
of this factor is the same as that of the finite-length correction to the one-dimensional Ising model.
Thus the dependence of r,„on s is qualitatively similar to the dependence of T',„, the location of
the one-dimensional Ising-model specific-heat peak on N, the number of spins. We also argue that
the two-dimensional partition function is expressible at least for s & 1 as a factor due to domains,

and another due to a one-dimensional Ising array of domain walls. Approximate expressions are ob-

tained for the effective number of spins and the effective coupling of the array. We also point out
that there is reason to believe the one-dimensional Ising array of domain walls at fixed ~ connects

smoothly with a similar array for T (T,.

I. INTRODUCTION

Ferdinand and Fisher' have provided an exhaustive and
rigorous analysis of finite-size corrections to the thermo-
dynamics of the two-dimensional Ising model in the criti-
cal region. They consider a square lattice of m Xn spins
with periodic boundary conditions in the limit n ~ ao with
s =m/n fixed. One of their results is that for fixed re-
duced temperature

v=2K, n (T—T, )/T, ,

the specific heat per spin is given by

C(T)/k&mn =Aolnn +8(w, s)+O(inn In), (2)

where Ao ——(8/m. )K, =0.494358. . . , and 8 is given expli-
citly [see Eq. l 1 8)]. The behavior of 8, the leading correc-
tion term to the specific heat, is such that for large but
finite lattices the maximum in C(T) is at ~=v. ,„(s), i.e.,
the shift in the specific-heat peak depends on the lattice
shape parameter s. For s=1, ~,„&0 so the peak is at
T=T,„&T,. This, as pointed out by Ferdinand and
Fisher, ' is to be expected due to periodic boundary condi-
tions strengthening the effective interaction between spins.
As s increases (or decreases —the results in Ref. 1 are in-
variant if s~1/s, consistent with the symmetry of the
problem), v. ,„displays some unusual and intriguing
behavior. At first it decreases, passing through ~=0 for
s=so=-3 and continuing to decrease until s=7. With a
further increase of s it reverses direction, increasing mono-
tonically to an asymptotic value ~,„=0 as shoo. The
shape dependence of ~,„ is an exact result. However, no
explanation for it is offered in Ref. 1 or (as far as we are

aware) elsewhere.
In this paper we approximate the thermodynamics of

the problem by keeping only the largest two eigenvalues of
the transfer matrix. It turns out that in the critical region,
i.e., for fixed ~, this gives very accurate expressions for the
thermodynamic functions to the order of interest when
s&1. In particular, 8, the leading finite-size correction
term to the specific heat, is well approximated. The two-
eigenvalue approximation for B is already good for s=1
(m =n) and improves exponentially with increasing s.
Further, simplified analytic expressions for the partition
function, energy, and specific heat and their finite-size
correction terms result from this approximation. The par-
tition function may then be factored as Z =ZDZ, where
in the two-eigenvalue approximation Z contains all the
shape dependence. We further show that (the exact form
of) Z may be expressed in terms of domain-wall energies,
and that the approximate Z has the form of the finite-
length correction to the one-dimensional Ising model.
Thus we argue that Z may be factored into a product of
single-domain partition functions and a partition function
for a one-dimensional Ising array of domain walls. The
curious behavior of w,„as a function of shape s is, there-
fore, a domain-wall effect that may be understood in
terms of the temperature T',„ofthe specific-heat peak of
the one-dimensional Ising model with periodic boundary
conditions, which, in fact, displays the same qualitative
behavior as a function of N, the number of spins (or
length).

In Sec. II we first recapitulate the relevant part of the
analysis of Ferdinand and Fisher. ' We then identify the
part of the specific-heat correction term 8 responsible for
the s dependence of the peak location ~,„,and give a very
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accurate and relatively simple approximate closed-form
expression for it. This approximation results from keep-
ing only the two leading eigenvalues of the transfer ma-
trix. In Sec. III the general expressions for domain-wall
energies are displayed and evaluated for fixed ~ using the
results of Ref. 1. Here we show that the correction term
responsible for the shape dependence of B can be expressed
entirely in terms of a domain-wall energy.

Section IV further explores the identification of the
domain-wall contribution to B. First we review some re-
sults for the one-dimensional Ising model, in particular,
the length dependence of the specific-heat peak T',„(N),
which is qualitatively the same as the s dependence of ~,„
in the two-dimensional Ising model. Next we show that
the domain-wall part of B has the form expected for a
one-dimensional Ising array of domain walls, thus provid-
ing a mechanism for the shape dependence of the finite-
size corrections to the Ising model in the critical region.
Finally we make an approximate calculation of the effec-
tive number of spins and coupling in the Ising array. In
Sec. V we present some evidence that the effects of this ar-
ray extend naturally into the one-dimensional array of
domain walls present for T & T, and sufficiently large s.

