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The critical dynamics of the A, transition in He- He mixtures are studied by means of re-

normalized field theory applied to the model of Siggia and Nelson. A diagonal representa-
tion for the equations of motion is introduced, which greatly simplifies the computations in

two-loop order. A universal connection is found with the asymptotic critical dynamics of
pure He in all orders of perturbation theory. The observable critical dynamics of helium

mixtures are dominated by nonuniversal crossover effects which can be properly described

only within a nonlinear renormalization-group approach. The theory is applied to explain

the observable critical and precritical temperature dependence of the mass diffusion D, of
the thermal conductivity a, of the thermal diffusion ratio kz. , and of the dynamic structure
factor for T) Ti(X). Recent experimental data for the transport coefficients at the molar
'He concentration X=0.05 by Gestrich and Meyer are used to identify the nonuniversal

parameters of the theory in the range X &&1. Consistency with the dynamics of pure He
(X=O) is verified. Predictions without adjustable parameters are made for the dynamic

structure factor and the transport coefficients in very dilute mixtures. The Siggia-Kawasaki
problem concerning the leading X dependence of ir(T~) in the X~O limit is resolved. It is

demonstrated that Siggia's prediction x(Ti )-X ' is correct but not observable. Theoretical

extrapolations to X &0.05 without adjustable parameters are presented and compared with

measured transport coefficients at X=0.11 and 0.15. The overall agreement is satisfactory.
Deviations of order 15% exist with the thermal conductivity ~ at X=O. 15. This may be at-
tributed to dynamic effects arising from the singular specific heat and mass susceptibility,
which are not included in the present analysis.

I. INTRODUCTION

Favorable experimental conditions such as the ab-
sence of strains and impurities as well as a rich
variety of observable properties have stimulated a
large number of dynamic experiments near the A,

line T~(c) of He- He mixtures. ' While the static
critical behavior near the superfluid transition in
pure He and in a He- He mixture belong to the
same universality class, the critical dynamics at
finite concentration c of 'He atoms are expected to
be quite different from and more complicated than
those of pure He. This is so because the 'He con-
centration constitutes a separate hydrodynamic vari-
able which is coupled dynamically to the super-
fluid order parameter P. The most spectacular
difference has been found for the measured thermal

conductivity a., which remains finite ' at T~ for
finite He concentration whereas a diverges at

Ti„ in pure He. A unique feature of He- He mix-
tures is the existence of a tricritical point which is
well accessible to dynamic experiments ""' ' in
contrast to multicritical points in solids. Further-
more, as in pure He, the pressure can be varied in
order to test predictions concerning critical3 3 and
tricritical universality. Alternatively, universal
and nonuniversal dynamic effects can also be identi-
fied by performing a series of measurements at vari-
ous He concentrations. ' ' " ' ' Particularly
interesting are the crossover phenomena in the dilute
and in the tricritical regime. Thus the helium mix-
tures constitute perhaps the best physical system
where the richness of dynamic critical behavior can
be fully explored with sufficient accuracy and can be
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compared in a conclusive way with the theoretical
predictions.

In spite of these experimental advantages the
theory of critical dynamics in He- He mix-
tures ' has remained in a rather incomplete
and unsatisfactory status, with a few specific predic-
tions based on scaling arguments and on calculations
at the one-loop level. ' ' ' ' ' Although two-
loop contributions are generally known to be crucial
in the area of critical and multicritical dynam-
ics46 49 no attempt has been made so far to study
the corresponding effects near the A, line of helium
mixtures. This lack of information is not only due
to the considerable complexity of the underlying sto-
chastic equations of motion but also to the seri-
ous problems which existed already with the
simpler dynamics of pure He. Therefore, it seemed
necessary to await the solution to these problems.

Recent advances ' in the understanding of
the He dynamics indicate that there is now the oc-
casion to proceed to a more advanced theory which
may explain and predict the various dynamic critical
and tricritical phenomena in He- He mixtures as
well. It is the purpose of the present work to pro-
vide the basis for a major step in this direction. We
shall not confine ourselves to the traditional ques-
tions as to what the asymptotic power laws and their
subleading power-law corrections are, but rather in-
vestigate the nonuniversal crossover phenomena in
the entire region between the noncritical background
far from Ti(c) and the asymptotic criticality at
Ti(c). This is quite different in spirit from the
work of Siggia and Nelson or of Siggia, who
studied the crossover from the A, line to tricritical or
to pure 4He-like behavior in the asymptotic vicinity
of Ti(c).

