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Magnetic superconductors, in which the first- and the second-order phase transition to
the ferromagnetic (FN) state would occur in the absence of superconductivity, are con-

sidered. The exchange and the electromagnetic dipolar interactions of localized moments

and electrons as well as magnetic anisotropy are taken into account. It is shown that one

realizes the transverse domainlike magnetic structure in a superconducting state {the DS
phase}. Transitions S~DS~FN are considered. The proposed theory (with the second-

order transition) explains well the experimental data for HoMo6S8. The experimental data
on ErRh4B4 may be explained in the framework of the similar microscopic theory with the

assumption that it is a first-order magnetic transition and that the critical-temperature (8)
variations over the sample investigated by Moncton et al. [ Phys. Rev. Lett. 45, 2060 (1981)]
and by Sinha et al. [Phys. Rev. Lett. 48, 950 (1982)] are due to inhomogeneous stresses.

I. INTRODUCTION

There exists much interest in the problem of the
coexistence of ferromagnetism and superconductivi-
ty because they are competitive processes. ' Ander-
son and Suhl have shown, in a remarkable paper,
that the competition of these two orderings gives
rise to the new superconducting phase with the
nonuniform magnetic ordering of localized moments
(LM's). They predicted that if the indirect exchange
interaction (EX) gives the ferromagnetic order at the
temperature 8 (in the absence of superconductivity),
then the presence of superconductivity (with the
critical temperature T„y&8) modifies the EX in-
teraction. This effect causes the appearance of the
nonuniform magnetic ordering at TM =8 by the
second-order phase transition. The wave vector of
this structure is QM =(a go) ', where go is the su-

perconducting coherence length, and a is the tnag-

netic stiffness —it is of the order of atomic length.
The transition temperature TM practically coincides
with 8, i.e., TM —8= —8(a lgq)

Later Krey, Blount and Varma, and Matsumoto
et al. came to a similar conclusion assuming that
the interaction between LM's and electrons is real-
ized via magnetic field generated by LM s, i.e., via
the dipolar electrotnagnetic interaction (EM). In the
framework of their approach the wave vector of
magnetic structure (simple spiral) at TM is
QM-(ak, L ) ', where A.L is the London penetra-

tion depth. In both cases the nonuniform magnetic
structure is due to the suppression of the zero-
wave-vector component of the interaction between
LM's, i.e.:

(a) In the case of the EX interaction of LM's and
electrons, Cooper pairing suppresses the zero-wave-
vector component of electronic paramagnetic sus-
ceptibility.

(b) In the case of the EM interaction, the Meissner
effect suppresses the uniform magnetic field created
by LM's.

Recent experiments on neutron scattering on
HoMo6Ss, done by Lynn et al. , confirm the pre-
diction of Anderson and Suhl. In these experiments
the nonuniform magnetic ordering with the wave
vector Q=0.03 A ' is observed below TM-0.7 K
in the superconducting state (T, &

- 1.8 K) of
HoMo6Ss. The nonuniform magnetic ordering was
observed also in ErRh4B4 by Moncton et al. , below
1.4 K on polycrystalline samples, and by Sinha
et al. ' on monocrystal samples (T„=8.7 K) below
1.2 K. A first-order transition to the ferromagnetic
(FN) state at T,z-0.75 K on a monocrystalline
sample of ErRh4B~, and at T,z-0.65 K on a po-
lycrystalline sample of HoMo6Ss, is also observed.
These experiments, as well as the antagonistic char-
acter of ferromagnetic and superconducting order-
ings, now provide a challenge for the development
of theoretical description.

Recently several models have been proposed that
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either neglect the EX interaction ' "" or take into
account the EX and the EM interactions but neglect
the magnetic anisotropy (MA). ' ' So first of all
we should discuss a very important question: Which
type of interactions between LM's and electrons are
essential in such real compounds as ErRh484 and
HoMo6Ss?

Certainly, the dipolar EM interaction contributes
significantly to the energy of the magnetically or-
dered state in ErRh484 and HoMo6Ss. The long-
range part of this interaction gives the contribution

1

—,8 to the energy of the ferromagnetic state (per
LM) at T=O, where 8 =2np n, with p the mag-
netic moment and n the concentration of LM's. 8
takes the value 1.8 K in ErRh484 (p =5.6pq,
n =10 cm ), and 1.3 K in HoMo6Ss (p=9pz,
n =4&(10 ' cm ). The EX interaction is expected
to be small, since the localized f electrons in Er and
in Ho responsible for magnetism are "weakly cou-
pled" with the s and d conduction electrons, which
are responsible for the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction and superconductivity.

However, the question regarding the magnitude
and the role of the EX interaction cannot be
resolved a priori. The answer to this question has to
be based in part on the experimental facts, as well as
on a correct theoretical treatment of the interplay of
the EX and the EM interactions.

First, we remark that it is impossible to explain
the transition to the FN state (in real compounds) by
taking into account only the EM interaction and
neglecting the EX interaction as is done in Refs. 5,
11, and 12. In the case of the EM interaction alone,
the suppression of superconductivity is caused by
the orbital effect—the influence of the magnetic in-
duction 8 on the orbital motion of electrons. Since
both ErRh4 84 and HoMo6Ss are type-II supercon-
ductors, the FN state should be realized whenever
B(T)&H,*2(T), where H,*2(T) is the upper critical
field (including orbital effect only).

Maximal induction B(0), which originates from
aligned LM's with magnetic moment p and concen-
tration n, is B(0)=4mpn, and for ErRh484 one has
B(0)=6.5 kOe; for HoMo6Ss, B(0)=4.8 kOe.
However, the value H,'z(0) is 11—14 kOe for
ErRh484, according to the experimental data of Ott
et al. ' and Cantor et al. ' On the other hand,
H,'2(0) =3 kOe in HoMo6Ss according to the experi-
mental data of Ishikawa and Fisher, ' but what is
very important is that one has B(T,2) &H,'z(T, 2).
So it is impossible to explain the transition, of both
compounds, to the FN state by the orbital effect (the
EM interaction) only, because B(T,2) &H,'q(T, q).
Undoubtedly, this means that the EX interaction be-
tween LM's and superconducting electrons must be
taken into account, if one wishes the explanation of

the destruction of superconductivity by magnetic or-
dering at T,2.

The EX energy (per LM) SFx of the compound
ErRh484, which contributes to the energy of the FN
state at T =0, may be estimated from the measure-
ments of T, &(x) in Er, Y& „Rh484 and
Er, Lu& „Rh484 with nonmagnetic atoms Y and
LU1 18

It is well known from the earlier theory that

dT„(x)
=n. SEx/2

when x~0. From the measurements of Okuda
et al. ' one has dT, &( x)/d x=3 K, which gives
SFx-0.6 K. Therefore, the value of SFx is of the
order of 8 /3 in ErRh484. A similar estimation
for the suppression of T„ in HoMo6Ss, based on ex-
perimental data of Ishikawa and Muller, ' gives
SFx-0.15 K. This means that the EX contribution
to the energy of the FN state is not very small com-
pared with the EM energy: They are of the same or-
der.

Theoretical treatment of magnetic reentrant su-

perconductors, which includes both the EX and the

EM interaction, was given in Ref. 14 (in the frame-
work of the microscopic theory —the isotropic
model). It is predicted there that helical (simple
spiral) order of LM's in superconducting state could
be realized below the temperature TM of the
second-order phase transition. This conclusion is
based on the mean-field theory, and it is well known
that fluctuations induce the first-order phase
transition —minima of inverse susceptibility on the
sphere. But experimentally a magnetic structure on
the strictly determined wave vector Q, is observed,
and probably the fluctuations do not induce the
first-order phase transition.

In Ref. 14 it is also shown that the role of the EX
and the EM interaction (in the coexisting phase) is
rather different. It turns out (see Sec. II D) that the
magnitude of the wave vector Q of magnetic struc-
ture, as well as the depression of superconductivity,
are determined by the EX interaction if the condi-
tion 8&x»8~(ALQ) is fulfilled. In that case,
the role of the EM interaction is only to make the
structure transverse and also to renormalize the
parameters 8 and a. So if (A,LQ) »1, which is
realized in ErRh484 and HoMo6S&, the EX interac
tion determines the nonuniform magnetic structure in
the suPerconducting Phase below TM, if Sax is not
extremely small compared with 8

However, the theory' did not take into account
the MA of real compounds (as well as other aniso-
tropies of the system, such as the anisotropy of Fer-
mi surface, etc.), which could modify the helical
structure. So we must consider the EX and EM in-
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teractions, as well as the magnetic anisotropy and

the anisotropy of electronic system. Moreover, the
problem must be treated in the framework of the
microscopic theory, since we deal with the low-

temperature region, i.e., 0& T & T~ &&T, &. Such a
theory, based on the BCS model and on the assump-
tion of a second-order phase transition to the FN
state (in the absence of superconductivity), is
presented in Secs. III and IV.

