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The effective interaction between a pair of He atoms in liquid He is calculated within the
Galitskii-Feynman (GF) T-matrix approximation. With the use of this T matrix, the single-particle
energy spectrum e(k) is calculated in the Hartree-Fock (HF) limit. This continuous e(k) is used as
an input spectrum for the T matrix (for both initial and intermediate states), and e(k) and the T ma-
trix I are evaluated iteratively until consistent. We believe this is the first fully iterative calculation
using a continuous e(k) in He. We find (a) that the total E=—3.7 K at the observed saturated-
vapor-pressure volume is much lower than values (E= —1.0 K) found previously with the use of a
spectrum having a gap at the Fermi surface k =kF, (b) that any continuous e(k) in I leads generally
to a much lower E [and e(k)] than one having a gap at kr, (c) that the scattering to intermediate hole
states included in the GF T matrix does not change I, e(k), or E significantly from the more usual
Brueckner-Bethe-Goldstone T matrix for which only scattering to intermediate particle states is al-
lowed, (d) that the rearrangement contributions to e(k) are negligible with the use of the GF T ma-
trix making the dynamical and statistical e(k) the same in the T-matrix approximation, (e) that in
the HF approximation, m*(k) =0.9 largely independent of k, and (f) that, when the energy depen-
dence of the self-energy is included, rn*(k, E) is enhanced at k =kF and somewhat above k~, espe-
cially at smaller volumes.

I. INTRODUCTION

The discovery of superfIuid phases, ' the measurement
of elementary excitations by neutron scattering, the possi-
bility of highly polarized He, and the recent controversy
over the effective mass have sparked a renewed in-
terest ' in the interaction between atoms in liquid He.
This paper is devoted to a microscopic study of this in-
teraction.

In Landau's renowned theory' ' of Fermi liquids, the
effective interaction between quasiparticles is parame-
trized. The values of the parameters are obtained from
fits to experiment. His theory, the notion of quasiparti-
cles, and the form of the interaction between them have all
found a solid foundation in microscopic, many-body
theory. ' However, an explicit calculation of the effective
interaction between quasiparticles from first principles has
proved very complicated. Recent variational calcula-
tions' have been more successful in predicting the
ground-state energy (finding E= —2.2 K compared with
the observed E = —2.5 K). Some early studies of the ef-
fective interaction we have found particularly illuminating
are the following: Abrikosov and Khalatnikov, ' Hone, '

Emery and Sessler, ' Emery, Burkhardt„' and more re-
cently Babu and Brown.

The pioneering work of Brueckner and Gammel
stands out as the first microscopic calculation of the prop-
erties of He beginning with a realistic potential. They
used Hartree-Pock (HF) theory coupled with a'E-matrix
treatment of the pair interaction. They evaluated the K
matrix and the single-particle energy (SPE) spectrum e(k)
self-consistently for wave vectors k up to the Fermi wave
vector kF. For k &k+, they approximated the e(k) by

free-particle energies. The spectrum, therefore, had a gap
at k =k~, which excludes the possibilities of zeros in the
energy denominator of the K matrix and ensures that K is
real. The K matrix formulated using Rayleigh-
Schrodinger perturbation theory by Brueckner" and by
Bethe and Goldstone implicitly requires a gap in e(k) so
that K is real. Brueckner and Gammel (BG) obtained
semiquantitative results and a minimum total energy
E = —0.96 K at a volume -25%%uo greater than the ob-
served volume.

gstgaard, in a series of careful papers, calculated
many properties of He using the BG E-matrix theory and
a model (reference) input SPE spectrum. As in the
Brueckner and Gammel calculation, this model spectrum
had a gap at k =kF with the intermediate-state spectrum
lying above the initial-state spectrum. He obtained, in-
cluding three-body terms, a minimum total energy [Ref.
26(c)] E = —1.0 K at a volume —10%%uo greater than the
observed volume. Particularly, including rearrangement
terms, he obtained [Ref. 26(a)] reasonable values for the
Landau parameters.

Bishop, Ghassib, Irvine, and Strayer have made ex-
tensive calculations of the Galitskii-Feynman (GF) T
matrix using an input SPE spectrum approximated by
free-particle energies. The GF T matrix differs from the
Brueckner-Bethe-Goldstone (BBG) K matrix by including
scattering to intermediate hole states as well as to inter-
mediate particle states. Also, the GF, T matrix is derived
using Green-function methods, and it is more natural to
use a continuous SPE energy spectrum, such as free-
particles energies, e(k)=A' k /2m, having no gap. Ghas-
sib et a/. found an interesting singularity in the L=0
component of this T matrix at negative, off-shell energies.
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Here we apply to He a textbook HF theory coupled
with the GF T matrix. A BBG-type approximation, in
which scattering to particle states only is allowed, is also
evaluated; but in each case a continuous SPE spectrum is
used. The continuous HF single-particle energy spectrum
is calculated self-consistently using the T matrix. Since
the initial and intermediate states have the same e(k),
zeros occur in the energy denominator. The GF formula-
tion includes an explicit path of integration around the
zeros so that the resulting T matrix is always integrable
and well defined, although complex.

A central aim here is to compare the effective interac-
tion and SPE spectrum obtained using a continuous spec-
trum with those obtained by Brueckner and Gammel
and by gstgaard using spectra having a gap. We find
substantially increased binding for a continuous spectrum,
largely independent of the form of the continuous spec-
trum. A second aim is to examine how the GF T matrix,
calculated by Ghassib et al. , changes when it and the
SPE spectrum are calculated iteratively until consistent.
Briefly, we find that the T matrix changes little, but that
the SPE spectrum lies —12—15 K below the free-particle
spectrum. We also wish to compare the GF and BG T
matrices. Using the GF T matrix we calculate several
properties of liquid He in the HF approximation.

The T matrix describes only part of the total effective
interaction. ' ' ' lt takes account of the repeated
scattering of a pair of He atoms. This component of the
pair interaction is dominated by the repulsive core of the
bare interatomic pair potential and is often denoted the
direct part of the interaction. Another purpose here is to
examine how well the direct part represents the whole in-
teraction. This we do by evaluating the Landau parame-
ters and effective mass. Also at high-momentum transfers
the direct part should dominate. A complete calculation
of the T matrix for high-momentum transfers might
represent the whole interaction well enough that it could
be used in the calculation of the dynamic form factor
S(q,E) of liquid He for comparison with neutron scatter-
ing measurements.

In Secs. II and III we outline the HF T-matrix theory
and discuss the equations actually evaluated here. In Sec.
IV, we present T-matrix values obtained using model and
free-particle input spectrum. The self-consistent SPE and
T matrices are presented in Sec. V. The results are dis-
cussed in Sec. VI.

II. BACKGROUND THEGRY

We begin with X He atoms of mass M (=3 amu) in
volume A (density n =GO ' ——%/0). The Hamiltonian is

Uo(x)=e A'e- "-~"

D 2.709+3a

(r+a ) (r+a )

with e= 10.371 K, A'=44. 62& 10, o; =4.390 A
D=972.5, P=3.746X10 A, and a=0.675 A. Since
gstgaard and Ghassib et al. use the Yntema-
Schneider (YS) potential, we have used this potential in
some specific comparisons with their results. We have
also used the HFDHE2 potential of Aziz et al. in one
specific case to check the dependence of the effective in-
teraction I on the potential. We find essentially no differ-
ence in I for the HFDHE2 and Beck potentials. The
HFDHE2 potential is regarded as the most accurate avail-
able except possibly for the extreme short-range limit.

In the HF theory we begin by ignoring Uo entirely in H.
Each particle then has a well-defined momentum p. To
obtain the HF approximation we include the two terms
(direct and exchange) that appear as first-order corrections
for Uo in the one-particle Green function 61. To obtain
the T-matrix approximation, we include, in addition, all
those higher-order corrections to 61 which correspond to
interactions between pairs of He atoms only. With this
sum of repeated pair interaction terms, the HF form for
61 is retained but Uo is replaced by the Galitskii-
Feynman effective interaction I yielding the Galitskii-
Feynman-Hartree-Fock (GFHF) approximation. The
GFHF approximation is derived in several texts but we
refer specifically to Fetter and Walecka where the equa-
tions we solve are derived explicitly.