Our approach consists of a nonlinear dynamic
renormalization-group analysis ' ' on the basis of
renormalized-field theory ' ' ' applied to the
model of Siggia and Nelson. A diagonal represen-
tation for the equations of motion is introduced
which greatly simplifies our explicit calculations in
two-loop order and which reveals a universal con-
nection between the asymptotic critical dynamics of
He and of He- He mixtures in all orders of pertur-

bation theory. In particular, there exist universal

amplitudes of the transport coefficients along Ti (c),
one of which coincides with the previous universal
amplitude Ri (Refs. 47, 49, and 60) for pure He.
The observable critical behavior is found to be dom-
inated by nonuniversal crossover effects of genuine
dynamic origin which cannot be described in terms
of power laws.

Specifically, we study the mass diffusion coeffi-
cient D, the thermal diffusion ratio kr, and the
thermal conductivity a (in the absence of mass flow),

for which detailed experimental information is
available at a number of different concentrations, in
particular due to recent measurements by Rup-
peiner, Ryschkewitsch, and Meyer, by Behringer
and Meyer, ' and by Gestrich and Meyer. Re-
cent data at the molar He concentration X=0.05
are used to determine approximately the nonuniver-
sal parameters of our theory in the low-
concentration range. Extrapolation to X=0.11 and
0.15 without adjustable parameters yields reasonable
agreement with available data, ' ' ' except for de-
viations of order 15% for a. (Refs. 2 and 23) at
X=0.15. Predictions are made for very dilute mix-
tures (X«0.1) for which new thermal-conductivity
measurements by Meyer and co-workers ' are
planned for future publication. In particular, we
reexamine the problem of the divergence of a.(T~) in
the dilute limit c~0 for which there exist contra-
dictory predictions ~(Ti)-c ' and x(T~)-c
due to Siggia and to Kawasaki and co-workers, '

respectively, neither of which has been convincingly
confirmed by experiment. ' ' ' ' We resolve this
problem by demonstrating that Siggia's result is
correct at least up to two-loop order but is not ex-
perimentally observable. Furthermore, there are ef-
fects of the weak-scaling fixed point which we find
to induce a small dynamic transient exponent
co «1 not only for He (Refs. 47 and 49—51) but
also for He- He mixtures.

Finally, we determine the dynamic structure fac-
tor S(k,co) for T& Ti(c) and discuss its shape and
temperature dependence in the hydrodynamic re-

gion. This can be compared with future light
scattering experiments.

Throughout this paper we neglect, for simplicity,
dynamic contributions arising from static couplings
of the model-F type. We believe that within this
approximation the main features of the observable
dynamics for X«1 are described with reasonable
accuracy comparable to the quality of the previous
model-E analysis for pure He. ' ' A fully quanti-
tative description does of course require the in-
clusion of the static couplings as indicated by the
model-F analysis for He. ' The corresponding
corrections are expected to be of the order of
15—20% (Refs. 52, 55, and 56) and may eliminate
the deviations of the present analysis with the data
for ~ at X=0.15. Also an accurate analysis in the
entire range of X up to the tricritical point should be
possible. So far, however, the complete
renormalization-group flow equations including the
static couplings are unknown in two-loop order and
are expected to be much more complicated than
those for model F.

The outline of this paper is as follows. In Sec. II
the parameters and the structure of the model of
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Siggia and Nelson are discussed and part of the
general procedure of the paper is outlined. Section
III presents the definitions and properties related to
the field-theoretic renormalization of the model.
The temperature dependence of the transport coeffi-
cients is calculated in Sec. IV. Exact results con-
cerning the dynamic fixed point, the transient ex-

ponents, and the amplitudes of the transport coeffi-
cients are given in Sec. V. The results of renormal-
ized perturbation calculations in two-loop order as
well as the connection with model E (Ref. 60) are
discussed in Sec. VI after the equations of motions
have been transformed in a convenient way. Section
VII contains the nonlinear renormalization-group
analysis of the transport coefficients; this includes a
determination of the nonuniversal parameters of the
theory, a comparison with existing experimental
data, and the prediction of the temperature and con-
centration dependence in dilute mixtures. In Sec.
VIII the theory is applied to the dynamic structure
factor.

P, h
=p kii Cp g,—1 (2.3)

ly. As we shall not study first sound we neglect
the fluctuations of the pressure.