In what follows we shall show that the con-
clusions stated in Ref. 14 regarding the role of the
EX and the EM interactions are valid for any
nonuniform magnetic structure. We shall also show

that in the presence of the MA and below T~ mag-
netic structure should be domainlike and
transverse —this phase is called the DS phase. The
direction of Q is in the plane perpendicular to the
easy-magnetization axis, and it is determined by the

anisotropy of the Fermi surface, and the magnetic
stiffness a. The magnitude of g is of the order

(ago) '~, and below TM it slowly decreases with the
decrease of temperature. Magnetization of the DS
phase differs insignificantly from its value, which

would be in the absence of superconductivity
We shall also show that in the crystals with the

MA of an easy-magnetization axis, critical magnetic
fluctuations are suppressed by the EM interaction,
except in the narrow temperature interval

r [ =(T —Tw )/TM ] & rg =(a /ko)

For ~&&re, the fluctuations are of the ferromagnetic

type.
The theory predicts that if the condition

8Ex & 8Ex- T, ~ /EF TM is fulfilled, then the first-
order phase transition from the DS to the FN phase
takes place, with the small jump of magnetization
and with the latent heat of the order of supercon-
ducting condensation energy. (EF is the Fermi ener-

gy. )

The results of this theory are in an agreement
with the neutron scattering data for HoMo6Ss
(the MA is of an easy-magnetization axis)—see Sec.
VI. However, some conclusions seem to be in a con-
tradiction with the data for ErRh~84. '

We infer that the assumption of the second-order

phase transition, from paramagnetic to ferromagnet-
ic state (in the absence of superconductivity), is valid

for the compound HoMo6S8, but evidently it is not
valid for ErRh4B4. Magnetic transition in ErRA4B4

may be offirst order in the absence of superconduc-
tivity. Magnetic measurements, done by Behroozi
et al. ,

' give evidence of this assumption. In Sec. V

we shall describe the process of the formation of the

DS phase —in the case of the first-order phase tran-

sition, of course. It is shown that the experimental
data on ErRh4B4 may be explained by the DS phase
theory, if one assumes that (a) it is a first-order mag-
netic transition and that (b) critical temperature 8
varies over the sample of the crystal because of in-

homogeneous stresses.

II. FREE-ENERGY FUNCTIONAL
OF MAGNETIC SUPERCONDUCTORS

A. Hami1tonian of the system

Let us consider the system of electrons with

Cooper pairing and the system of LM's J; distribut-
ed regularly in the crystal lattice at sites l r;l. We
shall treat the QM's in the mean-field approximation

(MFA), i.e., J; are replaced by S; =—( J; ). The
MFA neglects exchange scattering of electrons on
LM's. This scattering can be neglected since

8Ex « T, ~, and it is shown (see further text) that it
is good approximation for ErRh4B4 and HoMo6S8.

The Hamiltonian of the system is given by

H= '~ —,
+ r p ——A I '

p ——A
C C

g(r )+&(r)g+(r )iong+(r ) &*(r)g(r)iong—(r)

+ QJ(r —r )g+(r )o (g —1)J P(r )+ +

+g[—B(r;)gpss J;+Ho( J;)]+H„,
l

B(r)=rotA .

Here b ( r ) means the superconducting order
parameter for the singlet pairing of electrons; P( r ) is

spinor; o are Pauli matrices; A is the vector poten-
tial; J( r ) is the exchange integral; g, z& is the param-

l

eter of the electron-phonon coupling. The term

H, ( J;) describes the effect of the crystal field, and
H„describes .electron scattering on nonmagnetic
impurities. Writing (1), we have supposed the model
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of the effective electronic mass, where m ' is the
tensor of the inverse mass. We have also neglected,
in (1), the term which describes the effect of mag-
netic induction B on the spins of conducting elec-
trons, because this effect is small in comparison
with the exchange one.

Using the Hamiltonian (1), one can get the free-
energy functional F[A,b„S;], where A, b, , and

S;—:( J;) are unknown functions (see Refs. 13 and
14). Minimization of F with respect to A gives the
Maxwell equations for A, and after exclusion of A
from them we get the functional F[S;,b, ( r );T]. The
functional F can be written in the form

where FM means the functional for the magnetic
subsystem, F, is for the superconducting subsystem,
and F;„, is the part which describes the interaction
between magnetic and superconducting subsys-
tems —it includes the EX and the EM interactions.

B. The magnetic functional

The magnetic free-energy functional can be writ-
ten in the form

FM [S) ' T]=EM [S( ]+QEp [S( ' T]

where EM describes the EX and the EM contribu-
tions to F~ and Ep is the single-ion contribution to

F~. For Hp=0, one has

be[S]= —Tf b(x)dx, ,

where b, is the inverse Brillouin function of the mo-
ment S;.

Let us consider the term EM carefully. According
to Eq. (1) the exchange field, which acts on
superconducting electrons, is proportional to

S;=g S e '. In the sum over q there are
q q

terms with
~ q ~

&&2m.n', and terms with large
wave vectors

where K are the wave vectors of the inverse lattice
of LM's, i.e.,

~

K &2mn'~ . The latter terms are
the consequence of the discreteness of the lattice,
and they describe the short-wave part of the indirect
exchange (RKKY) interaction of LM's. The influ-
ence of this rapidly oscillating part of the field on
superconductivity is negligible, due to the small
parameter Q/K=(a/gp)'~ (see Refs. 13 and 22).
The contribution of this part to EM, together with
the contribution from the direct exchange is
described by the term

"EX
q —q

where

hp ——(g —1)nJ(0),

J(q)= fd rJ(r)e'e '' .

When q «2nn'~ it is correct to put J(q)=J(0).
The long-wavelength components of the exchange
field influence superconductivity, and vice versa.
This interaction is described by the term F;„, (ex-
plained later).

The contribution of the long-wavelength part of
the EX interaction to EM is given by

—gX„(q ) h -.h -/2p~
q

+8Ex( I q u2 q )S- S
q

where I„(q ) means the electronic paramagnetic sus-
ceptibility in the normal state; 8Ex ——N(0)hp, where
N(0) is the density of states (per LM) on the Fermi
surface. The tensor a2 is positive definite, and in
the framework of the Hamiltonian (1) it has the
form u2 ——[(m ')/24]EF.

We shall also divide the EM interaction into the
long- and short-range parts. The contribution of the
EM interaction to EM can be written in the form

EM, ——,
' +B(r, ) ~ (——psgS;), (2)

where the field B(r;) (at r, ) is created by all local-
ized moments, except the ith dipole. Let us sur-
round the ith dipole by the sphere of radius R so
that n '~ &&R &&2m.Q

' (Ref. 23) is fulfilled.
The interaction of all dipoles inside the sphere with
the ith dipole represents the short-range part of the
EM interaction, which does not interplay with su-
perconductivity because R « 27rQ ' « A,L. The
contribution of this part to EM has the following
orm

—8' g(1 —q ai q )S- S
q

8Ex and the tensor ai depend on the electron band
structure and the type of the lattice.

The long-wavelength component of the exchange
field is given by

h- =(g —1)nJ( q)S- —=hpS
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where the signs of 8' and ai depend on the type of
magnetic lattice. The interaction of the ith dipole
with the dipoles outside the sphere may be described
by the continuum approximation. By solving the

I

Maxwell equations one gets the long-range contribu-
tion to EM (in the normal state). Summing all con-
tributions of the EX and the EM interactions, we
obtain the magnetic free-energy functional

(q.S-)(q S -)
FM[S;;T]=g —8p(1 —q a q)S S + —8

e
q 2 m

8 =2ng npiiS (0), a=ai+a2+a3 Op 8Ex+8Ex+8 +

+QEp[S;;T],

We suppose, in (3), that 8p & 0, and q a q & 0, be-
cause we study the situation when the ground state
of the system is ferromagnetic (in the absence of su-

perconductivity). In Eq. (3) we use the normalized
values S;, i.e., we replace S; by S(0)S; with

~
S;

~

&1. S(0) is the value of the moment in the
FN state at T =0.