The ground-state energy in the GFHF approximation
1s

F. = g n(1)P1
2M

+—g [1 (12;12)—6 I (21;12)]n (1)n (2),1

1,2

where

n (1)=(e ' +1)
is the Fermi function, P=(kzT) ', and p is the chemical
potential. The sums 1 and 2 run over the free-particle
momentum states and both spin states. I {34;12)is the ef-
fective interaction (scattering amplitude) between a pair of
otherwise free particles having initial momentum p1 and
p2 before scattering arid final momentum p3 and p4 after
scattering:

I (34;12)=Uo(34;12)

+ & g U (34;56)G "(56;12)I(56;12) .
&5»6

Here
(3)

Here Uo is a central, pairwise potential. Three-body and
higher-order interactions are neglected and believed to be
small. (They contribute ' less than 2% to the ground-state
energy of liquid He, for example. ) For Uo we use the
Beck potential

(1—n5)(1 —n, )

E12 —E5 —~6+ l T/

n5n6

E12 ~5 ~6 ~ 9
(4)
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is the Fourier transform of the two-particle Green func-
tion in the HF approximation,

G2 "(56,t) =——( Ta, (t)a6(t)a 6(0)a, (0) )HF .

The e are the HF single-particle energies. For the on-
energy-shell case needed in (2), E&2 is set at the incoming
energy of the interacting pair,

EI2 =~&+&2 ~

In the Galitskii-Feynmann, Green-function formula-
tion, the initial states before scattering [e(pi ) and e(p2)],
the intermediate states [e(p5) and e(p6)], and the final
states after scattering [e(p3) and e'(p4)] of the interacting
pair are all given by the same continuous spectrum e(p).
This differs, for example, from the Brueckner-Gammel
calculation in which the initial- and intermediate-state
spectra differ with a gap in the spectrum at I'F. Lejeune
and Mahaux argue that a continuous e(p) is more con-
sistent for determining single-particle properties [such as
e(p) and the effective mass] while Brandow3s has com-
pared the convergence of E in the two cases.

Once a continuous e(p) is selected there remain many
possible choices for its form. We define the SPE spectrum
as

ment of state occupation in the fluid when a particle is re-
moved (or added). It simulates to some extent the
cooperative nature of the fluid and, therefore, strictly goes
beyond the HF approximation. Since we hope eventually
to use the present results in the long-wave limit, where
collective effects are important, we felt it appropriate to
include Xz at this stage. However, it is an arguable philo-
sophical point whether Xz should be included. In any
event, for the Galitskii-Feynman I where the full Gz" is
retained, the X~ turns out to be numerically small.

Equations (3), (4), and (6) make up the GFHF approxi-
mation and clearly must be solved iteratively until con-
sistent. The first term of Gz" in (4) corresponds to allow-
ing scattering of the pair to intermediate particle states p5
and p6 generally above the Fermi momentum pF. The
second term in (4) is interpreted as scattering to intermedi-
ate hole states generally within the Fermi sea. In the
Galitskii-Feynman (GF) case we retain the full Gz" (parti-
cle and hole states).

If we keep only the first term in Gq" (intermediate par-
ticle states only) we obtain the Brueckner-Bethe-
Goldstone ' (BBG) case. The present equations (2), (3),
and (6) differ from the original BBG derivation only in
the use of a continuous e(k) and the resulting imaginary
part to I .

pl
«p], ~i) = +&I(1)+&g(1),

2M

where

(6) III. TECHNICALITIES

A. Effective interaction

and

Xi(1)= —g [I (12;12)—5, ,1 (21;12)]n (2)
1 In this section we reduce I to the form evaluated.

Firstly, since Uo is a central, pairwise potential, its Fourier
transform Uo(34, 12) depends only upon the momentum
transfer Aq = p3 —p I,

X (1)= g [I (32;32)—5 I (23;32)]
2Q Bn (1)

)&n (2)n (3) .

This SPE can be obtained as a functional derivative of the
HF E, e(1)=5E/5n (1), and corresponds to Landau's defi-
nition' ' of e. Here, however, we retain both the real and
imaginary parts of I so X& is complex, which strictly lies
outside the Landau definition. The present X& is also an
approximation to the full self-energy XI appearing in the
HF single-particle Green function G

&
"(p,co):

—l 2 HFXI(l,col) = g f GI (2,cop)
2n

Uo{34,12)= UO(3 —1) .

Secondly, we assume the center of mass momentum, I', is
conserved in all scatterings,

P 1+P2 P5+ P6 P3+ P4 '

The sums over pz and p6 in (3) are therefore not indepen-
dent, and

I (34;12)=U (3—1)

+—g U (3—5)G (56;12)1 (56;12),
5

with 6=P —5. We then introduce the initial relative
momentum

&k=p= 2(pI —p2&

the final relative momentum

X [I (12;12)—5, ,I (21;12)] . (9)
&k '= p '= —'(p3 —p4&

and the intermediate relative momentum
In XI(1,col), the I depends on EI2 ——col+coz and is energy
dependent. If we approximate I in (9) by its on energy-
shell value (col ——El, cop=e'2) the integration over co2 in (9)
leads directly to (7). The resulting XI(1,ei) =—XI(1) then
depends only on momentum pl. The Xz is called the re-
arrangement energy and takes account of the rearrange-

&k =p;= 2(p5 —p6&

in terms of which p3 —p] ——p
' —p and p3 p5 —p

' —p;,
so that
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r(p ';p, P) = U, (p ' —p)

+ g Uo{p —p )G2 (p p P)l (p p

To evaluate r, we introduce an effective wave function in
the momentum representation,

X(p ', p, P) =(2~)'~(p ' —p)

+G2 (p ';p, P)—g Uo(p
' —p;)X(p;;p, ),

&c

in terms of which

I (p ';p, P) =—g Uo{ p
' —p;)X(p;; p, P) .0

~l

We solve for X in coordinate space defining (haik = p)

d k'
XE(x;k,P)= f e'" '"X~(k';k, P),

(2m)

giving

X~(x;k,P)=e'" "+f d y f e
(2m. )'

x 6,""(k,;k, P)

x Uo(y)XE(y; k, p)

I {k ';k, P)= f d x e '" "Uo(x)X~(x;k, P) .

In relative momentum,

G "(k;;k,P)=
D+ig D —ig

B. Angle averaging

For P&0, 62 " depends upon the angle a between k;
and P. Before g'E can be expanded in partial waves, this
dependence must be removed. To do this we simply ap-
proximate each Q by a Q averaged over the angle a be-

tween k; over P (p =cosa),

Q(k;,P) = —, f dp Q(k;;P,p) .

%'e also approximate e in n (e) by a free-particle spectrum
having an m* given by the calculated m* at eF. At low T
this should be valid since e near eF only is important in
n (e). The Q have been calculated by Bishop et al. ,

2s

Qp(k;, P)=, [1—exp[ 2P'(P—l4+k; p')]—}P'Pk;

xI (k, ,P),

QH(k;, P)=, [exp[2P'(P l4+ k; p, ')]—1—]P'Pk;

xL (k;,P),

where

cosh {—,
' P'[( ,' P +k') ——p'] ]I (k;,P)=ln

cosh[ —,
' P'[( ,

' P —k')2 —p'] J—

and 13'=(flA' /2m)(m') ' and p'=p(R /2m) '(m*)
are reduced temperatures and chemical potentials. For
P&0 an angle averaging of the index in e(P/2+ k;) is also
required, for which we used

'2
P2—+k; = +k+ kP. (14)

For P=O,

Q (k;)=(1+e ' "
)

where P'(k'
QH(k;)=(e ' " +1)—'. (1S)

Qp(k, P)= 1 —n + k. 1 —n
p——k.

l

and

p ~ p
QH(k;, P)=n —+k; n ——k;

p +
D=@ —+k +e

2
P——k
2

p—e —+kg

are the particle- and hole-state Fermi exclusion operators,
respectively, and

r

We checked the above approximations by comparing
P=O with finite-P results and, in the case of (14), general
energy spectrum cases against free-particle spectrum re-
sults where angle averaging is not needed, since P cancels
between the initial and intermediate states in D. We found
(14) was a good approximation in G2 . Parenthetically,
we did, however, find (14) was a poor approximation for
indices such as k+ q appearing in the zero-order density-
density response function where e(k+ q) —e(k) is re-
quired.

C. Partial waves

r

p—e ——k l (12)
With the above angle averages we expand in partial

waves,

is the energy denominator. For the off-energy-shell case,
e( —,P+ k) and e( —,P —k) are replaced by an arbitrary en-

ergy E and the subscript E on P reminds us of this possi-
bility.