We consider an equilibrium state at given T,P, h,
and a distribution -exp( H—) for the probability of
small fluctuations Po(x), 5o(x), and 5c(x}. We as-
sume

H =Hg[go]+H, [5o,5c], (2.1)

Hq= )( d "x( , ro I
-go

I

'+ , I
~-go

I
'+uo

I fo I
'),

(2.2)

where ro is proportional to T —Ti "(P,h), with

Ti,
" being a mean-field (MF) transition tempera-

ture. We shall keep only Gaussian fluctuations 5o.
and 5c. The corresponding functional H, is bilin-
ear in 5cr and 5c with coefficients which can be
determined via the requirements

X C7X 0

II. MODEL

A. Model parameters

r

kgT
X C X 0 (2.4)

In studying the critical dynamics of He- He mix-
tures we shall use the inodel of Siggia and Nelson.
As we wish to carry out a quantitative comparison
with experiments it is necessary to specify the pre-
cise meaning of the model parameters. In this sec-
tion we present the various definitions and review
the previous identification of the static and dynamic
parameters by Siggia and Nelson.

The equilibrium values of the thermodynamic
quantities of He- He mixtures can be defined via
the Gibbs free energy G(T,P,N&, N4), where T, P,
and N; denote the temperature, the pressure, and the
number of He or He atoms. We consider the
Gibbs free energy per unit mass g =G/M
=g(T,P,c) as a function of T,P, and of the mass
concentration of the He atoms c =miNi/M, with
M =m&Ni+m4N4 being the total mass and m; be-

ing the mass of a He or He atom.
The entropy per unit mass cr and the chemical po-

tential 6 conjugate to c are obtained from g accord-
ing to o = (Bg/BT)p, and—

6= (Bg /Bc )T p =

Pi�

/m i P4 /m4—

ka T i}c
X C X C

P P, T
(2.5)

5cr(x) = Bo'

. P, c
5T(x)+ 5c(x),

Bo'

P, T

(2 6)

Here p=M/V is the mass density and Cpq is the
specific heat per unit mass at constant P and b, . We
neglect possible couplings —

~ go ~

5o and
—

~ go ~

5c in H. This approximation is analogous
to that using inodel E rather than model I' (Ref. 60)
for the dynamics of pure He, as will be further dis-
cussed below.

Following previous authors ' we shall elim-
inate the variable 5o(x) in favor of a variable q(x}
proportional to the fluctuations 5T(x) of the tem-
perature. This is convenient because 5T(x} and
5c(x) are independent fluctuations. Using the re-
lation

where p; denotes a chemical potential per particle,
P3=(BGIBNi )g p ~,, and P =(BGIBN4)T p ~
The slow variables of interest are the long-
wavelength fluctuations 5cr(x), 5c(x}, and fo(x) of
the entropy per unit mass, of the mass concentra-
tion, and of the complex order parameter, respective-

and defining

q(x)=kii 'p
T p

5T(x),

we obtain from Eqs. (2.3)—(2.5)

(2.7)
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Jtd x(q(x)q(0))

and

—1
kB PCP, c =Xq (2.8)

(8,(x, t)8, (x', t') ) = —2AoV 5(x —x')5(t t—'),
(2.14c)

(Oq(x, t)8, (x', t') ) = —2LoV' 5(x —x')5(t t—') .

(2.14d)

x qx c =0. (2.9)

Here CP, is the specific heat per unit mass at con-
stant I' and c. Thus we have

H =Hq, + 2 Jt d x[Xq q +X (5c) ] . (2.10)

The variable q(x) and the susceptibility Xq have
been defined such that in the limit of zero He con-
centration they can be identified with the entropy
variable m(x) and the susceptibility X of model E
for pure He (where X represents the constant pres-
sure specific heat per unit volume divided by kz ).

The appropriate equations of motion for Pp(x, t),
q(x, t), and 5c(x, t) must be consistent with the
equilibrium distribution determined by Eq. (2.10),
with the diffusion equations for binary mixtures, '
and with the hydrodynamics of superfluid He- He
mixtures. In particular, the limit c~0 should lead
to model E for pure He. These requirements are
met by the Langevin equations of Siggia and Nel-
son. 3 With the simplified notation c(x,t) =5c (x, t)
these equations read

The coupling constants g ~
and g2 of the reversible

terms can be identified by comparison with the hy-
drodynamic equations for the entropy and concen-
tration as given in Eqs. (24.65) of Khalatnikov.
With the use of Eqs. (2.6) and (2.7), and expressing
the superfluid velocity as v, = (film4 ) V y these
equations become

Bq

Bt

Ws

ksm4

BtT
0 —C

Bc
(2.15)