Further, we shall study systems with an easy-
magnetization axis anisotropy (in HoMo6Ss the crys-
tal structure is of the rhombohedrical type with
small distortions from cubic symmetry), as well as
systems with an easy-magnetization plane anisotro-

py (in ErRh4B4 the crystal structure is tetragonal
with an easy-magnetization plane perpendicular to
the c axis). Tensors m ' and a are used in the di-

agonalized forms, i.e., (m),J
'

m; ——'5;J, and (a);J
2R—0) LJ&j ~

C. The superconducting and interaction
functionals F, and F;„,

As we shall see later, the wavelength Q
' (of the

nonuniform magnetic structure} is of order
(asap)' «gp, AI . Therefore, the exchange field and
magnetic induction oscillate rapidly, which means
that we must consider the problem of superconduct-
ing pairing in the presence of the fields with the
wavelength q

' « (p, A,i . We shall study (and
solve) this problem in the case of dirty superconduc-
tors with electronic mean free path l, which satisfies
the following conditions: gp» 1 »Q ', (lh~/uq),
(elA&/c) «1. These conditions ensure an effective
averaging of the exchange field and magnetic induc-
tion over the distances of order gp, as well as an iso-
tropization of the electronic motion. It turns out
that the effect of the EX and EM fields on super-
conductivity (in dirty samples) is equivalent to the
effect of magnetic impurities, as is shown in the Ap-
pendix. Moreover, for the compounds with
T&TM «T, i it is correct to put T=O when we
consider the superconducting part (F, } of the free-
energy functional. It is shown in the Appendix that
under all these conditions, the coordinate depen-
dence of b, (r) can be neglected. The following func-

tionals F, and F;„,are obtained:

2eb, p
F,[b]=——,N(0)h ln, e =2.78

F;„,[S,b„B-]=N(0)
2r- 3r'.

m. h- h
'=uF 'g L, (ql)

3B- B
2q q 3L2(ql),

16K,I nN (0)q
(4)

L ( )
2yarctany

ir(y —arctany)

2 1 1L q (y) =— 1+ arctany ——
7T y

Here b,p is the superconducting gap at T =0 in the

absence of LM's. The induction B- is determined
q

by the minimization of the Gibbs free energy, i.e.,
the sum of the long-range part of Eq. (2} and F;„,.
One gets

4irngpz [q' S-—q( q.S-)]B-=
q +4mPp(q)(1 4/3nr b,)—

where

Pp(q) = 3wAL 2(ql) /16upki q

means the electromagnetic kernel of a superconduc-
tor at T=0 (in the absence of LM's). In further
considerations we assume that Ql »1, which gives
L i,L2 =1. The case Ql « 1 will be discussed in Sec.
III E.
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III. STRUCTURE OF THE COEXISTING
PHASE IN THE CASE OF THE

SECOND-ORDER MAGNETIC TRANSITION

A. The Anderson-Suhl result near T~

Now we consider the system with the second-
order magnetic transition (in the absence of super-
conductivity). This implies the positive sign of the
quartic term in the expansion of FM over S. Near
the temperature 8, the functional (3) has the usual
Ginzburg-Landau (GL) form with the anisotropy
energy

E,(S)=D(Sy+Sz), D &0

E,(S)=DSz+DS„Sy, D &0 (6b)

where (6a) describes an easy-magnetization axis an-
isotropy and (6b) an easy-magnetization plane aniso-
tropy.

First, we shall study the system with an easy-
magnetization axis anisotropy. In the vicinity of the
transition temperature TM (-8) we can retain only

D. The domainlike magnetic structure
in the superconducting state

It follows from Eqs. (4) and (5) that the EM con-
tribution to v

' is much smaller than that of the EX
one, if 38 /(A, L, Q) «28Ex. ' Certainly, this con-
dition is fulfilled in real compounds due to the large
value (Al Q) =(Ar /agp) »1. So we can reject the
second term in the expression for ~ ', and only re-
tain the EX term in F;„„which determines magnetic
structure in the superconducting state (together with
terms quadratic in q).

If we omit the term (3r~ ) in the expression for

F;„„then F;„, depends on S and q in the same way
q

as the magnetic field energy, which stems from a
dissipation of magnetic flux lines out of the fer-
romagnetic plate. The latter may be obtained from
the EX contribution (to F;„,) by changing
OExk/vp ir8Ex/gp by 8 l2L, where L is the
thickness of the ferromagnetic plate (see Ref. 24).
We know that in such a plate the 180' one-
dimensional plane-parallel domain structure is real-
ized with the wave vector Q=(aL) ' . This struc-
ture minimizes the free energy of the ferromagnetic
plate. In that way, we argue that the same domain-
like magnetic structure, but with Q=(asap)
should minimize the total free-energy functional (see
Fig. 1). In the next section we shall find all equili-
brium parameters of the proposed DS phase minim-
izing F[S,b„'T]=FM +F, +F;„„and we shall

prove that the 180' one-dimensional domain struc-
ture actually minimizes free energy.

FIG. 1. Domainlike magnetic structure, in the DS
phase, with the thickness of domain d =ir/Q. The ar-
rows show the direction of magnetization inside domains.

QM (~ 8Ex~p/48p vF }

QM ——(0,QM»ng, QM cosP },
(7)

should appear, which is the consequence of Eqs. (3)
and (4}. The angle P can be determined minimizing
the term a (P)/v~(P). In Eq. (7), and from now on,
it is understood that a and v~ take the value of a (P)
and v~(P) which minimizes the free energy.

The sinusoidal solution (7) is realized at the point
TM, and it transforms continuously into the
domainlike solution —by lowering the temperature.
The crossover region is very narrow, and for this
reason we do not study a magnetic structure in this
region. We remark only that in this region Q de-
creases from (a gp)

' [see Eq. (7)] to the value
-(asap) '/ (in the DS phase).

B. The energy of the domain wa11

We now consider the temperature interval where
the domain structure is well established, i.e., where
the thickness of the domain wall (DW) is much
smaller than the thickness (d =m. /Q} of domain. In
that case we can neglect the effect of F;„, on the
structure of the DW. Therefore, the DW structure
is determined by FM only. We shall find firstly the

quadratic terms of S,z in FM+F;„,. One sees that
the transverse structure has the minimal energy,
which is due to the EM contribution to FM—the
second term in the large parentheses of Eq. (3).

This means that Q should be perpendicular
to $(r), i.e., Q should lie in the yz plane. In that
case (at T= TM), the sinusoidal structure

S„(r ) —sin(QM r ),
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surface energy g of the DW, and after that rewrite
the functional FM [S;T] in the form

q P

[—eoS —To(S)+g(S P'T).Q/n. ]

DS,(z) =S tanh

az

a, 8p
]/2

Sy(z) = 1—2D S cosh ] Z

eor
D

where S means the normalized value of the moment
inside the domain, and therefore it is not coordinate
dependent. As a result, Fz will depend on S,Q, P in-

stead of I S I.
To obtain the temperature dependence of the DS

structure, we should know g for all temperatures
T & TM. The latter problem is solved by Ginzburg
and one of the authors (L.N.B.) in the framework of
the GL functional. The GL approach is correct if

and we start from this case.
Let us determine the DW structure if Q is along

the z axis. If r&2D/ep, one gets the linear-type
DW with the following coordinate dependence of
magnetization:

S, =O, (=2a,S (epD)' 1—
30rp

which transforms into the Bloch DW when

2D/ep«r Fo.r the arbitrary value of P, the plane
of rotation of moments is determined by the
minimization of FM including the EM interaction
too. In this case we obtain solutions analogous to (8)
and (9), but a, should be replaced by a (P) and D by
the effective anisotropy parameter D, ($,8,D,D).
The surface energy depends, in this case, on S, P,
and T. For D &So, the rotating solution is absent,
and if r is not very small one gets (=Cpa ($)eoS,
where Co is a numerical factor of order unity.