II. FINITE-SIZE CORRECTIONS
IN THE CRITICAL REGION

In this section we review some results of the asymptotic
analysis of Ferdinand and Fisher' for the thermodynamic
functions of the Ising model (at zero external field) in the
critical region. Next we identify the part of the leading
specific-heat correction terin B [Eq. (2)] responsible for
the shape dependence of ~,„, the (reduced) temperature of
the specific-heat maximum for large but finite lattices,
and give a very accurate approximate analytic expression
for it which results from retaining only the two leading
eigenvalues of the transfer matrix.

The partition function Z for an Ising model with
periodic boundary conditions on an m Xn lattice has been
expressed in a convenient form by Kaufman,

Z = —,(2sinh2K) "~ g Z;(K),

Note that

y0
——2K +ln tanhK . ('7)

For fixed temperatures T&T„the free energy per spin de-
rived from Eq. (3) approaches its infinite lattice limit ex-
ponentially fast in m and n. However, in accordance with
finite-size scaling theory, the critical point is spread over
a region about T, of order 1/n. In this region, conver-
gence to the thermodynamic limit does not occur. Ac-
cordingly, Ferdinand and Fisher introduce a reduced tem-
perature variable ~ by

v /n = —,
' (sinh2E + 1/sinh2E) —1, (9)

which reduces to Eq. (1) for large n or T near T, Defi.n-

ing

R; =Z;/Z

one has from Eq. (3),

Z = —,(2 sinh2I(:) " Z1(1+R2+R3+R4)

ZOZu s

where

(10)

(11a)

Zg ~ ( 1 +R2+R3 +R4) ~ (11b)

The factor Zo gives rise to the extensive part of the
thermodynamics in the limit n~ao, s =m/n fixed. In
addition, it contains part of the finite-size corrections. Z
contains the rest of the finite-size effects, and we will
show below that it is responsible for essentially all of the
shape dependence of these correction terms.

Ferdinand and Fisher show that to leading order as
n ~ 00 with the shape parameter s =m/n fixed,

m n —1

Zi ——IIi exp —g yz, +,2 r=0

The critical point of the (infinite) Ising model is given
by

sinh 2E, = 1, K, = —,
'

ln( 1+V 2)=0.440 68. . . .

where the dimensionless coupling is

E =J/kg T, (4)

and J=J„=J„+0 is the nearest-neighbor coupling ener-

gy. Here we let the n columns define the y direction; the
m rows are then in the x direction. In Eq. (3),

n —1

Z, = g 2cosh(m/2)yi, +i,
r=O

n —1

Z& ——g 2 sinh(m /2)yi, + i,
r=0
n —1

Z, = P 2cosh(m/2)y2, ,
r=0
n —1

Z = g 2sinh(m/2)yi, ,
r=0

where

R2 ——H2(r, s) /II, (g,s),
R, =2cosh[(m/2)y ]P II (r,s)/II, (r,s),
R4 ——2 sinh[(m /2)yp]PpII4(1;$) /II i(1,$),

where

11,= g I 1+exp[ —2 (('(r, r ——,')])',
r=1

II&——g I 1 exp[ 2'—(r, r ——,)]I—
r=1

II = g [1+exp[ 2'(r, r)]I', —
r=1

II = g I 1 —exp[ 2$$(r,r)]I—
r=1

P(r, q)=(r +ir q )' '.

(12)

coshyI ——cosh' coth2Ã —cos(lm. /n) . (6) The function P(r, q) in Eq. (13) arises from the expansion
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of yl(~) for I+0 as n ~ 0(3. From Eqs. (7) and (9),

(m /2)yo —— $—r+0 ( I/n) .

The function Po is defined as

(14)

1

X,(.)=( /2) g ' (2r/~)"(I —2-"+') «2~ —1)
i=2

=br'+ O(r'),

InPO ———,'m g yp, (r)—g y2, +((r)

Careful analysis shows'

InPO = ——,~$ (In4—/rr)$ r $XO—(r ) + 0 (Inn /n '),

in which «$) is the Riemann g function. Z„ZO, or Z
may be expanded similarly using the results of Ref. 1.