Bc irt)osc

Bt m4p
(2.16)

where p, is the superfluid density and p(x, t) is the
phase of the complex order parameter below Ti
The quantities o, c, and p on the right-hand side
(rhs) of Eqs. (2.15) and (2.16) represent the equilibri-
um values defined above. The terms in Eqs. (2.12)
and (2.13) which correspond to Eqs. (2.15) and (2.16)
are obtained by substituting

4o=
I fo I

exp[&'V'(x, t) I

into
B 5H . g& . g2

fp= —2rp +l Poq +'l' gp +Op
t 5' Xq

(2.11)

Im fp ———, ~gp~ V'y=—
5/lit 2

Ps
22m 4ktt T

B &o, Lo

Bt Xq X
q= Vq+ Vc

—2giIm Pp, +Oq,
H

54o

Ap Lp

Bt X Xq
c= V'c+ V q

, 5H—2gzlm fp +8, ,
5i)jo

(2.12)

(2.13)

(Oq(x, t)8q(x', t') ) =4r,5(x —x )5(t —t ),
(2.14a)

(Oq(x, t)Oq(x', t') ) = —2EoV 5(x x')5(t t'), — —

(2.14b}

where the Gaussian-Langevin forces have the non-

vanishing correlations

Tm4 Bo
(7—C

Bc pT
(2.18)

ktt Tcm4
(2.19)

As c—+0, gi becomes identical with the coupling
constant gp ——Tm4olk of model E for pure He.
Equations (2.17}—(2.19) correct the corresponding
equations of Siggia and Nelson and of Siggia.
With the use of the identifications (2.18) and (2.19),
and eliminating 5c in favor of 56 via

T

Bb, 5c-
Bc pT

Bo'

Bc pT
(2.20)

one can verify that also the reversible parts of Eq.

(2.17)

Here we have used the known relation between
and p, . Comparing Eqs. (2.12), (2.13), and

(2.17) with Eqs. (2.15) and (2.16), we find
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(2.11) agree with the corresponding hydrodynamic
equation

'g X
—1/2

'

q q

g X
—1/2

C C

(2.30)

v, =cVb, +rrV T,
t

(2.21) and the matrix

=D Vc+ Vq
t q

(2.23)

Here D is the He mass diffusion coefficient and kr
is the thermal diffusion ratio. a. represents the
thermal conductivity in the absence of He mass
flow in which case Eq. (2.22) reduces to

P P, C

(2.24)

Comparison with Eqs. (2.12) and (2.13), and neglect-
ing the reversible terms, yields the identification

D =A,p/X, =pi, p ktt T, (2.25)

kr =Lo/D

~/k21 Kp —L o /A, o—,—
(2.26)

(2.27)

in agreement with Siggia and Nelson (apart from
factors kii and k&T). In summary, the model has
four dynamic nonuniversal parameters I p Ap Lp,
and Kp to be determined by comparison with
dynamic exPeriments, whereas rp 14p Xq X&, gi, and

g2 are determined by static quantities.

B. Orthogonal transformation

In order to discuss the structure of the equations
of motion it is convenient to introduce two-
component vectors

q(x, t) Xq
'

Q(x, t) = (2.28)c x, t

X
—1/2 '

q
—1/2 (2.29)
C

where, in Khalatnikov's notation, 5—=Z/p. We note
that the reversible part of Eq. (2.11) is already deter-
mined by those of Eqs. (2.12) and (2.13) due to the
requirement of consistency with the equilibrium dis-
tribution exp( H).—

In order to identify Kp, Ao, and L p we follow Sig-

gia and Nelson by rewriting the hydrodynamic
equations for binary mixtures in terms of q(x, t),
c (x, t), Xq, and X, :

krD
2 kr

Bt k21Xq X, Xq
Vq+ Vc+ Vq

(2.22)

KpXq
'

Lo(XqX )

Lo(XqX )

(2.31)

Then, Eqs. (2.11)—(2.13) can be rewritten in the
more compact form

8 5H
4o= —I o, +i it/oG'Q+ gy

&Co
(2.32)

Q=AoV Q —2GIm fo, +g .
t &4o

(2.33)

Now the following invariance property is easily veri-
fied. Consider an orthogonal 2X2 matrix Rp with
(Rp) '=(Rp), for example,

Rp ——
cospp sinpo

—slnipp cos+p
(2.34)

with arbitrary gp, and introduce the transformed
quantities

Q'=RpQ, G'=RpG, g' =Rpg, ~A' =Ro~A

(2.35)

the second-sound velocity c2 below Tz,

c2 ——
I
q'ol'6 = I~pi'6'