C. Equilibrium parameters of the DS phase

S„(z)=S tanh
zvr
a,

e~ 2 1/23"

Sy ——S, =0,

In the DS phase (for r»a Q /2) S(r) is the
periodic function with the period 2d and with the
property S( r ) = —S( r+ d ). The function S( r ) may
be approximated by the step function $„(r)=+S,
which is shown in Fig. 1. The Fourier expansion of
S„(r) has the following form:

4S " sin[(2n + 1)Q r ]S„r =
2n +1

The DW thickness is a, /~w, the condition

a, /~r&&d (or a, Q /m &&7 &2D/8p) determines
the lower boundary on D, and the temperature inter-
val where the DS phase is well established. F;„,does
not influence the DW structure —under the same
conditions, of course.

If one has 2D/ep&r «1, we get the DW with

rotating moments

Sy
——S,=O.

(10)

Setting this function into the expressions for r
in Eq. (4), one gets the free-energy functional of the
DS phase —S is the variational parameter. As is
mentioned above, the magnetic structure should be
transverse with the wave vector Q=Q[O, sing, cosg).
So we have the followng in the DS phase:

2

F[S,b, , Q, P; T]= eoS2+Ep[S; T—]+((S,J,T)Q/n —,N(0)b, ln— +N(0)
Q2

Nl

'=8ChoS' /7rvF(p)Q, C =1.05 .

1

3.'.

The minimum of F with respect to P is reached for the minimal value of g(P }/vF(P). From Eqs. (8) and (11)
it follows that there exists a well-established domain structure when r»(a/go) ~ . It follows also from Eq.
(11) that the equilibrium value of S(T) (in the DS phase} is practicall'y the same as in the absence of supercon-
ductivity, but with the small shift of the critical temperature

58 4C0Ex
8 ~koQeo

For the equilibrium values b, (T), Q(T), and F(T), we get [from Eq. (11)]the following expressions:

(12)
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h(T) =Ape "~, Q(T) =Qp(T)e "~ 1—
' 1/2

(13a)

F(T)= S—pS +E (T,S(T))—, N—(0)bpe "
1 — +2x (13b)

4mCbpS (T)SFx
Q0( T)=,g( T) —=g(S ( T), T),

vF((T)

where x =(b,r )
' & 1 is determined by the equation

(13c)

Z(x)—=xe-""" 1—4x
3lr

' 1/2
2

n.N(0)b, p

Cb,pg(T)S (T)SEx
7TUF

(13d)

Equation (13d) has one or two solutions, and
the minimal value of F is reached for the minimal
value of x. It is seen from Eqs. (13) that for
(a/gp) «r «1, one has

Q( ) = ( "Ex/a(OSO)

dF (ST)
aSaT

2

=0.459N (0)60
d lnT

(15)

In the temperature region ~&1, Q(T) decreases
slowly with the decrease of temperature due to the
growth of S(T)[g(T)]', on the right-hand side
(rhs) of (13d), and corresponding growth of x. The
superconducting parameter h(T) decreases by lower-

ing temperature, and its value is of the order of b,p

(see Sec. III D); Q(T) is of the order of (agp) '~ for
practically all temperatures where the DS phase ex-
ists. The temperature dependence of Q, 6, and S in
the DS and FN phases is shown in Fig. 2.

From Eq. (14) and the condition S & 1, it follows
that the DS phase is stable down to T =0 if

OEx & OEx =0.025N (0) kpvF /a(DS0)'

{a)

D. The first-order transition DS-FN

At the temperature T, 2, where the energies of the
DS and FN phases are equal, the first-order phase
transition takes place. The condition FDs(T, 2)

=F„N(T,2) gives the equation for x, i.e.,

2x +1—3x/2=0 .

The solution is x, 2
——0.235, and (b)

S,2 S (T,2I b, vFN(0)=0.0766
QC2 Q ( ~C2) OEX

(14)

We would like to point out that we consider the
sample with the thickness L »$0, which allows us
to neglect the energy of magnetic field dissipated
outside the sample.

At T, 2 one has b,,z ——0.8316,p, and the domain
structure (with the wave vector Q, z) disappears for
T &T,2 (see the comment on metastable states).
The magnitude of S jumps at T,2, from S,2 to
S,2+5S, where 5S=(a/gp)' . The latent heat of
this transition is given by

Tc2
(d)

TC2 Tg,T~ B T

FIG. 2. Case of the second-order magnetic transition.
(a) Free energies F(T) of the N, S, DS, and FN phases.
(b) Parameters S,b, Q in the DS and the FN phase-

schematically.
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where 8Ex is of the order of T, i/TMEF. The func-
tion E(x), on the left-hand side (lhs) of Eq. (13), has
a maximum at X,'z' ——0.68, which means that the DS

phase may exist down to T,'i' & T,2, where the su-

percooling temperature T,'2' is determined by Eq.
(14), replacing T, i, Q, 2 by T,'i', Q,'i', and numerical
factor 0.0766 by 0.146. Since g(T)IS (T) does not

depend on T for T & T, i, then S (T,'i')
= 1.59S ( T,2 ), Q,'2' ——0.75Q, 2, and b,,'"2' ——0.5866 p.

The overheating temperature T,'2' of the FN
phase is determined by the condition (see Ref. 26)

' 2 —1/2
(.)

2n.@nb pS'(T,'", ') = 1+
2hp h pH&2(0)

(1 )

For hp &)kp T,'z' Practically coincides with TM. At
temperatures far from T,'i' the energy needed for the
creation of critical nucleus of the DS phase (in the
FN one) is large, because the domain walls must ap-
pear in the region of the size g=((pl)'~ . Therefore,
the nucleation probability of the DS phase, in the
metastable FN phase, is very small far from T,'2'.

So, we can go over, by heating, from the FN state
directly to the nonmagnetic superconducting state
without passing through the DS phase.

In Sec. III C we found that Q should decrease on
cooling, i.e., the number of the domain walls should
decrease. The wave vector Q may change its direc-
tion, with the change of temperature, because at TM
its direction is determined by the minimum of
a IVF, and far from TM by the minimum of g/vF.
The change of the number of doinain walls and their
reorientation occurs by activation processes. This
means that if the activation energy is large, the time
for the change of the direction of Q, may be long
enough. For this reason, the change of the direction
of Q may go very slowly in real experiments. In this
case one has to put, in the lhs of Eq. (14), the coeffi-
cient K, where 1 &E & 2, and It. =1 for the equilibri-
um value of Q.

E. Conditions for the applicability
of the obtained results

We shall give now the conditions on 8Ex and D
under which the DS phase is realized. The follow-
ing conditions for the MA and the EX interaction
are used in obtaining the domain magnetic structure:
D » Spa Q /2ir and 28Ex»38~(A, LQ) . We
have used the following conditions on the electronic
mean free path l: Q » l ' and (hplIVF) «1.
These conditions permit us to treat the problem
quantitatively. All the above conditions can be writ-
ten in the following form:

OEx/Op &)(D/8p)' 'asap/l' . (17b)

These conditions are fulfilled if D/8p»a/gp,
(a/l), and if

a EF/l 8p»8Ex/8p))(a/XL), (a (p/1 ) .

There is no doubt that in reality, for not very dirty
compounds, the EX interaction and the MA are suf-
ficiently large to satisfy these conditions. If the first
condition (17a) is reversed, then the magnetic struc-
ture (in the superconducting state) is determined by
the EM interaction —the possible structures, in that
case, are considered in Refs. 4, 5, 11, and 12. If the
first condition is fulfilled but the second is reversed,
then the helical structure is realized. ' ' lf only the
first condition in (17b) is reversed (very clean super-
conductors), then the DS phase is realized below

TM, and it is of the plane-parallel type. In that case,
the region of its existence is broader than in the case
considered here —these results will be published else-
where. If only the second condition in (17b) is not
fulfilled (very dirty superconductors), then the accu-
rate expression for Li(ql) in Eq. (4) should be used.
The region where the DS phase exists narrows when
I decreases. If l approaches interatomic distances,
the period d is drastically decreased, and the theory
breaks down if the condition d »n '~ is violated.
We think that for such a small value of l the DS
phase cannot be realized, and the first-order transi-
tion from nonmagnetic superconducting state to the
FN one takes place.

In the study of the DS phase, the spin-orbital
scattering has been neglected, which is correct if
Q lsol » ir, where iso means the electronic mean
free path for the spin-orbital scattering. This con-
dition is fulfilled as long as l »a.