+ uL(kx)
X~(x;k,P)= g(2L+1)i PI (k x)

L kx

IL (kx)e+'"'" = Q(2L+1)i PL(k x)
L kx
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where following pstgaard, jL ——IL/kx is a half-integral-
order Bessel function and uL is the Lth-order wave func-
tion we seek.

The equation for uL is

ui (kx) =II (kx)+ f dy yL {x,y) Uo(y)ul (kx),

They are the same, when transformed into the momentum
representation, as those solved by Ghassib et al. if the
e{k) in G2" of (11) are restricted to free-particle energies.

We express our results for the diagonal I (k;k, P) in
terms of the spin-symmetric and spin-antisymmetric com-
ponents

where

yi (x,y) =—f dk;II (k;x)II (k;y)G2 "(E;k;,P) .

A similar expansion of I gives

I (k ';k, P)= g(2L+ 1)P {k '.k)I (k', k,P),
L

(17)

(18)

I'(k k P) = —'(I'"+I")= —,
' (3ao+a, ),

I'(k;k, P) = —,
' (I'"—I ")= —,

'
(ao —a, ),

where

a (k;k, P) = g (2L + 1)I (k;k,P),
L

odd

a, (k;k, P) = g (2L +1)I I (k;k, P) .
L

(21)

(22)

where the Lth partial wave is

I (k';k, P)=, f dx I (k'x)U (x)u (kx) . (20)kk' 0

Equations (17), (18), and (20) are exactly those solved by
gstgaard, except that the 62" in (11) is more general.

I

In terms of I'(k;k, P) the SPE spectrum we use in G2" is,
at T=O K (Appendix),

p2
E(k) = +Xi(k)+X@(k),

2m

where

(k~ —k& )/2 4 (kF+kl)/2 kF2 4k2 k21

dk k2I ~+
2 0 (,kF —k) )/2 4kk1

k1 &kF

Xi(k, )= '

4 I kF+kl I
/2 kF 4k k1

k1& kF

(24)

and XR (k i ) is given by (A6).
The solution of (17)—(20) is straightforward except for

yL(x,y) where two problems arise: (1) IL(k;x) is a long-
range function of k;x and (2) the zeros in D must be treat-
ed with care. We handled (1), following estgaard, by
adding and subtracting the free-particle yl. (x,y) [Qp ——1,
e(k) =A' k /2m], which may be calculated exactly in both
the scattering (E&0) and bound (E&0) cases. The range
of numerical integration can then be short {0—-kF). In
the second term of Gz no problem arises since QH falls
off rapidly for k; & kF. The zeros in D always remain
even for complex e(k) since both the real and imaginary
parts of D cancel when k; =k. [In most other examples of
this type, e.g. , the density-density response function, the
zeros disappear when e(k) has an imaginary part. ] The
zeros were handled by expanding yL in a Taylor's series
about its value where the zero occurs and integrating over
this region analytically as directed by the sign of +i g. We
also found it important to use a complex inversion routine
to invert (17) to ensure convergence of the inversion.

I

face. The I presented then have the same dimensionless
"units" as Landau parameters, i.e.,

dnI r (dimensionless)= I L dE' pF

0
where, in units of (KA )

dn m'kF
=0.0153,

mA

using m =3.1.

IV. MODEL SPECTRUM RESULTS

A. Qstgaard's model spectrum

As a check, we begin by reproducing the I calculated
by Sstgaard. He retained the first term of Gq" in (11)
only, giving

GO P

6( 1 ) +E'(2) —E(5)—6'(6)
(25)

D. Units
0

Throughout, we use e in K and k in A ' so that I em-
erges in units of KA . For ready comparison of I" with
Landau parameters' ' we multiply I in K A by the ob-
served density of states per unit volume at the Fermi sur-

eo(I)=&0+, ki ki ("F
2Mm p

(26)

He represented the initial-state energies e1 and e2 by a
model (reference) spectrum of the form, e.g.,
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and the intermediate-state energies e5 and e6 by free-
particle energies, e.g. ,

Ak5
g,.(5)=, ki & k~ .

2M
(27)

The Qp guarantees that intermediate-state labels k~ and
k6 were always greater than or equal to kz. Various
values of the parameters Ao and mo were selected but they
were always chosen so that e&+ez(0. Since the e5+e&
are always greater than or equal to zero the denominator
in G2 is always negative and never vanishes. There is
therefore no need to introduce a small imaginary part in
G2 and the resulting I is also purely real.

Substituting (26) and (27) into (25) and introducing rela-
tive momenta [as in (12)] G~ becomes

I I

—J5STGAA

FREE

C(k) 4—
(K)

I I

I I

0.8
k(A ')

— INiTIAL, Eo'
I I

0.4

ATE

0 ~
1

I I

0 P
G2 ———

where

(28) FIG. 1. gstgaard's model SPE spectrum showing the initial-

(ep) and intermediate- (e;) state energies. The dots are the re-
arrangement energies X~ calculated here using this spectrum.

k
y =2bkF—

mo

M 0 P
(

~ ]
)

kF 4kF

(29)

gstgaard's model spectra for eo and e; are shown in Fig. 1

for 6=0.4 and mo ——2.5, where the gap between eo and e;
at k =kF is displayed.

The effective interaction I we obtain here using
gstgaard's model spectrum for 6=0.4, mo ——2.5, P=O,
and the Yntema-Schneider potential is displayed in
Table I. These agree with the values quoted by
gstgaard. In a later paper and using different values of
6, Qstgaard quotes values of the L=O component I 0,
-20% less than we found; otherwise all other components
agreed.

We note here that the I' obtained using gstgaard's
spectrum is -2—3 times smaller (and I '-2 times larger)
than that obtained using the free-particle or a self-
consistent energy spectrum (compare Tables I and II). We
attribute this difference to the gap between eo and e; at kz.

The I ' is also very sensitive to changes in 4 and m 0 since
this changes the gap size at k =kF.

The I ' in Table I, when substituted in (7), gives an ener-

gy spectrum that agrees well with (26) for mo ——2.5 and
b, =3.1 at kF ——0.78 [Refs. 26(c)]. Thus approximate self-
consistency for the input initial state and output spectrum
is possible.

B. Rearrangement energies

gstgaard's spectrum provides a convenient and simple
form to investigate the rearrangement energy. From the
Appendix

(}I '(x)&R(I)=
2 j dxx' (1 ——,'x+ —,'x'),

ti in{1)/X

(30)

where x =k/kF. The I' depends upon n(1) via the ex-
clusion factors QP

—[1 n{5)][1—n(6)] and QH-
=n (5)n (6) when k5 and k6 pass through k, . If we
change n in the region of ki this will change the form of

rak /kF Ip

TABLE I. Angular momentum components (I.=0—5) of the diagonal T matrix calculated using the energy denominator (28) pro-
posed by pstgaard (Ref. 26) for 6=0.4 and mp ——2. 5, c.m. P=O, and the Yntema-Schneider potential. The r appear multiplied by
the observed density of states per unit volume at eF[{dn /de'), , =3/{2IIoeF) =0.0153 {KA ) '] and are therefore in the unitless "di-

0 0

mensions" of the Landau F parameters. [To convert to KA', divide by (dn/de), , ] The 'He is at IIO ——61.129 A' per particle or
0

kF ——0.785 A '. The values here agree with those quoted in Table III of Q)stgaard [Ref. 26(e)] [divide I here by
{A /M}{dn/de}, , {fi /M =16.169 K A ) to obtain I" in units of A and multiply the odd L by 3]. The 1' and I" are the spin-

F
symmetric and spin-asymmetric interactions defined in (21).

k (A ') I2 r'
0.1

0.2
0.3
0.4
0,5

0.6
0.7
0.8
0.9

0.127
0.254
0.382
0.509
0.636
0.763
0.891
1.108
1.145

4.03
7.11

10.60
13.45
15.15
15.57
14.48
13.15
10.96

—1.17
—3.66
—5.67
—6.19
—5.04
—2.46

1.05
4.81
8.18

—0.033
—0.405
—1.39
—2.78
—4.24
—5.45
—6.08
—5.83
—4.59

0
—0.028
—0.204
—0.640
—1.299
—2.133
—3.124
—3.909
—5.077

0
—0.002
—0.024
—0.134
—0.369
—0.693
—1.081
—1.547
—2.042

0
0

—0.002
—0.024
—0.103
—0.257
—0.454
—0.684
—0.979

0.243
—2.18
—4.22
—5.01
—4.40
—2.56

0.04
2.84
5.35

—2.58
—5.19
—7.53
—8.69
—8.50
—7.13
—5.09
—2.91
—1.09
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andTABLE II. Rearrangernent energy X&(k) vs k evaluated
using gstgaard's model spectrum (mo ——2. 5 and 5=0.21), c.m.
P =0, and the Yntema-Schneider potential. At k=0.8 A ', Xz
was evaluated in two ways (see text).

k (A ')

51 s kF I (kF+QkF) I (kF)
5[n (kF )/N] 3 AkF

The derivative was evaluated as a finite difference by cal-
culating I' at different values of kF. The resulting value
is Xz(kF)=3.04 K at k~ ——0.78 A ', which agrees w'ell

with the values listed in Table II. Xz is sensitive to
changes in the energy denominator. For mo ——2.5 and
E=O.S, Xz(kz) increased by 2. With the use of a free-
particle spectrum, ReX&(kz)=2.58 K, and for the fully
iterated spectrum ReX~(kF) =1.78 K.