(2.36)

(2.37)

[compare Eq. (24.74) of Ref. 28], and the rhs of the
hydrodynamic equation (2.21),

v, =cVh+crV T = V(G.Q) = V(6'.Q')
i Pg4 Pl 4

= F1144/m4, (2.38)

Rewriting Eqs. (2.32) and (2.33) in terms of the
transformed quantities simply amounts to replacing
Q,G, g,~A by Q',6', g Ap without changing the
structure of the equations of motion, because the
scalar product G Q in Eq. (2.32) is invariant
under the transformation Rp, 6 Q =G' Q'. This
invariance property will be exploited in deriving ex-
act relations between Z factors in the renormalized
theory in Sec. VIA.

We note that the invariance of the scalar products
Q.Q, G.G, and 6 Q implies the invariance of the
following static quantities under the transformation
Ro: namely, the Hamiltonian H, Eq. (2.10),

H=H + — x =H + — dx
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where P4 is the chemical potential definml in Sec.
II A above. The last part of Eq. (2.38) follows from
Khalatnikov's Eq. (24.30). The variables Q or Q'
are seen to be most convenient as opposed to the
vector (5o,5c), for example. In terms of the latter
variables Eqs. (2.32) and (2.36)—(2.38) would involve
an off-diagonal matrix of susceptibilities, which in
the present formulation has been reduced to a unity
matrix.

Among the class of variables Q' generated by the
orthogonal transformation Rp there is one particular
Q' corresponding to a diagonal matrix of kinetic
coefficients,

g2

K 1/2 g 1 /2
0 0

Lp =l.
Kpk, p

Equation (2.47) implies

A,p
——0,

Kp K0Xq—'+XP', ',

(2.46)

(2.47)

(2.48)

(2.49)

vanishes. This is trivially the case in the absence of
He where g2 ——0 and Lp ——0, which implies

sing)0 ——0. A nontrivial case, however, is

Kp 0
~A' =Rp~Ap ——

0 A,p
(2.39) and Eq. (2.46) yields

2 ——0, (2.50)
The corresponding transformation is a rotation Rp,
Eq. (2.34), with matrix elements

' 1/2
Gi ——

1/2
0

Kp

' 1/2
0

Ap
g2 ~ (2.51)

COS+p =

singrp ——

where

(KpXq
'

ApX, '—+Op)
2 p

1/2

(A,0X,
' —KpXq '+Op)

0

(2.40a)

(2.40b)

Then $0 and

Ql=
' 1/2

0

Kp
q

Xq

' 1/2
p

Kp

C

Xc

satisfy the simplified equations of motion

8 5H

&Co
fp= —2rp +l' ppG']Qi +8&

(2.52)

(2.53)

Qp ——[(K0Xq
'

A()X, ') +—4L0Xq 'X, ]'

(2.41)

Q1 =Ko V Q1 —2G'1 Im 4o
t 54o

+8'1 .

(2.54)
The transformed kinetic coefficients are given by

Kp= , (KpXq +A,0—X, '+Op),

~o= 2 (K0Xq +~0Xc —Qo)

(2.42a)

(2.42b)

They are identical in structure with the equations of
motion of model E for pure He, with a ratio of re-

laxation rates

Since ~A' is diagonal, the components Q1 and Q2 of r,
Wp=

Kp

Kp kp
+r,x, r,x,

(2.55)

2.
(2.43) and with a dimensionless coupling

are coupled to one another only through the reversi-
ble couplings

(2.44)
where 1M denotes a reference wave number, and

(2.56)

G 2 ———g 1Xq sinyp+g2X cosipp
—1/2 ~ —1/2 (2.45)

We shall be interested in the situation where the
dynamics of $0 and Q'1 are decoupled from Q2.
This situation arises when the model parameters are
such that the coupling

Kd '=2 'm I (di2) .

The parameters w p J'0 correspond to the usual
model-E parameters wp J'p. We shall see in Sec. V
that the renormalized parameters are driven to
fixed-point values which satisfy conditions equiv-
alent to Eqs. (2.46)—(2.51). This will imply a
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universal connection between the asymptotic critical
dynamics of pure He and of He- He mixtures.