In our consideration, the exchange scattering of
electrons on LM's is neglected, i.e., on the spin-wave
excitations in the DS phase. To take it into account,
we must add the quantity r, ' to r ' in Eq. (11),
where r, means the exchange scattering time (see
Appendix). The quantity r, does not depend on Q,
because Q «kF, but it may depend on T. The pres-
ence of r, modifies the function E(x); the lhs of Eq.
(13) should be multiplied by the factor (1 —xp/
xe ' ), where xp =(r,hp) '. Besides this, we
should add the term mxpe "~ (1—4x/3m) to the fac-
tor (1+2xi—3irx/2) in the expression for F(T) in
Eq. (13b). The approximation xp-0, which we used
in the study of the DS phase, is correct for ErRh4B4,
where xp 8Ex/kp 0.04, as well as for HoMo6Ss
where xp -0.05.

(OEx /Op) » (D IOp) alp/~L

D /8p )&(a8Ex/gp8p), ( 17a)

O" Ex/Op «EFa /O~
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IV. CRITICAL MAGNETIC
FLUCTUATIONS NEAR TM

In the magnetic crystals with the critical tempera-
tures 8»8 the region of critical magnetic fluc-
tuations is sufficiently large, due to the smallness of
the characteristic length of the exchange interaction.
For the systems like ErRh4B4 and HoMo6Ss, the
critical temperature T~ is of the same order as

8~—which characterizes the long-range dipolar in-

teraction. For this reason, in the crystals with an
easy-magnetization axis anisotropy fluctutations are
small at all temperatures except the very narrow re-

gion near TM (see Ref. 37). To estimate the region
of strong fluctuations, in systems with an easy-
magnetization axis MA, we consider the quadratic
part of the GL functional near T~, i.e., for T & T~.
In the case where )(.L &go, this functional has the
Orm

F[S„-,b,p, T]=
r

2~8Ex~o 1 qxS S 8oaq+», , +r + —8
28 (U q )'~ 2 g

I q l»4O ' 0 F; I

(18)

Fluctuations of the Fourier components of S,(r)
with q &gp

' near T~ are suppressed by supercon-
ductivity. If r is much larger than the minimal
value of the term

«'q '+ ~8Ex/2(o8oq»

i.e., if r»a QM, then fluctuations are practically
the same as in a ferromagnet with an easy-
magnetization axis MA and strong magnetic dipolar
interaction. We know that in the latter case the
fluctuations are four dimensional and logarithmical-
ly weak. When r & rg -(a/(p) ~, fluctuations are
strong, and in this region the peak at the wave vec-
tor QM appears. We think that below T~ the fluc-
tuation region is characterized by the same parame-
ter rg. This means that fluctuations are sinall in the
temperature region where the domain structure is
well established, and therefore the MFA is correct.

In the case of an easy-magnetization plane MA,
the EM interaction does not suppress the transverse
fluctuations of the moments in the easy-
magnetization plane. However, for r »a QM
=(a/gp), fluctuations are of the ferromagnetic
type again, and the peak at Q~ appears only at
r & (a/go) . So, we come to the conclusion that in
systems like ErRh4B4 and HoMo6Ss fluctuations at
T & TM are practically the same as in the absence of
superconductivity, i.e., they are of the ferromagnetic
type.

in superconducting (S) state, it is possible to neglect
again the influence of superconductivity on S(T).
Therefore, at the temperature T~ -8 the first-order
phase transition takes place, from nonmagnetic S
state to the S state with an inhomogeneous magnetic
order. At T& magnetization jumps from zero to

M.
Parameters of the inhomogeneous magnetic struc-

ture are determined by Eqs. (12) and (13) with S ( T)
and g(T), which correspond to the new functional
F~[S;T]. At T& T~ the DW thickness is small
compared with the domain thickness d, and here the
Ds phase is realized too. In this case the DW ener-

gy g depends weakly on T [the multiplicative factor
in Eq. (8) is absent in the case of the first-order

transition], and g(T)=a8pS' (T). By this reason,
the value of Q changes very weakly with tempera-
ture, and Q '=(8oago/8Ex)' . The temperature
dependences of F, S, b„and Q in the DS, FN, S
and N phases are shown in Fig. 3.

So, as far as we are interested in the equilibrium
properties of magnetic structure, modifications of
Sec. III for the description of the case when the
first-order transition takes place are not essential.
The difference is that now the domainlike magnetic
structure should appear by a nucleation process in
the nonmagnetic S state. In the following section
we shall study the process of nucleation of the DS
phase.

V. INHOMOGENEOUS MAGNETIC
STRUCTURE IN SYSTEMS WITH THE
FIRST-ORDER PHASE TRANSITION

A. The equilibrium state

Let us study which modifications of the theory,
presented in Sec. III, are needed if the functional

FM[S;T] gives the first-order transition N~FN at
the point 8. To obtain the equilibrium value S(T)

B. Formation of the DS phase

by a nucleation process

Let us study the DS nucleation in the S phase at
temperatures T,'z & T & T~, where FDs( T) & I's( T)
&FqN(T), and T,'2 is determined by the condition

FpN(T,'z) =Fs(T,'2), i.e., F„N(8)—Fi;N(T,*z)

=N(0)bo/2. At the beginning, the small region
with ferromagnetic order appears. Its magnetization
is directed along an easy-magnetization axis, and the
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e, = , n —~j n8' s (5F)

a. =1+8 /D, 5F=FpN(8) FpN—(T),
(19)

where 5F(T) is the gain of the free energy due to the
ferromagnetic ordering in normal state; 5F ( T)-8—T at temperatures near 8.

When the critical (ferromagnetic) nucleus appears,
it may grow infimtely in the form of a thin fer-

I

critical nuclei has the form of the rod stretched
along the easy-magnetization axis. This is due to
the magnetic dipole interaction (see Ref. 29).

Superconductivity has no effect on the creation of
the critical nuclei, because its thickness is small in
comparison with go. The activation energy e, of the
critical nuclei is

romagnetic plate (the thickness d of the plate being
much smaller than (0), with the magnetic moment
parallel to the surface of the plate. Such a plate
does not destroy overall Cooper pairing, and its free
energy is lower than in the nonmagnetic S phase.
This is due to the magnetic ordering. So, the initial
ferromagnetic rod transforms into the plate, whose
volume grows by the infinite increase of the plate
area. We determine now (1) the maximum possible
value of d, (2) the orientation of the plate, and (3)
the temperature at which the area of the plate may
grow infinitely. Let us calculate the free energy of
the ferromagnetic plate with the thickness d «go, l
and with (hr) «1. In this case the free energy (per
unit area) is given by

Fpi (d, T) =n [ 5F(T)d—+0( T)+F&n((d T)]

T

~inst q ~1 f2~ T 4 Ex n 0 s 0 8 + m
q +4m.I'o(q)

2b, 2 /Up
—,[X„(q)—X,(q)]ps —— dna, , arctan

UFq (co'+ b,o) 2(ni'+ 50)

(20)

(o)

where S(T) is the normalized magnetization inside
the plate, which is practically the same as in the FN
phase. The term F;„, describes the increase of mag-
netic energy due to the change of electronic suscepti-
bility on the presence of superconductivity. The in-
tegrations over r, and r2 are over the volume of the
plate. The calculation gives

FPL(d, T)= n —5F( T)d +g( T)

~CO+ —,8E„S'(T) ln Sde'"

(21)

(b)

TQ p
(d)

l

Tc v Tc~ ()(u)

The electromagnetic contribution to F;„, is neglect-
ed, because it is smaller than the exchange one, due
to the small parameter 8 d /8Exl, t .2

Minimizing FPL with respect to d, one gets the
thickness d~ of the ferromagnetic plate in the super-
conductor, i.e., d =gn5F(T)/8ExS (T). The con-
dition FPL(d, T)&0 determines the temperature at
which the plate may appear For 5F(.T) one gets

5F(T)) (8 S (/gn)' =8S'(a/(o)'
FIG. 3. Case of the first-order magnetic transition: (a)

F(T) in the X, S, DS, and FN phases. (h) S', b, , Q in the
DS and the FN phase. 8 T(r -8(a/(n)'~, —
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and

d & (8oako/8Ex)

We see that the condition d «go is actually fufilled
near T~, and T~ & T,', if S ( TM ) & S(T,2).

From Eq. (21) it follows that FPL is minimal if
the normal to the surface of the plate is perpendicu-
lar to the easy-magnetization axis. This means that
the orientation of the plate is obtained from the
minimization of the DW energy g.