Ferdinand and Fisher' then consider the exact expres-
sions for the total energy U and specific heat C, obtained

by differentiating Eq. (3) with respect to K. The energy
does not concern us here. Evaluating the terms that ap-
pear in the specific heat asymptotically as n~~, they
find [Eq. (2)]

where for
I
r

I
& ~/2,

(16) C/ksmn =Aolnn +B(r,$)+O(Inn/n),

where Ao ——(8/m)E, =0.494358. . . , and

B(r,$) =Bo(r,$)+B~(r,$),

Bo(r $)/K, =(8/rr)[ln(2' 'A)+CE rr/4]+4(—X2 r'Q, )——[4(Q, , —Q3 tr —$Q2, r')I,
B /K, =(4/R)(R3+R4)X3 —(42/R)(R3+R4)(Q3, + —Q3,

+(4$/R )[(R &
+R2)(R3+R4)(1+x X3)+2m(R3tanhr$ +R4cothr$)(R ~ +R2)X3]

+ —(4/R) g R ~ (Q) Q) ] ) (%$/R)(R3Q/ 3tanhr$ +R4QI 4cothr$)

(18a)

4
2+(4p/R) g R;[(Q3;—Q3 ))+$(Q2;—Qp ))+$Q),;]

4

+(4$/R') R', shee'r $ R', cc—hs' r+$2r(R t 2ahnr+$R 4«ch r)$g R;Qt, ;

2HX3[(R ) +R2)(R3Qj 3+R4Q[,4) (R3+R4)(R1Q1,1 +R2Q1,2)]

'2

g R;Q(; (18c)

Explicit expressions for the Q; +, Q, ;, and X; are given in
Ref. 1. The functions X;=X;(r) and Q;+ ——Q;+(r), i.e.,
they are independent of the shape parameter s. The shape
dependence of Bo and B~ arises entirely from the func-
tions R;, Q, ;, and the explicit $ dependence in Eqs. (18b)
and (18c). Numerical results for B vs r at two $ values
and r „vs $ are shown 1n Figs. 1 and 2. In writing Eq.
(18), we have rearranged some of the terms appearing in
the corresponding expression given by Ferdinand and
Fisher [their Eq. (4.18)].

Now the term Bo(v,s) in Eq. (18) arises from differen-
tiation of the factor Zo in the partition function [Eq.
(1 la)], likewise B (r,$) is due to Z~. For $ & 1 (Ref. 5) Bo
depends significantly on the shape parameter s only for s
close to 1 as illustrated in Fig. 1. For instance, Bo(~,s=1)
differs from 80(~,s = m ) by as much as 75go for

~
r

~
&n/2, however, this maximum percentage deviation

diminishes exponentially as s grows. For instance, it is
less than 2% for s=2. Thus, except for shape dependence
of Bo very near s= 1, the entire dependence of B(~,s) on s
is contained in B (r,$). This fact is central to our

analysis.
Equation (18) can equally well be obtained exactly by

using Eqs. (12) and (16) for the R; and the corresponding
expansion for Z&, differentiating the logarithm of the par-
tition function [Eq. (11)] with respect to K and using Eq.
(9) to expand K in terms of r. This derivation also shows
that all the functions Qg;, I= 1,2,3,4 111 Eq. (18) aflse from
derivatives of the II; [Eq. (13)]. The exponential depen-
dence of these functions on the shape parameter s leads
one to suspect that their contribution vanishes rapidly
with increasing s. In fact, for s & 1 and arbitrary

~

r
~

& n/2 (Ref. 6), the terms in B involving Q, ;,
i=1,2,3,4 (which arise from the II;) contribute at most
1.8% of the total value of B(r,$). This maximum contri-
bution is largest at s=1 (m Xm lattice) and diminishes
very rapidly as s increases. For instance, these terms af-
fect B(r,2) in the sixth decimal place at most for the range
of ~ values of interest. The H; themselves are also well

approximated by ~;(~,s) = 1 for s ) 1, e.g.,
m.2(w=0p= 1)=0.9154, mz(0, 2) =0.9963. Furthermore, one
can see easily from Eq. (13) that for a given s the deviation
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FIG. 2. Solid curve: reduced temperature ~,„ofthe peak in

the (taro-dimensional) specific-heat correction term 8 vs shape
parameter s =m jn. The exact and t~o-eigenvalue approxima-
tion values already coincide to four figures at s= 1 and become
exponentially closer as s increases. Dashed curve: reduced tem-

perature r,„=[T T(W =—oo )],T,„(ao ), of the specific-
heat peak for a one-dimensional periodic Ising chain vs the num-

ber of spins ¹ The fairly abrupt jump in t,„between %=44
and 44.5 occurs because the specific heat near the maximum is

almost constant in T.
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of H; froln 1 is largest at ~=0, since each factor in the

product defining a given Il; is furthest from 1 at r=0 and

approaches it monotonically with increasing
l
r

l
. The al-

most total lack of shape dependence in Bo(s,r) described

above is also due to the closeness of the II~ to 1; it is easy

to see from Eq. (18) and Ref. 1 that the only shape-

dependent part of B&(~,s) arises from derivatives of H~.