C. General procedure

We shall be interested mainly in the critical tem-

perature dependence of the transport coefficients D,
kr, and s. given in Eqs. (2.25)—(2.27). Our pro-
cedure will be to calculate a correlation function
that contains these transport coefficients, for exam-

ple

indices a and P denote one of the fields q, c,q, c and
indicate the type of (truncated) external legs of the
diagrams which contribute to the respective vertex
function. The connection between Cqq and I t1 fol-
lows from the general relation

(2.63}

between the matrices C and I of two-point correla-
tion (or response} functions and of two-point vertex
functions. Inverting I, we thus obtain

&& exp[ i (k—x tot—)] .

(2.57)

Nqq(k co)
Cqq(k, co)=-

1M(k, cp) i' '

with

(2.64)

J= t X y+ g+

Jp ——, I g it/ ——,—g [B,+I (r V)]1g—
(2.58)

A convenient way is to express Cqq in terms of ver-

tex functions and to compute the critical behavior
of the latter by means of the field-theoretic
renormalization-group approach. ' In order to
obtain conclusive results a calculation of the
renormalization-group fiow equations beyond one-

loop order is necessary.
Instead of the Langevin equations (2.11)—(2.13)

we shall use the corresponding dynamic function-
al ' J(q,q, c,c,gp, gp, gp, gp), where q(x, t), c(x,t),
it/p(x, t), and gp(x, t) denote response fields con-

jugate to q, c, pp, and pp, respectively. In terms of
the notation employed in Eqs. (2.28)—(2.33) this
functional reads

aild

(2.65)

Cq, (k, tp) =—

C„(k,co) =—

with

Nq, (k, co)

f
M(k, co)

i

N„(k,co)

/
M(k, cp)

/

(2.67)

(2.68)

(2.66)

which is analogous to Eqs. (1)—(3) of Ref. 71.
Sec. VIII we shall also need the correlation functions
Cq, (k,co) and C„(k,cp) which enter the light scatter-
ing spectrum. From Eq. (2.63) we find

—21 pitpfolo1t('o+c c

J12
— QApV Q—Q(Bt A—p& )Q, —

(2.59)

(2.60) alld

(2.69)

J"'=
2
6 Q(Spitp+Pp4p)

Here we have used the vector of response fields

(2.61)
(2.70)

The correlation function C,q(k, co) is obtained from
Eqs. (2.67) and (2.69) by exchanging q and c.

-y 1 /2

~1/2
C

(2.62) III. RENORMALIZATION

conjugate to Q. One-particle irreducible vertex
functions can now be defined in the usual way via
the appropriate generating functional constructed
from J and can be computed from the corresponding
one-particle irreducible diagrams.

The correlation function Cqq can be expressed in
terms of two-point vertex functions I' tt(k, to); the

z —1/2 y»

z —1/2 p»

(3.1)

(3.2)

We shall study the critical behavior of the model

by means of the field-theoretic renormalization-
group approach using the dimensional regularization
and minimal subtraction procedure. ' ' The
necessary renormalizations are
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1 Zg Tp

u =JM Zhh Zii)Kgup

I =Zr'Ip,
K =Z» 'KpXq

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

=0, (3.16)

where i =w&, w2, w&, Fi, F2, and u and a,P
=q, q, c,c,f,f,g*,g~. The P functions are de-
fined as

L. =Z L,X "X (3.8) p; =(tuB„i}p, (3.17)

Jg ——Q AV Q —Q (8, —&V )Q, (3.11)

The fields q and c need not be renormalized since
their static fluctuations are Gaussian. Also the

response fields q and c remain unrenormalized as
follows from the conservation properties of the
fields q and c. Furthermore, a Ward
identity ' ' implies that the mode coupling
constants gi and gz are not renormalized. The
nonuniversal reference wave number JM will be speci-
fied in Sec. VII.

Substituting Eqs. (3.1)—(3.8) into Eqs.
(2.58)—(2.61) yields the dynamic functional in renor-

malized form:

d= f Ch Jl chal(d&+dh)+dhh'), (3.9)

Jg , ZrzgI——P—P~

, (Zgzp)'~ —Q[B,+Zr I (Z,r V)]g*-
2zrz„(z—~lz~)'~ I up 'K~ 'f~g g*+c.c. ,

(3.10)

with i =wi, wz, wi, Fi, F2, and u, where the deriva-
tive is to be taken at fixed bare parameters. The
dynamic p functions have the structure

(3.18)

1 1

(3.19}

(3.20)

PF =—
I

PF =—
2

«+0r+4»
F2 (~+4+4)

(3.21)

(3.22)