The above X~ were all obtained using the BBG approxi-
mation (first term of Gz only retained). For the GF case,
&z(kF) was always much smaller; ReXz(kF ) = —0.6 K at
II=36.83 cm /mole, ReXz(kF)=0. 3 K at 0=25.8
cm /mole, and ReX~(kF) =0 at 0=45 cm /mole using
the fully iterated SPE spectrum in I . This reflects a can-
cellation in the changes in the two terms of Gq" to
changes in n {1).We could not find any reason in princi-
ple why Xz —=0 in the GF case, but at all volumes X~ was
small and nearly negligible. In this sense the GF method
is simpler and makes the definitions of e from E
(e=5E/6n), and as the energy in the single-particle Green
function, more consistent. On the basis of these results we
evaluated X~(kF) only and assumed, at each stage of the
iteration, that X~(k~) obeyed (32) (both real and ima-
ginary parts).

XR(k) (K)

0.1

0.2
0.3
0.4
0.5
0.6
0.8
(0.8)
1.0
1.1
1.2
1.3

6.35
6.24
4.77
6.02
5.19
3.52
3.02

(3.04)
2.08
1.27
1.04
0.64

Qp and QH. At T=O K, n(1) is unity for k~ (kF and zero
thereafter.

The X~ was evaluated in two ways:
(1) Following Brueckner and Goldman the occupation

n was increased from unity by a small amount 5 around
k& over a width y in k space. The resulting change in the
number of particles at radius k] is

6n (1)= 4m.k] 5y
V

(4~ ) C. Free-particle spectrum

Ghassib and co-workers ' and Bishop et al. have
evaluated the GF T matrix (3) using free-particle input en-
ergies. Particularly, they investigated carefully 1 (k, kP;E)
off the energy shell for several values of P, temperature,
and liquid density. Off the energy shell

compared with a total of

The effective interaction r'(6y) was computed with this
increased occupation and the derivative in the large
parentheses in (30) is evaluated as

26I' I'(5y) —I' kF kF
(31)

5[n (1)/N] 5y 3 k,
0

For y=0.03 A ' and 6=0.05 (in the actual numerical
work Q~ and QH were changed by 5) this procedure yield-
ed consistent results which are listed in Table II. These
numerical Xz (k) approximately obey the relations

E =g]+g2 ——E„]+P /4M

2
k

kF
2

kF
Xg (kF)

k &kFXg(kF) 2—

X~(k)= ' (32)

k&kp .

The relation for k & k~ was proposed by gstgaard on the
basis of his numerical work. Brueckner and Goldman
also found Xz (0)=2K~ (kz), consistent with (32).

(2) For the special case k& ——kI;, we may increase n (1)
by simply increasing kz, by, for example, an amount 4k+.
Then

5n «F) 1 ax
N X Bk k

is taken as a variable. Since for free-particle energies the
center of momentum (c.m. ) energy P /4M cancels between
e&+@2 and @3+@4, E„~ is the natural energy variable to
use. For negative E„]Ghassib et al. find a simple pole
in the L=O component I o(k;k, P,E), independent of k,
which at T =P=O and kF-O. 785 occurs at E„[———0. 16
A = —2.6 K.

We confirm the existence of this singularity. In Fig. 2
we show I o(k;k, P,E) calculated here using the Beck po-
tential for P =T =0 and negative E„[. I o clearly has a
pole when free-particle energies are used, at E„[——1.7 K
for the Beck potential. The pole is, however, softened into
a "hump" at a somewhat higher E„] when the self-
consistent (complex) e(k), calculated in the following sec-
tion, is used for the intermediate states. The pole seems,
therefore, to be a property of the free-particle spectrum.
The origin of this singularity numerically is not clear.
Bishop et al. discuss the physical implications of the
singularity in some detail. As noted by Bishop et al. the
BBG r, does not have a pole. For E„,&0, I is purely
1eal.

For E„~~0, r is complex, and in analogy with scatter-
ing in free space (Qp ——QH

——1), Ghassib et al. express
their results for the diagonal, on-energy shell I I in terms
of a phase shift,
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FIG. 2. Galitskii-Feynman I z(k;E) at k=0.25 A ' and variable negative (off-shell) relative energy E for L=O and 1. The L=O,
FREE shows I o(k, E} using a free-particle intermediate-state spectrum. In this case I 0 is purely real and has a singularity at
E——1 7 K The L =0, SC shows ReI o(—) and ImI"o(- - -) using the self-consistent intermediate-state spectrum for which there is

no singularity. The L = 1 is the same for each case.

k, = 0,78' A-'

T = O.Gl5K
P= 0

o
O

C)
4Q

L= 0 PHASE SHIFT
BECK POTENT(AL

RELATlVE MOMENTUM k(A I)

FIG. 3. Phase shift tan50 ——ImI 0/ReI 0 for the C~F, the BBG,
and free-scattering T matrices for angular momentum L =O. A
free-particle input energy spectrum is used (diagonal, on-shell
energies).

6L(k p T) =tan I- (k p T)
~

This is essentially the ratio of the imaginary to real parts
of I L. In Fig. 3 we show 6o {for the diagonal, on-energy-
shell case) obtained here for the GF, the BBG (QH ——0),
and the free-space (Qp ——Q~ ——1) cases. These phase shifts
agree well with those calculated by Bishop et al. and il-
lustrate nicely the difference between the three cases. In
the BBG case ImI 0=0 for k & kF since Qp =0 for k & k~
at T=O K. In the GF case Iml o for k & kF comes entire-
ly from the QH term. For both the BBG and GF cases,
ImI o is always negative and is zero at k =kF. At large
wave vector k, the Fermi statistical exclusion factors af-
fect I o little.

In Fig. 3 we see that the GF 6o(k) rises sharply in a
cusp at k =kz. This cusp, shown in more detail in Fig. 4,
softens as T is increased. Also in Fig. 4, 6L for L, =1 and
L=2 are shown for the GF case. All these results, calcu-
lated using the Beck potential, agree well with Bishop
er al. who used the modified Frost-Musulin (MFM)
potential.

In Fig. 5 we show the diagonal, spin-symmetric I'(k, k)
and spin-antisymmetric I'(k, k) T matrices calculated
from (21) using a free-particle input spectrum for both ini-
tial (E =e&+e2) and intermediate (e5 and e6) states in
62". The GF and BBG T matrices differ significantly
only for k &kF. At large k scattering to particle states

HFabove kz dominates and the second term in 62 (contain-
ing QH) becomes negligible. The imaginary part of I (k)
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60
I I I I ( I I I I I

SELF-CONSIST ENT ENERGY
SPECTRUM, ~(k)

TABLE III. Self-consistent single-particle energy spectrum
e(k) (in K) obtained from (6) using the BBG and GF T matrices.

40
BBG T matrix GF T matrix

Re p(k)
(K)

0

0-
I I

0 0.4 0,8 I.2 I. 6 2.0 2.4

k(A )

0 I I I I r I I I I I I I

BBG
Q FIrn p(k)

(K)
-20-

-30-
0 08

kF

I ~ 1 I I I I I I

l.6 2.4 3.2 4.2 4.8

k()( )

FIG. 7. Self-consistent energy spectrum obtained using the
GF and BBG T matrices. The dashed line 8 is the rearrange-
ment energy Xz in the BG case. Xz -0 in the GF case.