Now, we can determine the activation energy of
the critical nucleus at the temperature where the
plate may grow infinitely (along an easy-
magnetization axis). Here we may rewrite Eq. (19)
in the following form:

E (T)- , 7r ~ —na ((0/d ) 8,
5F( T)

(22)
S'8Ex

Therefore, the plate appears at TM, where

FPL(d, T) &0 and where e, (T)/T is not very large.
These two conditions are fulfilled if 8—TM is of
the order of 8(a/go)'~, and if d -(ago)'

Superconductivity stops further growth of the
thickness of the plate above d at T & T,'2, because
the destruction of superconductivity cannot be com-
pensated by the gain of magnetic energy. So, fur-
ther increase of the magnetically ordered region is
possible by the creation of a new nucleus only. The
appearance of the new nucleus is in its neighbor-
hood, because the plate induces the exchange and
magnetic fields at distances of go and XL, respective-
ly. Far enough from the plate, i.e., on distances
r »k~ ', directions of induced fields are opposite to
that of the moment inside the plate, due to super-
conducting overscreening. The value of the ex-
change field is approximately —(41n2)8ExSd/(0 in

the region go»r »kF . This field causes the de-

crease of the activation energy of the second nu-

cleus, and it turns out that for the second nucleus 5F
is increased by a factor of 3. This means that the
activation energy of the second critical nucleus e,
(near the initial plate) is only —„ofe,' (E', is the ac-

tivation energy for the first critical nucleus). Practi-
cally, the second nucleus appear immediately after
the formation of the first plate; this second nucleus
transforms then into the second plate adjoined to the
initial one—the moment of the second plate being
opposite to the moment of the first one. The repeti-
tion of this process gives the transverse one-
dimensional domainlike magnetic structure with the
wave vector Q =m/d and with d & (80a(o/
8Ex)'~ . We remark that the parameter Q~ of this
structure may be smaller than the Q value of the

equilibrium DS phase. If so, the formation of new
domain walls is necessary in order to achieve the
equilibrium state. The activation energy of such a
process is large enough, and probably it is not possi-
ble to achieve the optimal value of Q in real experi-
ments. In a such metastable DS phase only optimal
values of S ( T) and 6( T) are established, and they
are determined by the minimization of the function-
al (11) at the given value Q~ = m. /d

On cooling, the transition DS~FN may take
place at T, 2 determined by Eq. (14) with the coeffi-
cient K on the rhs. Below T, & the part of domains
may survive in the FN phase, due to the pinning of
DW's on imperfections of the crystal.

VI. THEORETICAL RESULTS AND
COMPARISON WITH EXPERIMENTAL DATA

A. Results in the case of the second-order
transition

We summarize here the main theoretical predic-
tions for the case of the second-order phase transi-
tion.

(a) The inhomogeneous magnetic structure of
transverse domainlike-type should appear on cooling
from TM (at TM the sinusoidal structure appears).
This structure gives peaks at (2n +1)g in neutron
scattering [Q=(ago) ' ], where intensities of peaks
are proportional to (2n + 1) for a monocrystal and
to (2n + 1) for a polycrystal.

(b) The equilibrium value of the normalized mag-
netization S(T) inside domains is given by the same
temperature dependence as in the absence of super-
conductivity, but with a small shift of the critical
temperature —of the order of (a/(0)' [see Eq.
(12)]. Intensities of peaks at (2n+1)g are propor-
tional to S'( T), and near TM one has S ( T) —r.

(c) The equilibrium value of Q decreases with the
decrease of temperature, i.e., Q-r ' near TM
see Fig. 2.

(d) Fluctuations are of the ferromagnetic type for
T & TM, and they are small in the crystal with an
easy-magnetization axis MA. The crossover from
the ferromagnetic-type fluctuations to those of the
inhomogeneous structure takes place in the very nar-
row region near TM —it is of order rg -(a /(0)

(e) Bragg scattering, in the DS phase, should give
the satellite peaks [m +(2k + 1)g, a /2m. , n + (2k
+1)g~b/2m, p+(2k+1)g, c/. 2'] around the fer-
romagnetic peaks (m, n,p) of the FN phase, the fer-
romagnetic peaks being absent in the DS phase. The
net intensity of all satellites is proportional to
SDs(T); it differs from the ferromagnetic peak in-
tensity SF(T), which would be observed in the ab-
sence of superconductivity, by the shift of the criti-
cal temperature 58—according to Eq. (12).
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(f) The transition DS~FN takes place at T, 2 for
the systems with the parameter 8Fx which satisfies

8Fx&8Fx. The point T, 2 is determined by Eq.
(14). Owing to the pinning of domain walls, the
part of domains with "wrong" direction of magneti-
zation (relative to the main coherent structure) may
be conserved at T & T, 2 (in the FN state). These
residual domains give rise to the small-angle neutron
scattering and to the broad diffuse component
around ferromagnetic peaks in Bragg scattering.

(g) The FN phase remains metastable, on warm-

ing, up to the temperature T,'3' which is practically
the same as TM [see Eq. (16)]. The lifetime of the
metastable FN phase is sufficiently large, and this
phase may survive up to TM (on warming). In this
case the normalized intensity of the neutron scatter-
ing on small angles, as well as Bragg scattering, are
proportional to SF(T)—the value which would be
observed in the absence of superconductivity.

(h) At the transition DS~FN the jump of S ( T)
is of the order of (a/go)'~, and the latent heat given

by Eq. (15) should be observed.

B. Experimental data for HoMo6SS
and their interpretation

It is important to mention that up to now the po-
lycrystalline samples of HoMo6Ss were studied only.
Most of the theoretical predictions, stated above in

(a}—(h}, are confirmed by the following experimental
results:

(a) The peak in neutron intensity (in the small-

angle scattering) is observed, at TM -0.7 K on cool-

ing, which comes from the transverse inhomogene-
ous magnetic structure with the wave vector
Q=0.03 A. The peak at 2Q is absent with a great
accuracy. The peak at 3Q is not observed too. This
fact is not in a contradiction with the theoretical
prediction, because its intensity should be very small

in polycrystalline sample: I3Q & Ig /81.
(b) The intensity of the peak at Q is proportional

to r (near TM ), which means that I~ -S ( T),
(S -r) This is typ.ical for the second-order phase
transition with very narrow fluctuation region (see

Fig. 4).
(c) Q decreases slowly on cooling. 6

(d) The peak at Q disappears at T,2-0.65 K on

cooling, and at T, 2 one has S,2-0.35. ' This value
for S,2 is obtained from the normalized intensity of
small-angle scattering. From the results of Sec.
IIID, the DS phase could survive down to T,'2',

where S (T,'2') =0.56 and T,'2'-0. 6 K. Lynn
et al. observed this metastable (DS) phase down to
0.62 K. The residual domains in the FN phase were
observed in HoMo6Ss (Refs. 6—8) by the small-
angle neutron scattering.

0.4
I(T)
I(0)

0.5 0.6 0.7
T
09

0.5—

0.4 0.5 0.6 Q7 7

FIG. 4. Dashed lines are the normalized intensities of
the Bragg peak (100) in HoMo6S~ on cooling and on

warming (Ref. 8). The solid lines are the intensities of the

(101) peak in ErRh4B4 (Ref. 10). Our proposal is as fol-

lows: the magnetic transition in HoMo6S8 is the second
order at 0.7 K, while in ErRh4B4 it is the first order. The
part of the curve from 0.75 K up to 1.2 K is due to inho-

mogeneous stresses.

(e) On cooling down to 0.65 K, the intensity of
(100) Bragg peak is given by the same curve as on
warming (in the FN phase) but with the shift of crit-
ical temperature 58/8=0. 015 (Fig. 4). With the
use of Eq. (14) and the experimental values
S 3 0.35, kp 3.5 K (also using 80-8), we get
the reasonable value for the density of electronic
states N(0) '=3600 K. Taking UF-10 cm/sec,
one gets 8Fx —0. 15 K.

(g) The FN phase is preserved, on warming up to
0.7 K; this is observed in the small-angle neutron
scattering experiments.

We point out here that, on warming from the FN
phase, the intensity of the small-angle neutron
scattering, as well as that of the Bragg peak, gives
the function S(T), which is very close to the Bril-
louin one. This fact confirms the assumption of the
second-order phase transition in HoMo6Ss —in the
absence of superconductivity. So, the proposed
theory presented in Secs. III and IV is applicable to
this compound, and it is in an agreement with exper-
imental data. ' Comparison of experimental data
on HoMo6Ss in a magnetic field s with theoretical
predictions in Ref. 30 gives additional confirmation
of the theory presented in Secs. III and IV.