The g functions in Eqs. (3.16) and (3.18)—(3.22) are
independent of the dimension d=4 —e and are de-
fined as

g =(JuB„lnz ') (3.23)

with j=I, K, h(, , L, r, g, g~, g, and )It*. Since
the fields q, c,q, c are not renormalized
(Z& =Z, =Z& ——Z, = 1) we have g&

——g, =g =(~—0
for the corresponding g functions. From previous
work ' we know

with

+ 'ZpG Q(P—*V'Q fV'f'), —
2

(3.12) p„=u( —e+40u —960u )+O(u ),
g,= —16u+160u +0(u ),

(3.24)

(3.25)

(3.13)

F1 gl
P q

d

(3.14)

and the dimensionless ratios

(3.15)

Z»K ZLL

ZLL Zi l,

We shall employ the dimensionlms couplings
' 1/2 ' 1/2

Z& ——1 — +O(u ),16u

2

(Zpzg)'~2=1 — ln —+O(u } .

(3.26)

(3.27)

We shall calculate the remaining functions gr, g»,
gi, and gL, up to two-loop order in Sec. VI.

Integrating the renormalization-group equation
(3.16) yields for the Fourier transforms of the renor-
malized vertex functions

I' p(k, co,'w, w2, wi, Fi,F2,u,'r, &;p)

I ) dI'
=exp Jt —,(g +g~)

The renormalized two-point vertex functions I
satisfy the renormalization-group equation XI p(k, pi;w, ,w, w, F„F,u;r, X;pl), (3.28)



1340 V. DOHM AND R. FOLK 28

with

dl'F:r—(l&=rexp f g,

dl'
K—:A, (l)=A, exp f g~

(3.29)

(3.30)

dynamic critical exponents

z
Q
—2 +g r zq —2 +g ir

(3.39)
z, =2+(&, zL=2+(L,

where g*; denote the fixed-point values of the g
functions.

(3.31)

dw; (1)
1 =P~ (wi, w2, w3pF\, F2, u ),ID (3.32)

(1)

1
=pF( wiw 2, w3F iF 2, u) . (3.33)

The initial values at 1=1 coincide with the renor-
malized parameters,

u (1):—u, w;(1)—=w;, F, (1)=FJ, —
(3.34)

r(1):r, A,—(1)=—k .
They are nonuniversal quantities to be determined

by comparison with experiment. As 1~0, the effec-
tive parameters attain their (stable) fixed-point
values

u (0)—=u~, w;(0) —=w, FJ(0)=Fi' . —

From Eq. (3.24) we have

u'=e(1 +3~ /5) 4/0+O(~') .

(3.35)

(3.36)

The dynamic fixed-point values w and FJ* are
determined by the zeros of P and Pz. The stabili-

t J

ty of the fixed point is governed by the transient ex-

ponents which are the eigenvalues of the 5&(5 ma-

trix

(3.37)

with m, n =w&, w2, w3, Fi,F2 taken at the fixed point.
We shall see that there exist only three different

dynamic transient exponents at the stable fixed

point.

The usual static critical exponents are obtained as

v=(2 —g', ) (3.38)

with g, =g,(u") and gq, gq,(u*) T——here are . four
I

The effective parameters u =—u (1), w; =w;(1),
1=1,2,3, and FJ =—FJ (1),j= 1,2 are determined by the
renormalization-group flow equations

IV. TRANSPORT COEFFICIENTS ABOVE TA

The main application of our nonlinear
renormalization-group treatment will be a quantita-
tive prediction of the observable critical teinperature
dependence of the mass diffusion coefficient D, of
the thermal diffusion ratio kT, and the thermal con-
ductivity ir. Another transport coefficient (of pri-
marily theoretical interest) is

ir, =~+kTDk~/X, , (4.1)

which, according to Eq. (2.22), represents the
thermal conductivity in the absence of a concentra-
tion gradient. In the following, we calculate these
transport coefficients in terms of the effective
dynamic parameters w;(1) and F; (I).