Hence by using Eqs. (12)—(17), we find to good approxi-
mation for the factor Z in the partition function [Eq.
(1la)],

Z~ =—,(1+R2+R3+R4)=1+P0e

(19)

0.2 0.6

FIG. 1. Finite-size specific-heat correction terms 80(a),
B (b), and 8(c) defined in Eq. (18) as functions of r for shape
parameter s =m/n=1, 2. Solid curves: exact values; dotted
curves: two-eigenvalue approximation. The exact and approxi-
mate values approach exponentially as s increases. Note that the
approximate 80 equals the exact 80(v, s = 00 ).

rvhere

f(r) =rr/4+v+(ln4/rr)d+br4+0(r')

=0.7854+v +0.4413' —0.02908r +0(r ) . (20)

Note that in the region of the peak in B(~,s),
—0.2 (r & 0.5,f(r) does not depend strongly on r.

W'ithin this approximation one therefore finds a free en-

ergy I",

—pF =[(mrt /2)ln(2 sinh2X)+ lnZ i ]
+ln(1+e-'/")

=lnZc+lnZ = PFc PFo— —
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We may summarize the discussion following Eq. (18) in
this way. The first term on the right-hand side of Eq. (21)
includes the leading terms in the free energy as n ~ ao as
well as part of the finite-size correction terms. If one dif-
ferentiates twice to obtain the specific heat, this term gives
rise to the terms Aplnn and B(r, oo }=Bp(r,s) in 8 [Eq.
(18)]. The entire shape dependence of 8, i.e., 8 (r,s) and
hence that of r,„ therefore arises to this approximation
from the second term in Eq. (21), i.e., pF-
=ln(1+e ' ").

We now consider further the meaning of the approxi-
mation H;=1. From Eqs. (10), (12), and (15) it follows
that

Z+ ———,
' (2sinh2E) " (Z&+Z2 —Z3 —Z4) . (25)

If cr is the wall free energy per spin, using Eqs. (2) and (11)
gives

1+R2—R3 —R4—pno =In
1+R2+R3+R4

(26)

in the appropriate direction. The latter candition gives
rise to an additional domain wall. Since the free energy is
an even function of J, the free energy of one extra wall can
be obtained by subtraction.

If we set J„&0 and m odd, the wall is in the y (column)
direction, and the partition function is expressible as

n —1

Zi i ——exp (m/2) g y2„+i
r=0

Z34 exp (m/2) g y2, [I+exp( —myp)] .
r=p

Substituting in Eq. (11) gives simply

n —1

Z =(2sinh2E) "~ exp(m/2) g y2„+i
r=0

n —1

+ exp(m/2) g yp =Ap +li, i
r=p

(22)

For a wall in the x (row) directian, one finds similarly

1 —R2+R3 —R4
mcr~ =lil

1+R2+R3+R4

—I+R&+R& —R4

I+R, +R, +R, (28)

Wall energies for boundaries in the x or y direction in the
thermodynamic limit at fixed T were evaluated by On-

sager with the exact result

Setting both J„=Jy(0 and m and n odd, one obtains a
diagonal wall

Thus this approximation amounts to keeping only the two
largest eigenvalues A,p and A,

~
of the transfer matrix. ' We

argue further in Sec. IV that one may write Eq. (23) as a
product of a factar attributable ta a one-dimensianal Ising
array of domain walls and another attributable to the par-
tition function of a single domain. In the critical region,
Eq. (23) becomes

Z =-exps In (In2/2+2G/ir) nr/V —2+(Inn)r /n.

+rt/12+v [ln(2 ~ /ir)lrt+Cs/n']

rbi ] [ I+exp[——sf(r)]], (24)

III. DOMAIN-WALL ENERGIES
IN THE CRITICAL REGION

Now we consider domain-eall energies (surface ten-
sions) in the critical region. These may be defined by the
Onsager method which considers a lattice with antifer-
romagnetic coupling (J&0) and an odd number af layers

where G=1 —3 +5 =0.9159.. . is Catalan's con-
stant, Euler's canstant is CE ——0.5772. . . , bi ——7b/6, and
use has been made of Eqs. (9), (11), (17), and (19) as well as
several related results from Ref. 1. Equation (24) and its
derivatives give the thermodynamics of the Ising model in
the critical region in the two-eigenvalue approximation
(II;= I) to the order we are working —terms through O(1)
m lnZ, O(n) in the total energy U, and O(n ) in the total
specific heat C. The terms in Bp and 8 that vanish in
the two-eigenvalue approximation are displayed in curly
braces in Eqs. (18b) and (18c); these are just the parts af 8
involving the Q, ; which arise from the derivatives of the
m;. The approximatian to the internal energy U is likewise
obtained by setting Q, ;=0 in Eq. (4.13) of Ref. 1.