C. Experimental data for ErRh4B4
and their interpretation

Sinha et al. ' observed in the monocrystal of
ErRh4B4 at T &1.2 K (on cooling) the growth of
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ferromagnetic peaks and of their satellites. At tem-
peratures lower than 0.7 K the ferromagnetic peaks
(F peaks) were observed only. The net intensity Is
of satellites is much less than the intensity Ip of F
peaks at all temperatures —it is reported that
Is &0.1Ip B.esides that, the shape of the tempera-
ture dependence of Ip(T) (on cooling} seems to be in
contradiction with the assumption of the second-
order phase transition, because the intensity of the F
peak grows very rapidly —from 0.13 Ip(0) up to 0.7
Ip(0) near T=0.75 K [see the data on Ip(T) far
ErRh4B4 in Fig.4]. On warming, the behavior is
similar —a rapid decrease of intensity was observed
at 0.8 K, and a width of hysteresis of order 0.06 K
is present in the region 0.7 & T &0.85 K. Moreover,
the broad diffuse component around each F peak at
T & 1.2 K was observed (B line), caused by the pres-
ence of small ferromagnetic regions of sizes —100 A
which are incoherent with the main ferromagnetic
region (also in the FN phase). The volume of these
incoherent regions is 9% of the ferromagnetic re-

gion at 0.75 K, and 5% at 0.54 K. Measurements of
resistivity give the superconducting transition to the
normal state at 0.73 K on cooling, and from FN to
superconducting state at 0.8 K on warming.

The inhomogeneous magnetic ordering is charac-
terized by the wave vector Q,„~,=0.06 A '—it is
practically independent of temperature. The intensi-

ty of the 3Q peak (if it exists at all) is less than 2%
of the intensity of the Q peak.

In polycrystalline samples of ErRh4B4, Bragg
peaks appear at 1.4 K, and the hysteresis was ob-
served in the interval 0.6—1.2 K. To explain these
data we assume the following:

(1) The magnetic transition in ErRh4B4 in the ab-
sence of superconductivity would be of the first or-
der, or very close to it—the transition temperature
being 8.

(2) The value of 8 varies over the sample investi-

gated in Refs. 9 and 10 due to the inhomogeneous
stresses —the distribution function of Sf(8) is in-

troduced with the peak near 8=0.75 K.
The first-order phase transition may be caused by

magnetostriction or by the crystalline-field effect (a
type of induced ferramagnetism '), i.e., the large
magnetic contribution of the lowest excited doublet
of Er + ions, the splitting of two lowest doublets be-

ing less than 1 K.' The strong evidence for this as-
sumption is the measurements of magnetization
M(H) done by Behroozi et al. ,

' which show that
the coefficient of the S term, in the free-energy
functional, is very small (near zero) and could be
negative —they found the following dependence:
M-H'~ . We remark also that the discontinuous
behavior of the value dIp(T)/dT (at T=0.75 K on
warming) and large hysteresis of Ip(T) in monocrys-

P" (T)

Ig(T)= f f(8)S'(T8—58)d8

8 (T)

Vq(T)= f f(8)do

T(((T)= J~ (~/(8)S'(T, 8)d8,
1

V,(T)= f,"„/(8)d8,

(23a}

(23b)

where 8, is determined by the condition
S(T,Si —58i)=S,2 on cooling, and by the candi-
tion S,2&S(T,S,—58i) &S(8'"') on warming [in
Eq. (23b)], because the FN phase may be overheated
up to 8'"' (see Fig. 3). The possible increase of Si,
on warming, is the origin of the hysteresis in the
neutron scattering experiment and the measurements
of the resistance.

We argue that the small relative net intensity
Is /Ip is caused by the increase of S ( T,8 ) up to S,z
in the very small temperature interval (T~, T,2)—it
is much smaller than the interval of the 8 distribu-
tian, being narrow due to the first-order transition.
In this picture, and in the crude approximation,
Is(T) is proportional to the distribution function
f ( T), and at T & 0.75 K we get

8(SDs ) dIp
Is(T)= 2 z (TM —T 2} (24)

tal' give the evidence in favor of the first-arder
transition. The second assumption is a natural
consequence of the first one, because the strong
dependence of 8 on stresses is typical for induced
magnetism. It may also explain the observation of
Sinha et al. ,

' that stresses arising from mounting
give a preferential direction of moments along the a
axis, but in the crystal without stresses the a and b
axis are equivalent.

Independently of the type of transition, the DS
phase appears at TM ——8—58 [the value of 58 is af
the order 8(a /gp)

' ], and then the transition
DS~FN (on cooling) takes place when S(T,8)
reaches the value S,2 [see Eq. (14) with the coeffi-
cient K an the lhs]. In different regions of the sam-
ple the transition occurs at different temperatures
due to the distribution of 8. Therefore, at some
temperature T the following three phases are present
in the sample: (a) the nonmagnetic supercanducting
S phase in the regions where 8—58 & T, (b) the DS
phase in the regions where 0&S(T,S—58)
&S,2, (it gives satellites), (c) the FN phase with rem-

nant domains in the regions where S(T,S—58)
& S,2', it gives F peaks and 8 line.

For the regular domain structure we obtain the
normalized intensities Is( T),Ip( T), and volumes

Vs, Vp of superconducting and narmal phases,
respectively,
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where (Sos), and (Sz) are the mean values of
S (T) over the temperature interval where the DS
and FN phase exist. The experimental data given in
Ref. 10 are in accordance with the relation (24), giv-
ing (TM —T,2)(Sos)l(SF) =0.02 K. We remark
that the value of Q does not depend on temperature
(in this picture), because the DW energy g depends
on 8 very weakly, and because the temperature in-

terval (TM, T,2), where the DS phase exists, is very
small. The absence of the peak at 3Q may be ex-
plained by irregularities of domain structure, i.e., the
irregularities of the domain thickness caused by the
crystal imperfections. We remark that intensities of
higher peaks decrease rapidly, when irregularities of
the domain structure increase. The superconducting
resistance transition should have the percolation
character, and it occurs when V, (T)=0.25.

Finally, we can verify the condition (14) for
ErRh4B4. Taking the parameters presented later in
Sec. VII, one gets S,2-1—the experimental value
being -0.5.

So, our assumptions give the possibility for the
explanation of the experimental data on
ErRh4B4. ' The second assumption is necessary to
explain the simulataneous existence of F and-
satellite —peaks, while the first assumption ensures
the small intensity of satellites. The full quantita-
tive description is impossible, at this moment, since
the functions f(8), and S(T,8) are unknown.
Magnetic measurements on monocrystalline sample
of ErRh&B4 may give an additional information on
the magnetic functional FM I S;T I and on S ( T).
Measurements of magnetization and resistance
under axial pressure may check our assumption of
the strong dependence of 8 on stresses.

VII. PARAMETERS OF ErRh4B4 AND
HoMo6S8 COMPOUNDS

Relevant energy, and length parameters of
ErRh4B4 and HoMo6S8 compounds are given in
Tables I and II.

The parameters I and electron-collision time r for
polycrystal samples of ErRh4B4 were obtained from
the diffusion constant D =4. 15 cm /sec. The value
for vF is obtained from the data for N (0) and
H, ~,H,' (02), at T & 1.4 K, using well-known expres-
sions for H, ~, H,*2, and At. The measurements of
H, ~

done by Schneider et al. on polycrystals, give
H, &-1.5 kOe at 2.5 K. Then we get UF-2&&10

cm/sec. The value for 8Ex is estimated in the In-
troduction. The parameter a is estimated from the
experimental value for d, using the following expres-
sions: gp v——F/mkp, Ap=1. 76T &, and d &(8pa(p/
o"Ex)'"

For HoMo6Ss, the value for N(0) is taken from
the data in Ref. 19; ( is calculated from the curve
H, 2(T), ' and 8Ex is estimated in the Introduction.
All other parameters of this compound are un-
known.

Finally, we can verify the conditions under which
the theory of the DS phase is developed. It is as-
sumed that the parameters 38 /28Ex(A, L Q),
(hps ), (rb, ), (kg

1�/c),
and (Ql) ' are small.