IO-

l I I I I I I

GF (P AND H STATES)
SELF-CONSISTENT ENERGIES

Xz is small ( &0.5 K) in the GF case. The difference be-
tween the e(k) in the GF and BBG cases is due chiefly to
Xz, neglecting XR the real parts of the two e(k) would
have been essentially the same. The imaginary part of
e(k) for k & 1.5k+ is greater in magnitude in the GF case
due to the hole-state contributions.

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1 ' 8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.6
4.0
4.5
5.0

Res

—10.72
—10.69
—10.61
—10.46
—10.22
—9.90
—9.46
—8.88
—8.12
—6.97
—5.44
—3.58
—1.40

1.04
3.71
6.57
9.64

12.88
16.22
19.63
23.14
26.78
30.47
34.30
38.25
42.36
46.61
51.01
55.59
60.35
65.31
93.73

128.72
168.79
211.83

Ime

—4.27
—4.27
—4.28
—4.30
—4.33
—4.36
—4.37
—4.38
—4.51
—4.90
—5.34
—5.85
—6.39
—6.99
—7.62
—8.28
—8.95
—9.62

—10.35
—11.09
—11.84
—12.58
—13.28
—13.95
—14.61
—15,25
—15.86
—16.40
—16.87
—17.25
—17.53
—17.58
—16.78
—18.02
—21.51

Ret

—13.69
—13.61
—13.37
—12.97
—12.40
—11.62
—10.58
—9.33
—7.88
—6.30
—4.52
—2.52
—0.27

2.23
4.95
7.88

10.97
14.19
17.52
20.93
24.41
27.98
31.65
35.42
39.27
43.23
47.31
51.54
55.95
60.56
65.40
93.35

128.09
168.22
210.21

Ime

—5.47
—5.49
—5.53
—5.58
—5.62
—5.63
—5.60
—5.54
—5.48
—5.43
—5.37
—5.34
—5.40
—5.55
—5.84
—6.24
—6.80
—7.48
—8.29
—9.21

—10.19
—11.20
—12.19
—13.17
—14.07
—14.89
—15.62
—16.25
—16.76
—17.16
—17.45
—17.54
—16.63
—17.52
—21.02

- IO

-P,O-

Re L.
—-- Im I'

0 I
I ~ ~ I

0
tI I I I I t I I i I

0.8 I.6 2.4 3.2 4.0 4.8
kF

k (k)
FIG. 8. Spin-symmetric (I ') and spin-antisymmetnc (I ') T

matrices (diagonal and on-shell) using the self-consistent energy
spectrum for the GF case. The I" is shown multiplied by
(dn/de), , =m*kF/m h =0.0153 (KA') ' so that it is in theF
same dimensionless units as the observed Landau parameters.

The SC e(k) lies —10—13 K below zero for k &kz.
This suggests strong binding. The Re@(k) are smooth and
approach the free-particle spectrum (dashed line) at
k -4kF. The values of the Sc E(k) are listed in Table III.
The T matrices I (k), calculated using the SC e(k), are
shown in Figs. 8 and 9. Shown are the diagonal (k'=k)
and on-energy-shell values of the spin-symmetric I'(k)
and the spin-antisymmetric I'(k) T matrices. They are in
the dimensionless units used by Landau, i.e., the I in K A
are shown multiplied by (dn/de), , =0.0153 (KA )

Comparing Figs. 5 and 8 we see that the I' and I' cal-
culated using the free-particle spectrum and using the SC
spectrum differ little. This emphasizes that I is rather in-
sensitive to the input spectrum used, provided the spec-
trum is continuous and, as here, the two input spectra
differ chiefly by a constant shift in energy, independent of
k. Comparing Figs. 8 and 9 we see that the GF and BBG
T matrices differ little. The only significant difference is
at k & 2kF, and there chiefly in the imaginary part.

To get a physical picture of the I ' and I, we Fourier
transformed the real parts to obtain an "effective" (local)
potential in real space. The approximate Fourier
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T matrix (see Fig. 12) are listed in Table V.

B. The total energy and e{k)

In Fig. 12 we compare the present Re@(k) for low k
with previous e(k). The present Re@(k) may be written in
the form

200

100

0
)0

-IOO—

I/
I

/
/

/
/

/
/

/
/

/
/

IO
O

5
E

0

5

- -IO

-200—
2
r (K)

FIG. 10. V'(r), approximate Fourier transform (FT) of GF
I '(k). V, (k), actual inverse FT of V, (r). Comparison of V'(k)
and I '(k) (Fig. 8) displays approximate nature of V'(r).

transform of ReI'(k) [denoted V'(r)] is shown in Fig. 10.
As expected the V'(r) has the hard core removed and is
"finite" at r=0. It also has a shallow potential minimum
and is of short range. The dashed line [V'(k)] in Fig. 10
shows the actual Fourier transform of V'(r) and a com-
parison of V'(k) with ReI '(k) in Fig. 8 gives an indication
of the approximate nature of V'(r). We emphasized fit-
ting the small-k behavior of ReI'(k) to obtain V'(r) since
the long-range behavior of Rel '(k) can eventually be fit-
ted by a single constant, a phase shift.

The approximate Fourier transform of ReI '(k), V'(r),
is shown in Fig. 11. V'(r) is very shallow and of long
range as is anticipated for the spin-dependent interaction.
Again V'(r) is only approximate and was simply cut off at
r-10 A. More precision is not meaningful since neitherI' nor I' can be well represented by a local potential in
any case. '

The values of the SC T matrix for the BBG and GF
cases (as shown in Figs. 8 and 9) are listed in Table IV.
The individual angular momentum components of the GF

k
Re@(k)=eF

k~
+ReX(k),

where ReX(k) is the real part of the self-energy including
the rearrangement energy and eF -5.0 K. We see that the
present Re@(k) lie substantially below the SC Brueckner-
Gammel e( k) and the model spectrum devised by
8stgaard. Clearly, the X(k) calculated by Brueckner and
Gammel and by Qstgaard is significantly smaller in mag-
nitude [X(k) &0] than we obtain using a continuous input
e(k) spectrum to the T matrix. We return to this point
below.

The total energy may be readily calculated using
ReX(k) as

kF
E = —', e~+ 3 f dk k [ —,ReX(k)] .

kF'

The E we obtain, compared with others, is shown in Table
VI. As expected [from the larger, negative X(k)] we find
total energies substantially below those found by
Brueckner and Gammel and by Pstgaard. We find very
strong binding approximately 1 K below the observed
value of —2.5 K. This difference arises because we have
used a continuous e(k), without a gap at kF, as we now
show.

The X(k) for k & kz depends upon I ' for k & kz. The
I '(k) calculated by gstgaard and calculated here in the
GF case are compared in Fig. 13(b). Clearly the present
SC GF I"'(k) has larger negative values at low k by a fac-
tor of order 2—3. We may simulate a gap in the spectrum
by doing an off-energy-shell calculation in which the
initial-state energies are fixed at a constant low energy
E =e&+@2~ The intermediate states remain given by the
SC e(k). If we set E below the present SC spectrum, this
simulates an initial-state spectrum that lies below the
intermediate-state spectrum. An E= —20 K is required
to simulate the gap used by @stgaard. In Fig. 13(a}, we
see that the present I '(k) increases as E is lowered until at
E= —20 K it is very comparable to the I '(k) obtained by
gstgaard.
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TABLE IV. Diagonal, on-energy-shell T matrices [multiplied by (dn/de'), , =0.0153 (K A ) '] vsF
incoming relative wave vector k. Listed are the spin-symmetric (I *) and spin-antisymmetric (I') T ma-

0

trices for the BBG and GF cases. To convert I to K A units, divide by 0.0153 (K A')

k
(A ') ReI'

BBG T matrix
Iml ' ReI' Irnl ' ReI '

GF T matrix
Irn l ' ReI' ImI'

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.9
1.0
1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2. 1

2.2
2.3
2.4
2.5
3.5
4.0
4.5
5.0

—7.63
—8.94

—11.78
—14.41
—15.57
—15.45
—14.32
—12.93
—9.68
—8.82
—8.00
—7.21
—8.33
—7.83
—7.43
—6.94
—6.49
—5.60
—3.89
—1.75

0.99
3.97
6.35
7.85
8.53
4.50

—1.93
—5.08

1.11

—2.07
—2.11
—2.39
—2.67
—3,08
—3,56
—4.14
—5.10
—8.95

—10.39
—11.67
—12.99
—15.34
—16.07
—16.77
—17.27
—17,20
—16.53
—15.81
—1S.37
—14.69
—15.09
—16.39
—18.33
—20.21
—19.69
—15.95
—12.58
—10.07