pp, T(T
P =P.=

0, T)T, (29)

where yp is given in Eq. (7). cr„y has been similarly calcu-
lated by Fisher and Ferdinand who find

Po„z ——21ncsch2E . (30)

We are now in a position to evaluate the surface-tension
expressions in the critical region as a function of the shape
parameter s. Fram Eqs. (12), (14), and (16), we obtain [in
the approximatian II;(r,s)= I]

(m /2)yo
pe—Pno =ln

(m /2)y()1+Ppe

e
—sf(7)

=ln
1+e

—sf (T)
(31)

where f(r) is defined in Eq. (20}. This expression implies
several results of interest. It shows that for fixed r the
domain-wall (free) energy o per spin vanishes as 1/n in the
thermodynamic limit. Since Eq. (31) is also valid at r=0
and f(0) is finite, we see that this slow convergence also
holds at the critical point, with the possible exception of
an oo X n lattice (s = oo ), the case considered by Onsager.
In addition, Eq. (31) implies that the total domain-wall
free energy nor is constant for fixed r. Hence one expects
a significant contribution to the thermodynamics from
domain walls, at least for sufficiently large s. This is to be
contrasted with the situation at fixed T & T„where Eq.
(29) implies a growing total domain-wall energy, hence an
exponentially small free-energy contribution.

Considering Eqs. (27) and (28), we similarly obtain
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e
—sf'(.~)

—P,mrr~= P—,mar =ln
1+e '~(') (32)

where

f'(r) =rr/4 r—+ (1n4/rr)r'+ br'+O(r') . (33)

Comparing Eqs. (31)—(33) shows that the domain-wall en-

ergy is anisotropic at fixed v. ' Further, the x direction
(e„)or diagonal (u„~) walls have considerably larger free
energies than those in the y direction (ir) as s ~ 00. For
instance, when r=0, P,mcr~ is already 2.3 times P, ncr for
s= 2, and the difference grows approximately linearly with
s. Thus, for s & 1,~ one expects arrays of y direction walls
of free energy per spin o to be thermodynamically
favored.

Recall the factorization of the partition function
Z =ZOZ of Eq. (11). The factor Z was shown above,
to excellent approximation, to account for the shape
dependence of the finite-size correction B to the specific
heat in the critical region. Now if one solves Eqs.
(26)—(28) for the R; and substitutes the result in Eq. (1 la),
one has, quite generally,

Z10Z]cr ~

where K =J/k&T as in Eq. (4) and Z& refers to the fac-
tor in parentheses in the second line of Eq. (36). Thus the
free energy F& is

PF,—=lnZ, =N ln(2 coshK) + ln(1+ tanh+lt. ')

=PNf „—P5Fi(n), (37)

where f is the free energy per spin of the infinite system
and 5F& is the finite-length free-energy correction. Note
that 5F& arises from the factor Z] in Eq. (36). Differen-
tiating Eq. (37) gives for the specific heat per spin,

C] /Wkg ——c„+5c, (38)

approximate calculation of the effective number of degrees
of freedom and effective coupling of this array.

The partition function of a one-dimensional Ising model
of X spins with periodic boundary conditions and cou-
pling constant J&0 is simply

Zi(N}=2 (cosh. IC+sinh"E}

=2 cosh K(1+tanh K)

Z ' =[1+exp( fino )+—exp( —Pm a, )

—exp( —Pmcr„„)]/2 . (34)

where

c =K (1—tanh K) (39)

In the present case, m; =1 implies o„=or~ (Ref. 10) (and
e„&&o as s~ao) so that

and

5c=c„[(N—1)(tanh E —tanh E)—2tanh E
Z =1+tanh(Pncr/2) . (35) —tanh 2It —tanh K]/(1+tanh K) . (40)

Hence part of the thermodynamics and, in particular, the
shape dependence of B, is due to domain walls in the y
direction. The two-eigenvalue approximation that we are
using here is reminiscent of the one-dimensional Ising
model. We argue in Sec. IV that Z may indeed be inter-
preted as the finite-length correction factor of a one-
dimensional Ising array of y-direction domain walls.

Ferdinand and Fisher' note that the shape dependence
of ~,„seems to arise from an interplay between the Z; of
Eq. (3) and the cross terms that arise when the partition
function is differentiated to calculate the specific heat. It
follows from our results [Eqs. (10), (1 la), (1 lb), (18), and
(35)] that in the two-eigenvalue approximation this
mathematical origin of the effect is attributable to the
domain-wall energy n o.