Indeed, we obtain for the polycrystalline sample of
ErRh4B4, 0.006, 0.015, 0.06, 0.002, and 0.3, respec-
tively.

VIII. SUMMARY AND CONCLUSIONS

Let us summarize the main results.
(a) The magnetic structure in the superconduct-

ing state is found.
(b) The EX interaction, in the presence of super-

conductivity, gives rise to very rapid spacial oscilla-
tions of magnetic moments, with the wave vector
Q»gp '.

(c) The EM interaction between superconducting
electrons and LM's does not influence the magnetic
structure. The direct dipole-dipole interaction be-
tween LM's make the structure transverse.

(d) The magnetic anisotropy (MA), with the EX
interaction, makes the structure domainlike.

(e) The domain structure is one dimensional, be-
cause the superconducting condensation energy de-
pends very weakly on the type of magnetic structure
(for given value of the wave vector Q), while the en-

ergy of the DW's is minimal for the one-
dimensional structure.

(f) If the transition S~DS is of the second order,
then the DS phase develops continuously starting
from the sinusoidal structure with a small ampli-
tude. We argue that this situation is realized in
HoMo6S8.

(g) If the transition S~DS is of the first order,
then the domain structure appears (in real experi-
ments) by the creation of series of nuclei with alter-
nating opposite directions of magnetization, the
creation of the first critical nucleus being the bottle
neck.

TABLE I. Energy parameters (measured in K).

ErRh4B4
HoMo&S8

N '(0)

1850
3600

UFQc2

840 250

ho

30
20

15

3.5
1.3
1.3

OEX

0.5
0.15
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TABLE II. Characteristic length parameters (measured inred in A.

ErRh4B4
HoMo~S8

go

300 60

2d =2m/Q

100
200

&4

(ig ))/2

130
250

(h) For the explanation of experimental data on
the monocrystalline sample of ErRh4B4, we propose
that there exists a first-order magnetic phase transi-
tion, in the absence of superconductivity, and ( )(2)
there is a strong dependence of the magnetic critica
temperature on inhomogeneous stresses in the real
sample.

—i(v V)g =Hg gH—. (A3)

In our case, we obtain from (A3) two equivalent
matrix equations, in the 2 X 2 space for the spin pro-

1

jections + —, . For the spin projection ——,, we get
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co+ ih (r ) +i vA—( r ) + —, v r()' f( v, r )
C

=A(r)g(v, r),

cu+ih (r ) +i vA( r ) ———, v (' ft( v, r )
C

APPENDIX

W onsider Cooper pairing of electrons m the
r thepresence of the exchange field h(r)=(0, 0,h(r)) t e

vector potential A(r), and nonmagnetic impurities
with scattering potential of the 5-function type.

The Green's function of electrons, averaged over
random positions of impurities, is given by t e ex-
pression

1 0
b, (r) = b, (r)+ f(v, r),

2~ 4~
' () (~"(. + )f=, f'(-. ,

-. ),1 dQ
2~ 4m.

1
cu(r ) =co+ -g(v, r),

2~ 4~

=b, (r)g(v, r),

(A4)

6(r, r')= =QG(p, r)e' ~' '
F 6

(Al)

f(v, r) = — F„(g,v, r ),
2m.

f (v, r)= f F„(g,v, r),
277

6 is the solution of Gor'kov equation G '6=1,
where the matrix operator 6 ' is given by

6 '(p, r)=[ (+v(i%)+—H(r)],

g(v, r)=i G„(g,v, r) .2'

Multiplying (A3) by g one gets the equation

H(r) =i cu ——v A r, +h(r)a, r, +b,'o„r
C (v. V)[g (v, r)+f(v, r)f (v, r)]=0, (A5)

1 0+Ao„~+— g(v, r),
2~ 4m.

(A2) and for h ~Q, A~Q we should have g +ff = 1. So

r+ —r +IT&, g(v, r)= 6(p, l )
2m g (v, r)+f(v, r)f (v, r)=1. (A6)

Here, g is the electron energy with respect to the
Fermi energy; v is the velocity on the Fermi surface.
The integral over 0 means the integeral over the
direction of v; r and & are Pauli matrices in "iso-
s in" and s in space. The integration of the relation
6 '6 —GG '=0 over g gives the Eilenberger-type

35equations
&(v)=vvg, vvN(0)T& f f(V,v.

co) 0
(A7)

Equations (A4) and (A6) together with the sel-
consistency equation
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gives the complete system of equations for the func-
tions f(v, r), f (v, r), b(r), and g(v, r).

We solve these equations for the periodic function
S(r)=S(r+2d), S(r)= —S(r+d), where 2d is the
period of the magnetic structure. In general, the
parameter b, (r) is complex and its phase is P(r).
We choose the gauge so that h(r ) is a real function.
Then in (A4) A(r) should be changed by Al ——A

i—cV'(tl/2e W. e write h (r) in the form

i Q r(2m+ii —i Q r(2m+I))r= —, ~~, , e —e 7

m=0

(A8)

and similarly for A, (r), where Q is the inverse lat-
tice vector of magnetic structure. We write the solu-
tion also in the form of Fourier expansion, i.e.,

Sk(v)=—
2&f0( v )go( v ) hk +—Alk

C

1+k r (vQ)
' —1

arctan( glk)
k k

0
go go(V),

4m.

fo=i fo(v~
dQ

fo v
gk(v)= — [fk(v )+fk( —v)],

2g(l( v )

fk(v)= —,Sk(v) 1 ——i k(v Q)
2 1

CO+ go27

(A 10)

f(v, r)=fo(v)+ g fk(v)e' Q'',
k~o

To obtain (A10) we neglected also terms which con-
tain the small parameter b,r. Using (A10), we get
the equations forgo(v) and fo(v)

g(r) g+ y~ eikQ r

k~o

(A9) g(l(v)+f(l(v)=1,

fo~+ fo fo( ) — + go(
27 27

(Al 1)

and the similar one for f (v, r) andg(v, r).
Now we put (AS) and (A9) into (A4) and neglect

the terms which are quadratic in gk and fk with

k&0. Later we shall see that these neglected terms
are small, due to the small parameters (h~r) and

(elA~/c) . Therefore, we obtain for @&0

h —k+ —Al, k ~k(v)
k~o C

From (A 1 1 ), neglecting terms proportional to
small parameters (see above), we get the following
equations for go and fo:

fo+g o= 1 rofo ~f0= 2fofo&2 —2

(A12)

V V
hk+ Al +k h k+ —Al

C C1 dQ
2 k~o 4~ 1+k r ( vQ)

Using (A12) and the self-consistency equation (A7), one gets the equation for b, at T =0 in the form

ln —f (x)=0, x =(r b ) (A13a)

f(x)=
mx/4, x(1

arccosh(x)+ — x arcsinh ——(1—x )'~, x & 1 .
2 X

(A13b)

In obtaining (A13) we assumed that the Debye
frequency roD »60. By solving (A13) we can calcu-
late, in the usual way, the free energy F,[b„r ] of
the superconductor for given value of r [S~], add
the functional FM[Se, T], and then minimize their

sum with respect to S~. In that way one gets the
equilibrium magnetic structure. To find F„we
know that minimization of F, with respect to b
should give (A13). We also know that for T =0 and

i=0 the equilibrium Value of F, is —N(0)802/2.
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F,[~,b, ] =F,[h]+F;„,[r,b, ],
2ego

F,[b]=——,N(0)b, ln (A14)

, ~ 6&1.

The expression for F;„, is written only in the case
b, & 1, because this case is relevant for real sys-

From these conditions it follows unambiguously

F,[r,h], if we multiply the lhs of (A13a) by
2N(0)b„and integrate over 5 from 6=0 to b, . The
final result has very simple form

tems (ErRh4B4, HoMo6Ss). We have been consider-
ing from the beginning the case h(r)=(0, 0,h). The
simple generalization to the case of arbitrary direc-
tion of h(r) and minimization of (A14) with respect
to the phase P of superconducting order parameter
give the result (4).

From (A13), and (A14) we see that, the effect of
magnetic structure of the DS phase on the supercon-
ducting condensation energy is similar to the effect
of magnetic impurities with the magnetic scattering
time r . By this reason, the effect of magnetic
scattering, in the DS phase, may be taken into ac-
count replacing r~' in (A13) by the quantity

'+ r, ', where r, is the time of the exchange
scattering due to the spin excitation in the DS phase.
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