7.63
6.11

2.74
—0.37
—2.39
—2.82
—1.98
—0.41

0.52
0.30
0.02

—0.63
—0.14
—0.71
—1.53
—2.31
—2.90
—3.34
—3.15
—2.45
—1.32
—0.07

1.14
2.00
2.12
0.82
0.99

—1.62
—1.12

2.07
1.96

1.81
1.43
1.10
0.72
O.S8
0.50
0.16

—0.65
—1.11
—1.55
—1.42
—1.57
—1.57
—1.38
—0.88
—0.06

0.76
1.47
1.98
2.00
1.35
0.49

—0.59
—0.63
—2.32
—2.39

0.37

—9.42
—9.36

—10.36
—11.42
—12.15
—12.25
—11.64
—10.05
—7.87
—6.38
—5.70
—6.41
—7.10
—7.39
—7.24
—6.96
—6.61
—5.84
—4.27
—2.50

0.52
3.28
5.83
7.59
8.45
4.59

—1.63
—4.66

1.16

—1.37
—3.29
—5.15
—6.40
—6.96
—6.48
—4.90
—3.58
—6.32
—8.96

—11.20
—13.26
—15.19
—16.14
—16.85
—17.25
—17.10
—16.48
—16.02
—15.59
—14.42
—14.71
—15.92
—17.61
—19.41
—19.70
—15.77
—12.47
—10.16

9.42
7.08

3.39
0.41

—1.40
—2.10
—1.50

0.04
0.64
0.42

—0.15
—0.39
—0.41
—0.93
—1.40
—1.83
—2.34
—2.73
—2.68
—2.32
—1.43
—0.13

1.09
1.89
2.01
1.03
0.90

—1.73
—1.03

1.37
3.24

4.65
4.77
4.04
3.17
2.57
1.90
0.56

—0.37
—1.11
—1.79
—1.29
—1.24
—0.93
—0.77
—0.56
—0.13

0.35
0.98
1.69
1.86
1.33
0.34

—0.87
—0.67
—2.47
—2.26

0.46
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FIG. 12. SPE spectra: PRESENT, calculated here using
BBG and GF T matrices; BG, calculated by Brueckner and
Gammel; 0 denotes gstgaard's model input spectrum.
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FIG. 13. (a) Upper I'(k, E) vs k for fixed off-shell energies
E= —25 to 15 K in the GF case with the present SC energies as
intermediate-state energies. An E= —20 K simulates the
gstgaard model spectrum approximately. {b) Lower I '(k) using
gstgaard model and present SC energy spectrum (GF T matrix).
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TABLE VI. Total energy of liquid He calculated by different
methods.

Type/Author
Volume

Energy (K) ro (A) kF (A ')

T matrix
Brueckner-Gammel'
Qstggard 2-body

2+ 3-body
Present GF

BBG

—0.96
+ 0.45
—1.0
—3.7
—3.2

2.60

2.50
2.44'
2.44'

0.74

0.77
0.79
0.79

Variational
Schmidt, Lee, Kalos, Chester

(1) Jastrow-Slater wave function
(2) Green-function Monte Carlo

Schmidt and Pandharipande"
Jastrow + 3-body

Observed'

'Reference 23.
Reference 26.

'Fixed at observed volume.
"Reference 16.
'Reference 40.

—2.0
—2.2

—2.0
—2.5

2.40
2.44

2.44
2.44

0.80
0.79

0.79
0.79

I

He

VA R I AT I 0N A L

From this we conclude that a substantially lower I '(k),
Res(k), and total energy is obtained using a continuous
e(k) rather than one with a gap at kF in it. Lejeune and
Mahaux have found similar lower total energies using a
continuous e(k) for model potentials describing nuclear
rnatter. It is the presence of the gap that is important
since either lowering or raising the whole of e(k) has little
effect.

Since we find stronger binding than obtained by
Brueckner and Gammel and by Qstgaard, we expect to
find that E here has its minimum at a smaller volume.
Indeed, in Fig. 14 we see the GFHF energy (2) takes its
minimum value of E= —4.7 K at a volume 25 cm /mole.
This is substantially smaller than the observed SVP (zero
pressure) volume of 36.83 cm /mole. In real liquid He an
applied pressure of 30 atm is required to reduce the

volume to 25.86 cm /mole. Clearly, collective effects,
such as are included in the variational calculations of
Schmidt et al. ,

' must be included in a GFHF theory to
predict saturation correctly. At the smallest volumes,
iteration of (3), (4), and (6) did not converge well and this
is the origin of the large error bars in E of Fig. 14. At the
present level the GFHF predicts substantially too much
binding.

C. Landau parameters

The effective interaction between quasiparticles appear-
ing in Landau's theory of Fermi liquids is often divided
into a direct part and an induced part. ' ' ' The direct
part is assumed to arise chiefly from the interaction of the
pair via the hard core of the bare potential. The induced
part describes the interaction via the collective excitations,
the zero-sound modes and spin fluctuations. In most re-
cent calculations, the induced part is defined as those in-
teraction terms connected by a single induced particle-hole
pair excitation and the direct part is the remainder. The
present GFHF approximation, which incorporates the
bare pair interaction to all orders but no collective effects,
should provide a good estimate of the direct part. It will
also be interesting to compare results for this approxima-
tion using the present continuous single-particle excita-
tions with those obtained by gstgaard using a spectrum
having a gap.

The Landau parameter describing the interaction be-
tween a quasiparticle in state k& having spin o.

&
and one in

state k2 having spin o2 is defined as' '
(33)

Substituting the HF energy E and differentiating with
respect to the explicit factors of n (1) and n (2) in (2), we
obtain the lowest-order T-matrix approximation

f (k„k )=I(k, ;k, ) —5 I(—k, ;k, ) . (34)

This is lowest order because we have ignored any depen-
dence of I on n. Including this dependence leads to the
rearrangement terms discussed, for example, by
gstgaard and by Bertsch. ' These rearrangement terms
begin to incorporate the collective response of the liquid.
We seek only the direct interaction here.

From (34), the two spin possibilities are

3

f,„=I(k„,k„)—I ( —k,2, k,2)=2ao,

f„=I (kt2, k, 2) =ao+a, ,
(35)

I

2.0

20
I

25.8

Q, (cm~/(T)ole)

I

36.8
I I

45

BQ
~

(atm)

2.2 2.4 2.6
r (A) f'= ,'(f„„+f„)=—,'(3a, +a, )—,

f = '(ftr —f»)= '(ao —a.—) —.
(36)

where ao and a, are the sums over odd and even angular
momentum components of I defined in (22). The spin-
symmetric and spin-antisymmetry parameters are then

FIG. 14. Ground-state energy E of liquid He as calculated
here (GFHF), variationally [Schmidt et al. (Ref. 16)], and as ob-
served (EXPT) (Ref. 40). The arrows indicate the observed
volumes at SVP and at 30 atm pressure.

Introducing the usual dimensionless parameters I' which
have the same units we have selected for I, we see, com-
paring (36) and (21),
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Fs,g ps, a ps, a

de
(37)

g(FI +F1 )=0 .
L

(42)

This sets the spin components of I . We now need to
specify the relative (k~2) and total momentum P to fix the
diagonal I in (37). The Landau parameters are defined
for k~ and k2 on the Fermi surface,

~
k~

~
=k~,

~
k2

~

=k~. The k~ and k2, therefore, differ only by the
angle 8 between them (0 & 8 & vr) Fr. om simple geometry,

k12 2 ~

k 1 k2
~

kF»n —,
' 8

P =k ~ +kz ——2k+cos —,0 .
(38)

In this limit F and I (k,2,P) in (37) depend only on the
single variable 0,

Fs,a(g) I s,a(g) (39)

In this case P&0, and this is the only instance here where
we have used a finite c.m. P. The Landau parameters are
expanded in angular momentum components FI defined
by

F"(8)= g Pl (cosO)FI', (40)

which can be obtained from F"(8)as

Fi.' f——dOsinOPI (cosO)I"(8) .2L +1
0

(41)

The FI', we find, using the Galitskii-Feynman I"'(8)
with the SC e(k) of Fig. 7 as input, are listed in Table VII.
These can be understood as follows. In (41), as 8 goes
from 0 to ~, k goes from 0 to kz. The Fl, for example,
are therefore "Legendre" moments of the I '(k) from 0 to
k~. Fo is first the average of I'(k) modulated by sinO,
which emphasizes I (k) in the region k=k~/v 2. Since
I'{k) is negative (and large in magnitude), Fo will be nega-
tive (and large in magnitude}. The I'(k) must be negative
to obtain a bound liquid. In this case a negative Fo is
inevitable from a HF approximation to zeroth order. The
higher moments are less transparent and depend upon the
curvature in I'{k) [FI ——0 for i.) 1 for constant I"'(k)].
Accuracy also becomes a problem at higher L and the FI
for L & 3 in Table VII are accurate to +0.5 only. The Fo
is negative because I '(k) dips below zero in the region
k -0.7k~ (see Fig. 8).