IV. FINITE-SIZE CORRECTIONS,
DOMAIN WALLS, AND THE ONE-DIMENSIONAL

ISING MODEL

This section begins by examining the finite-size
behavior of the one-dimensional Ising model. We show, in
particular, that for periodic boundary conditions the tem-
perature T',„ofthe specific-heat peak first decreases then
increases as the number of spins (or length) N~ 00. This
behavior is qualitatively the same as that of ~,„, the peak
temperature of the finite-size correction term B to the
specific heat of the two-dimensional Ising model, as the
lattice shape is varied. Then we show that to very good
approximation the shape-dependent part of B is due to a
term that has the form of the free energy of a one-
dimensional Ising array of domain walls. This provides a
mechanism for the behavior of v,„. We conclude with an

The function C„has a single peak at temperature
T',„=J/k&K, „=0.8335 independent of X.

The correction term 5c& has a more complicated struc-
ture, with both positive and negative extrema 5c~ at tem-
peratures T+,T g T+. As N increases, the peak loca-b b

tions T+ and peak magnitudes ~5c~
~

both decrease ex-b

cept for a relatively small increase in 5c&+ for N(8.
bSince T+ are near or above T',„ for small N, the net ef-

fect on C] is a specific-heat peak temperature T',„ that
first decreases and then increases as the length of the
chain of spin approaches infinity. " This behavior as well
as the decrease in

~

5c+
~

is clearly a result of periodic
boundary conditions, ' which act to strengthen the spin
coupling K by an amount that decreases with N. The peak
temperature Tm» —Tm» of C& is displayed as a function
of N in Fig. 2. What we have seen is that the decrease and
increase of T',„with X is a result of the interplay of a
length-dependent finite-size term due to the factor Z] in
Eq. (36) and a length-independent term due to Z&p.

In Sec. II we showed that the shape (s) dependence of
the peak in the specific-heat correction term B for the
two-dimensional Ising model arises from a similar
mathematical mechanism. In that case B =Bp+B,
where Bp is due to an (essentially) shape-independent fac-
tor Zp in the partition function, and B arises from the
factor Z that does depend significantly on s. As s in-
creases from 1, there is a positive peak in B that moves
to lower r values and B itself decreases, giving rise to a
peak position ~,„vs s that is qualitatively similar to T,„
vs N, as shown in Fig. 2.

In Sec. II we demonstrated that Z may be expressed in
terms of a domain-wall energy. We now go on to show



1472 P, KLEBAN AND G. AKINCI 28

that it is possible to identify Z as the contribution of a
one-dimensional Ising array of domain walls.

First we consider the connection between the finite-size
correction and domain-wall energies. In the one-
dimensional Ising model, we can define a surface-tension
or domain-wall energy cri by the Onsager procedure
described in Sec. IV. This gives

r

1 —tanh~K
cr, =ln

1+tanh K

For K& 0, taking the limit N~ ao gives

Po &

——2 tanh K~O, N~ oo

(41)

(42)

so that the surface tension vanishes in the thermodynamic
limit when the coupling is finite. If one solves Eq. {41)
and substitutes in Eq. (36), the result is

that the factorization introduced in Eq. (44) is reasonable,
at least in one dimension. Of course, one only expects it to
be of physical interest when the domain size lp is of the
order of the correlation length g.

A similar picture may be expected in the critical region
of the two-dimensional Ising model. Here, for s&1, we
assume that the important configurations are composed of
domains of (minimum) length lp (including the width of
one neighboring domain wall) in the x direction and width
n in the y direction, separated by domain walls running in
the y direction. Since, as shown in Sec. IV, x direction (or
diagonal) walls have larger energy than y direction walls
for s& 1, a one-dimensional array of this sort is to be ex-

pected as long as lp&n. In the approximate calculation
given below, lp in fact satisfies this condition.

The partition function, by analogy with Eq. (45), wi11

then be given by
Z& ——1+tanh(po &/2) . (43)

Z=ZD(e /2)2 (cosh K+sinh K)m, (46)

where K' is the coupling between blocks, Zd is the parti-
tion function due to fluctuations in a single domain (of the
minimal size), the factor m allows us to start the first
domain anywhere along the chain, and the factor e ' /2
enforces NI to be independent of K' for large coupling,
when all domains should be aligned. We also assume that
a periodic form is appropriate for the domain-wall part of
the partition function. If we now require that the
domain-wall energy in the original model be preserved in
the block model, i.e., tanh K =tanh'K', it follows from
Eqs. (36), (41), (43), and (44) that

Zd ——(2/m)'/ ( —,
' )N, (lp) . (45)

Hence, aside from some factors independent of coupling,
the partition function of the spins in one block or domain
of length lp is just the partition function of a one-
dimensional Ising model of that length. This indicates

This should be compared with Eq. (35) for the two-
dimensional case,

Z =1+tanh(pno/2) .