The calculated F should obey' the "forward scattering
sum rule"

D. The effective mass

In Fermi-liquid theory the effective mass of a He
quasiparticle is defined in terms of the SPE spectrum as

1 1 Be
M* g'k Bk

The bare mass is just

(43)

BTk
(44)

The present HF SPE spectrum is

e(k„E)=Tk+X(k„E} (45)

The F in Table VII would satisfy (42) if we took Fl. =0 for
L & 4 and suggests that the FI for L & 3 are not very accu-
rate, as noted above.

In discussing the Landau parameters we note firstly
that the present GF T-matrix values in Table VII should
represent the direct part of the effective interaction well.
We do not expect them to agree with the observed Landau
parameters. The general character is that the direct parts
of Fo and Fo are strongly negative. In order to satisfy
(42), the direct parts at its higher L cannot vanish. This
general character is also obtained by gstgaard and is
therefore independent of the input SPE excitation spec-
trum. Clearly, the induced interaction must compensate
greatly, particularly at higher L. Improved values of F
can be obtained in the HF approximation by including
rearrangement terms, but from Table VII the higher-L
components clearly remain large.

Secondly, for the liquid to be mechanically stable
against density fluctuations and to ferromagnetic ordering
we must have Fo & —1 and Fo & —1, respectively. ' '
For this reason the present direct interaction components
may not make a good starting point for a perturbative cal-
culation of the induced interaction. An iterative solution
combining the direct and induced parts will probably be
required.

TABLE VII. Landau parameters in He at 0=36.83 cm /mole.

CxF
FS

—7.8
2.2

Present
T matrix

FQ

—3.7
—3.0

F$

—2.9
—1.8

gstgaard/Bertsch
6 matrix

—5.4
—1.7

10.07
6.04

Observed
(Wheatley)

—0.67
—0.67

2.3
2.1

(1.6)
(0.8)

3.3
2.7
(1.1)
(0.3)

1.64'
0 97a

0.56'
0.45'

1.46'
0.80'
0 34a

0 19'

'Includes rearrangement contributions.
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and

B~ BT BX
Bk

=
Bk

+
Bk

BX Be
BE Bk

'

m+(k, E)—
m +(k)

or

BEp

Bk

BT,/Bk+(BX/Bk)
1 —(BX/BE)k

2.0

lo

lB

~/mol e

Thus the corresponding effective mass in the present HF
approximation is 05

M*
m*(k, E)=

M
1 —(BX/BE)k

1+(M/~'k )(ar/ak ),
(46) 20

ole

To test the importance of the (BX/BE)k we also define an
m ~(k) by simply omitting this term,

l. 5

lo

m*(k) = 1

1+(M/A' k )(BX/Bk )
(47) 0.5

The m*(k) is often denoted ' as the "k mass" since it
arises from the k dependence of X. Similarly an "Emass"
is often introduced,

0

l.o
mole

m*(k E) BXm~(E) = =1— (48) 05

which reflects the energy dependence of X. The energy
dependence is contained in I'(k, E) and (BX/BE) was cal-
culated as a difference;

0-

ole

BX(k,E)
BE

I'(k &z,E +6)—I'(k ~q, E)
n(kp) . 1.0—

kF

We discuss in detail only m* for the GF case. We found
that in the BBG case, m* was extremely sensitive to the
rearrangement term. When it was included very large
m*(k) values for k (0.5kF were obtained [because e(k) is

quite flat for k &0.5kF]. With rearrangement neglected,
the BBG was similar to the GF case which we now dis-
cUss.

2
k (k")

FIG. 16. "k mass" m~(k) (dotted) and the total effective mass
m*(k, E) in liquid He at four volumes calculated in the GFHF
theory without rearrangement terms.

2.0

l. 5

l
(

25.86 cm~/mole

l.o

0.5—

0
l. 5—

E

3E F
I

I

I I

I
I

36.83 cm~/'mole

F
k

I

1

FIG. 15. "k mass" m*(k) with (solid) and without (dotted)
the rearrangement term included in X.

In Fig. 15 we show m*(k) in the GF case with and
without the rearrangement term Xz of (8) included in (47).
Clearly the X~ contributes to m*(k) for k &1.5kF only.
Its contribution is greatest at small k since from (32)
X~(k) is itself largest at small k. The X~ contribution is
always small and changes sign (as does Xz) when we go
from a volume of 36.83 to 25.86 cm /mole. These
volumes correspond to SVP and p =30 atm in real liquid
He. From here on we neglect X~.

In Fig. 16 the full m "(k,E) and m*(k) at four volumes
are displayed. Since the GFHF model predicts saturation
at a volume -25 cm /mole, the m*(k, E) at -22
cm /mole probably best represents real liquid He. As in
Fig. 15 the m*(k) shows no strong, systematic variation
with k or with volume. It varies generally between
0.3 & m*(k) & 1.3 and, if anything, decreases as the
volume is decreased. In contrast, m*(k, E) shows a strong
increase or enhancement in the region kF &k &2kF and
this enhancement increases in magnitude and is centered
nearer kF as the volume decreases. Again the m~(k, E) at
-22 cm /mole probably best represents liquid He at SVP
and the m ~(k,E) at 18 cm3/mole He under pressure.
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An enhancement of m*(k, E) at k~ and somewhat above
kF has been obtained generally in nuclear matter ' in
BHF calculations. While the present results are not pre-
cise, they show that an enhancement is expected in liquid
He and can be obtained from first principles within the

GFHF theory. The enhancement also increases with pres-
sure suggesting that the increase in the observed
m~[m~(k~, E)] with pressure may be due to increased
enhancement rather than an increase in m* at all k.

An enhancement of I*near k~ has been proposed in
liquid He (on the basis of nuclear matter results) by
Brown et al. and by Fantoni et al. to explain the tem-
perature dependence of the observed Cz. Essentially, as T
increases, states away from k~ will be sampled and these
states will have a lower apparent effective mass so that the
average m~ falls at T increases. Krotscheck and Smith
also obtain an enhancement using the method of correlat-
ed basis functions. Generally, higher-order terms beyond
the HF theory further increase the enhancement, ' and
recently Friman and Krotscheck proposed a second
enhancement near 2kF.

From Fig. 15 we may also estimate the residue of the
single-particle Green function at the "quasiparticle" pole:

these reasons the GF theory is preferred and leads to more
consistent results independent of definitions of e(k}. Also,
since QH —+0 rapidly above kF, the hole-hole term is much
easier to evaluate than the particle-state term and there is
no additional difficulty in including the QH term. For
these reasons we focus on the GF results only. In future
applications Xz need not be included.

We emphasize that in the GF formulation the zeros in
D are treated correctly. With the presence of g, the for-
mulation includes a well-defined path around the zeros in
D so that there are no "singularities" in the T matrix. In
practice, we integrated around the zeros in D using the
standard method of (1) identifying the point on the real k
axis where the zero in D occurs, (2) expanding the in-
tegrand in yL (x,y) of (18) in a Taylor series about this
point, and (3) integrating yl (x,y) analytically over a small
region centered on the zero. This region was excluded
from the range of numerical integration. In this way
values of yL(x,y) independent of g and the excluded re-
gion size were obtained. This method works well provided
the integrand does not vary rapidly where D is zero. The
integrand does vary rapidly at k =kF. We were able to get
consistent results easily for k =+0.5 A ' on either side of
kF. We also tried using the representation

BXzk= 1 = [m*(E)] (49)
D+ig D2+ 2 D2+ 2

Clearly zk is substantially less than unity in the present
model. Strictly, the Landau parameters quoted in Table
VII should be renormalized by the vertex correction zk .F

VI. DISCUSSION

A central purpose of this paper was to compare the
Brueckner-Bethe-Goldstone (BBG) and Galitskii-Feynman
{GF) T matrices. The GF T matrix contains an additional
term, QHI(D ig), in G—z" which is interpreted as allow-
ing the interacting pair to scatter to intermediate hole
states. For the same input (free) SPE spectrum, the BBG
and GF I (k,P) are identical for k & 1.5k~ because QH
goes to zero rapidly for k )kF. For k & kz there is some
difference but it is small (see Fig. 5). Mainly the
Iml (k, P) =0 for k & kF in the BG case since there are no
particle states available below kF at T=O K.

An important difference between the two cases emerges
when the SPE spectrum and I are iterated. This is almost
entirely due to a large rearrangement energy, Xz, in the
BBG case and a nearly negligible Xz in the GF case. The
larger Xz leads to a higher and flatter e(k) for 0& k & kF
in the BG case. The flat e(k) leads in turn to large
effective-mass values. These values become increasingly
and unreasonably large when the energy dependence of the
self-energy X&(k,E) is included as in (46). On the other
hand, the GF case gives reasonable values of m*(k), and
m*(k, E) shows a strong enhancement between kz and
2kF.

It could reasonably be argued that X~ should not be in-
cluded in the definition of e(k), in which event. the two
cases become similar. However, using the GF T matrix
Xz is negligible, so that the distinction between the real
part of the dynamical SPE and the statistical SPE in the
HF approximation disappears. We found that Xz remains
negligible in the GF case for all volumes considered. For

and integrating numerically over the whole range, but this
proved both less accurate and more time consuming.

Because of the zeros in D, the T Inatrix is complex. It
is for this reason that we have called it a T matrix rather
than a G or E matrix. ' This resulting e(k)
=T(k}+X&(k) is also complex. For this reason the
dynamical SPE, which is complex, is probably the most
consistent input SPE to use in I (k,P).

The I (k, P) turns out to be quite independent of e(k)
provided the same e(k) is used for the initial and inter-
mediate states. This can be seen comparing the I ob-
tained using free-particle (kinetic) energies (Fig. 5) with
that obtained using the full SC input SPE (Fig. 8). Al-
though the SC e(k) lie —15 K below the KE at low k,
this difference tends to cancel between the initial and in-
termediate states in D giving a similar final I . Also in
Fig. 6 we show the values of e(k) obtained during the
iteration toward the SC e(k). The e~(k) obtained using the
free-particle I is quite close to the final SC e(k). These
points mean (1) that I obtained using free-particle input
energies is a good approximation to the SC I and (2) that
the e(k) calculated using the free-particle I is a reasonable
approximation to the final e(k).

However, for a spectrum having a gap, I {k,P) is ex-
tremely sensitive to changes in e(k). Generally, in the
reference spectrum method, the intermediate states are
fixed at free-particle energies. Changes are made to the
initial states only. These changes do not cancel in D.
Rather, the changes are somewhat like investigating the
"off-energy-shell" dependence of I (k,E) by varying the
input energy E =e&+e2, and I (k,E) is very energy depen-
dent.

A second purpose here was to compare results for a
continuous e(k) as dictated in the GF formulation with
previous work using an e(k) having a gap at k =kz. First-
ly, the diagonal I '(k) obtained using a continuous e(k) lies
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approximately a factor of 3 below that obtained by
Pstgaard and by Brueckner and Gammel using a gap in
E(k) (see Fig. 13). Since the GF 1(k) is insensitive to
changes in the continuous e(k), the shallower I (k) ob-
tained by Pstgaard is due entirely to having a gap in the
spectrum at k =kF. As a result the total liquid energy E
obtained here is a factor of 3 lower than that obtained by
@stgaard and by Brueckner and Gammel.

A general conclusion is that the GF T-matrix HF
theory predicts a much deeper continuous single-particle
excitation spectrum and a more tightly bound fluid than 6
or E matrices having a gap in e(k). The calculated
E = —3.73 K at 0=36.83 cm /mole lies well below the
observed E = —2.5 K. To check that these results were
not due to the Beck potential, we calculated I' using the
recent HFDHE2 potential developed by Aziz et aI. " The
I ' for the two potentials is shown in Fig. 17, and clearly
they differ little. At this stage, agreement with experi-
ment or with variational calculations' is not good.

The e(k) here have an imaginary part and Ime(k)
should vanish at k =kF as (k —kF ) . We did not find
this numerically using the definition (7) for e(k). We be-
lieve this is due to approximating I by its on-energy-shell
value in Xq(1) and if the full energy dependence of I in (9)
had been retained, ImX& would vanish as required at kF.
Possible definitions of e(k) and their consequences are dis-
cussed by Jeukenne et al.

To go beyond the present GFHF results, we note that
Day and Mahaux have discussed the HF approxima-
tion as a second-order approximation in an (hole-line) ex-
pansion of the potential in powers of a parameter ~, called
the wound or depletion parameter. Physically, interac-
tions between the fermions deplete the real-state occupa-
tion n (k) from unity for k & kF. The magnitude of the de-
pletion is a good measure of the strength of the interac-
tions. Interpreting w as a depletion parameter we may es-
timate ~ here as

20

-20—

0.8
I

1.6

k(A )

1

2.4 3.2 4.0

FIG. 17. GF, spin-symmetric I'(k) (diagonal and on-shell)

for (1) Beck potential (Ref. 32) and (2) HFDHE2 potential (Ref.
34). —,ReI '; —-, ImI'.

I~=—1 n(( —k))=1—z((k) ),
where z(k) is given by (49) and (k ) is an average k value
contributing to E (for example, k =0.75kF). Clearly, from
Fig. 16, a. is not small, e.g., z( ( k ) ) =0.5 at 36.8
cm /mole. Firstly, all interactions should be vertex
corrected by (1 —lr) =z(k) . This would certainly im-
prove the present ground-state energy but higher-order
terms would still be important. Since ~ is large, we believe
a better approach would be to incorporate the collective
effects into I in a shielded potential-like approximation at
the outset in an attempt to reduce I initially. This would
be equivalent to beginning with a phononlike basis rather
than a free-particle-like basis, as is done in solid helium,
for example. This is an approach we intend to follow

0.8

0.4
OBSERVED

ZSM

0.0 ~~msasi ~ L I

I I

-0.4

I I I

10

C/CF
0

FICx. 18. Zero-order dynamic susceptibility P (Q, e') [divided by mkF/(m' R )] at Q=1.0 A ' calculated using the self-consistent
Ha&ree-Fock energies (HF) and using free (FREE) particle energies: —,Re+"; -—,Imp .
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since calculating a series of higher-order terms does not
look promising.

Also, the direct part of the Landau parameters obtained
here can be used as an input to a more complete calcula-
tion. The more complete calculation must include the in-
teraction induced via particle-hole states, not included
here. For this the density-density propagator will be need-
ed. To lowest order this is the Lindhard function,

1 n (k) n—(k +q)
Xo(q, e)=—

II k e(k +q) —e(k) —(%co+ ig)

To illustrate the difference between the HF SC e(k) and
the free-particle e(k), we have evaluated Xo using the two
different e(k) (Fig. 18). The HF go is spread over a some-
what larger energy range but is otherwise similar to the
noninteracting go. Since the direct contribution to the
Landau parameters and the observed values differ so wide-

ly, an iterative approach involving I and g, starting with
the I here and +0, is almost certainly necessary.

Finally, the present I (k,E) should represent the full ef-
fective interaction in liquid He at high k (k )2 A '). At
high k, liquid He does not support collective excitations
so that the component of the interaction induced via these
excitations should disappear. The present I (k,E) could
therefore be used to calculate the dynamic form factor
S (q,E) at high Q & 2 A ' for comparison with recent neu-
tron scattering measurements.
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Q (2k)

=16I 3
I'(k;k, P)n(2k —kt) .

(2~)
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At T =0 K, this integral reduces to (24).

2. The rearrangement energy

Expressing I in relative coordinates and suming over
the spin indices as in (A1), Xz (k]) in (8) reduces to
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APPENDIX

r'(k;k, P) n(k )n(k )

a I"(k;k,P) n(k, )n(k3) . (A5)
k k

Introducing Qo ——0/X, and ignoring the dependence of I
on P, this reduces to (Fetter and Walecka )

The single-particle energy in (6) is a sum of the kinetic
energy, the self-energy X~, and the rearrangement energy
&~ ~

1. The self-energy

To reduce X& in (7) we first sum over the spin index
o.

2 (e, =e, ) so that

3 al'(x x)&z(k&)= dxx N ' (1——,x+ 3x ) )(}n(k, )

(A6)

where x =k/kz. The evaluation of the derivative in (A6)
is discussed Sec. IV B.
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