Now no. is constant at fixed ~ and s in the thermodynamic
limit. Hence, in the critical region of the two-dimensional
Ising model, the part of the finite-size corrections arising
from Z~ depends on the domain-wall energy in exactly the
same way as the entire finite-size correction in the one-
dimensional case. This correspondence was used in Sec.
III to establish that the dependence of ~ „on s is a
domain-wall effect. It also suggests that the effect is due
to an array of domain walls that can be modeled by a
one-dimensional Ising chain with an effective number of
spins N {that increases with s) and an effective coupling K.
Since the Ising chain transfer matrix is two dimensional,
the accuracy of the two-eigenvalue approximation (see Sec.
III) also supports this picture.

Consider first a one-dimensional Ising model of length
m with periodic boundary conditions divided up into M
blocks or domains of length lp so K=m/lp. If we as-
sume that the assembly of blocks itself acts as a one-
dimensional array, we have

d' (e ' /2)2' (cosh 'K'+sinh'K')m,

(44)

where N=m/lp is the number of possible domains or
walls, K is the domain coupling, and ZD is the partition
function of a single (minimal) two-dimensional domain.
Now, in the critical region,

Z =Zp(1+ tanhPn cr/2), (47)

where we have employed Eqs. (11) and (35). Requiring
that the wall energy given by Eqs. (46) and (47) be the
same,

tanh K =tanhpncr/2

results in

(48)

m/2 m/2
g = —, f g(x)x dx I g(x}dx . (50)

In Eq. (50), g(x) is the two-spin correlation function, we
integrate only to m/2 to avoid periodic boundary condi-
tion effects, and the factor —,

' ensures that Eq. (50) reduces
to the usual formula („=1/ln(A. p/A, ]) for sc ca where kp
and A,

&
are the two largest eigenvalues of the transfer ma-

ZD ——(2/m)'r [2/(1+tanh'r pno/2)]Zpr . (49)

Explicit expressions for tanhpncr/2 and Zp on terms of s
and ~ in the two-eigenvalue approximations can be ob-
tained from Eqs. (11), (19), (20), (24), and (31). It is im-
mediately clear from Eq. (48) that since Pnois const'ant
and finite as n ~ oo for fixed s and v., N and K must also
remain fixed (except in the case N, K~ao, Nae ). But
in order to find N and K separately as functions of s and
~, another equation independent of Eq. (48) is necessary.
More generally, to fully establish the one-dimensional
domain-wa11 model that has been assumed here, one ap-
parently needs a detailed microscopic theory of domains
and domain walls in the critical region. That is a difficult
problem beyond the scope of this paper. In the following
we confine ourselves to an approximate calculation of
N =m/lp that gives reasonable results, and then present,
in Sec. V, some further support of the model in the form
of evidence that it extends naturally into the fixed T & T,
regime.

In the critical region we expect lp to be proportional to
g, the correlation length in the x direction. Since the
m )& n lattice is finite in this direction, we use the formula
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(2
m /2g„

sinh(m /2g„)
(51)

In the critical region we have

trix. When only two eigenvalues are important (e.g., for
the one-dimensional Ising model or the two-dimensional
case with m; =1—see Sec. II), Eq. (50) yields

dynamics must be exponentially small, as is evident from
Eqs. (11}and (34}. For an m X n lattice with s sufficiently
larger than 1, walls in the y direction will dominate since
they will be shartest and thus have the smallest total ener-

gy. In this case one will again have a one-dimensional ar-
ray of domain walls, but the average distance 10 between
walls (average domain length) will grow exponentially ac-
cording to '

g„=1/ln(Ap/A, , ) = n /f (r), (52) (54)

N =m/(=sf 1— sf /2
sinh(sf /2)

' —1/2

(53)

where f(r) is given by Eq. (20). Thus the correlation
length g diverges proportionally to n in the thermodynam-
ic limit. An approximate measure of the number of possi-
ble domains N or the number of possible domain walls is
therefore

B(r,s) ~ —ADln~+A]+0(e '), (55)

Hence, as in the critical region, the walls make up at least
part af the finite-size correction to the thermodynamics.
(Note that the free energy converges expanentially for
T & T„so the wall contribution cannot be dominated by
some less rapidly vanishing term. }

Now Barber has shown, by an analysis of the
~

r
~

~ ao

behavior of the critical region correction terms, that

Hence, as expected, N is constant for fixed s and v as
n~oo, and Eq. (48) implies that the coupling K is con-
stant as well.

A typical value of f for the range of r of interest here is

f=0.7. For s near 1, sf /2 is thus sufficiently small that
we may expand the sinh in Eq. (53) giving N
=2v 6+0 (s ). Equation (48) then results in
tanhÃ=e ' . Hence, in this limit, , N is of the order
of 1 and the coupling depends on both s and v. Of course,
our evaluation of N (via lp=() is, at best, only semiquan-
titatively correct. The fact that it indicates N is close to 1

as s ~1 may therefore be taken as evidence in favor of the
general validity of the one-dimensional model, since one
does not expect more than at most a few domains for
m =n.

For increasing values of s, one finds N growing mano-
tonically, with limiting behavior N =sf and tanhK =1/e.
This constant coupling regime does not occur, for typical

f values, until s =—10(N =—8), which is beyond the range of
s values for which the shape dependence of the finite-size
correction term B is an important effect (cf. Fig. 2). It is
also of interest to note that for large s, /In~1/f &1,
while for s~1, (/n decreases to a minimum of 1/2v 6.
However, already for s=2 one has (In=0 4 So the .as.-

sumption that the correlation length in the y direction is n

or larger is reasonable, since as pointed out abave this
quantity should exceed the x-direction correlation length g
fors &1.

One may also attempt to evaluate ZD using Eqs. (49),
(51), and (52). We believe there are too many approxima-
tions in this treatment [especially Eq. (51)] for the detailed
result to be meaningful. It is, however, perhaps warth
noting that the s dependence of N from Eq. (53} is such
that ZD depends only weakly on s and approaches a con-
stant as s~00. A domain free energy more or less in-
dependent of s is what one would expect in an exact
theory.

V. FINITE-SIZE CORRECTIONS FOR T & T,

In the two-dimensional Ising model for T g T„domain
walls will still be present. However, here the wall energy
per spin o (or o„or o~) remains finite in the therma-
dynamic limit. Hence its contribution to the thermo-

where

A i
—— Ap[rr/4—+ln(E, /v 2)] . (56)

v ~n(T —T, ) ~no, (58)

for T near T, [see Eqs. (1), (14), and (29)]. These remarks
suggest that, at least for s sufficiently greater than 1, a
one-dimensional array of domain walls contributes to the
partition function both for T & T, and in the critical re-
gion, and these contributions merge smoothly with each
other as one passes from the fixed-~ to fixed-T regime.

Note added

We believe there is a minar quantitative correction
necessary to a few of the formulas in Ref. 1. In particular,
the expressions for X0 and 200 given should be divided by
2. Differentiating the partition function to find the inter-
nal energy and specific heat shaws that this correction also
applies to the definitions of Xi, Xi, and Qq ~. Making
these changes does not affect the qualitative results of Ref.
1 (or this work) in any way. The only differences are
small and quantitative; e.g., the minimum value of ~,„is
at s approximately 7 rather than 6.

All the results reported here, including error estimates
and figures, reflect this change. This alteration reduces

Thus the shape dependence of the leading specific-heat
correction term vanishes [i.e., B(r,s)~, „B(r) in Eq.
(18)], so that B =0 in the two-eigenvalue approximation
as one maves out of the critical region. Further, substitut-
ing Eq. (55) in Eq. (2) gives

C/ksmn =Apln
~

(T —T, )/T,
~

'+A i +0 (1), (57)

which is the correct form for the specific heat per spin in
the thermodynamic limit for fixed T near T, . Thus the
large-~ behavior of B merges smoothly with the fixed-T
specific heat. Presumably, the shape dependence of B van-
ishes in this limit since it is due to damain walls which
have large energies and make a lower-order (exponentially
vanishing) cantribution to the thermodynamics. This sug-
gests that at least part of the O(e ') correction term in
Eq. (55) is due to domain walls and therefore depends on
shape. Note that
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the size of the r term in Bo(r) so that it depends less

strongly on r near its maximum. This makes r,„(s), the
position of the peak in 8 (r,s), more sensitive to the asym-

metries in 8 (r,s},which are themselves slightly increased
in magnitude. One result is that the value of ~,„(1)given

in Ref. 1, from which the temperature of the specific-heat
maximum in an m )&m system can be deduced, is about
33% too small. This suggests that the convergence of the
specific-heat peak to r,„(1) is slower than what is im-

plied by Fig. 3 of Ref. 1 [see also D. P. Landau, Phys.
Rev. B 13, 2997 (1976}]. Another possibility is that there
are further corrections necessary in the parts of 8(~,s)
that vanish in the two-eigenvalue approximation, which

could be important for s=1. We do not believe the latter
to be the case, but ruling it out definitely would require
some very tedious calculations.

We have very recently become aware of the work of A.

D. Bruce [J. Phys. C 14, 3667 (1981)) on block spin distri-
butions in Ising models. The mechanisms determining the
fixed-point distribution in two dimensions suggested in
this work bear some striking similarities with our con-
clusions, especially the proposal that one-dimensional
behavior is important. Note that our results imply this
fixed-point distribution must be strongly shape dependent,
and approach a Gaussian as s increases.
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