We consider the vertex functions

I qq(k, co) = i co+K—,Xq 'k +Xq 'X (k, co)-,

I „-(k,co)= iso+A—OX, 'k +X, 'X„(k,~),

r„(k,~)=X,X 1„(k,~)

:LOXq k2+Xq X (k ro)

(4.2)

(4.3)

(4.4)

X -(k, ro) =g iI(k, ro),

X„-(k,co) =g2I (k, ro),

X;(k,a) ) =gi g2I (k, ro),

(4.5)

(4.6)

(4.7)

which are determined by a single function I(k,co).
In one-loop order it reads

which enter the denominator of the correlation func-
tion Cqq, Eq. (2.64). By inspection of the corre-
sponding diagrams we see that the perturbation

parts X y differ only by their two external vertices,

according to the different external (truncated) legs,
but their internal structure is identical in all orders
of perturbation theory. Therefore, the different ver-

tex functions have the diagrammatic contributions

d p 4(p k)I' "(k, )=to
2 & 2(2') [(p ——,k)'+r ][(p+—,k)'+r ][2I (p'+ , k'+r ) iso]——(4.8)
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I --(k,co)= —2Xq Re[I -(k,co)]

r,—,-(k, co) = —2X, Re[I „(k,co)],

r, (k, ro) = —2X& Re[r,-(k, ro)]

= —2X, Re[I,-(k,co)] .

(4.9)

(4.10)

(4.11)

which is the analytic expression for the standard di-

agram shown in Fig. 2 of Ref. 49. The one-loop ex-

pressions for the vertex functions entering the
numerator N(k, co), Eq. (2.65), of C~q are obtained
from Eqs. (4.2)—(4.8) as

r(1)
212

(4.20)

This choice connects 1 with the relative temperature

T —Ti (P,A)

Ti„(P,6 )
(4.21)

vertex functions in terms of the effective parameters
F~(l), w;(1), and r(l). As usual, we choose the flow
parameter 1 such that the logarithmic terms in the
perturbation parts drop out,

In the hydrodynamic region we need to consider
only

according to
—1 v —1

l)M=(0 ta =pa (4.22)

(4.12)

k~ 1 ————lnro+O(E )
2I e 2 2

I' (k, co) = i ro+K—(l)k [1——,F, (l) ], (4.23)

I „-(k,co) = ice+'1—((l)k [1,
——,F2(l) ], (4.24)

with go being the amplitude of the correlation length

ga above Ti,. In Eq. (4.22) we have neglected static
corrections to scaling. The resulting vertex func-
tions can be written as

+O(k ) . (4.13)

)& k [1——,Fi (1)F2( I )w3 ( I ) '],
Expressing the bare parameters in terms of the re-
normalized ones according to Eqs. (3.3)—(3.8),
(3.14), and (3.15), and requiring the Z factors to can-
cel the pole terms -e ' yields

where

dl'
E(l)=K»xp f g»

(4.25)

Zx ——1 F i /2e, —

Zi =1 F2/2e, —

ZL ——1 —FiF2/2w3e .

(4.14)

(4.15)

(4.16) dl
A,il)=) exp f g»

(4.26)

The remaining finite parts of the vertex functions
are =g2kh Kd [w2(1)F2(1) &.] (4.27)

I = i ro+Kk —1 —,F i 1+ln— L(1)=w3(l)K(l)' 2A, (l)' 2 . (4.28)

(4.17)
The rhs of Eqs. (4.26) and (4.27) follow from the ex-
act relations

I „-= iro+Ak—~ 1 —, ,F2 1+ln-
p

(4.18)

4 = —, (e+2pF /F, +—p /w i ),

, (a+2pF2/F2+—p~~/wp ) .

(4.29)

(4.30)

qc

1/2

Xq

XLk' 1 ——,F,Fzw,
' 1+in

2
p

(4.19)

The hydrodynamic form of the vertex functions,
Eqs. (4.23)—(4.25), and the identification of the bare
model parameters according to Eqs. (2.25)—(2.27),
suggest the following identification of the
temperature-dependent transport coefficients D, kr,
and s, :

D = I „-(k,0) =A, (1)[1——,F2(l) ],
Now we employ Eq. (3.28) in order to express the (4.31)
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kz-D =Xq I;(k,O)' ak2
P (1)=P [w i (1),w2(1), w5(l), Fi (l),F2(l)]

(4.41)

(Xq X ) L (l)[1 4Fi(l)F2(l)wi(l) ]

(4.32)

l~, =k~Xq I (k, O)' ' ak' "
k=0

kiiXqK(l)[1 4Fi(l) ] (4.33)

Cqq(k co):2k Xq

D, co +DTD k

co (—D+—D, )irok +DDTk

(4.34)

with the thermal diffusivities

K Ks
Dr , ——D,=

kiiXq
' '

k~Xq
(4.35)

This can be rewritten in the hydrodynamic form

In order to verify consistency with general hydro-
dynamics we substitute Eqs. (4.9)—(4.11) and
(4.23)—(4.25) into the expression for Cqq(k, co} given
in Eqs. (2.63)—(2.65). Using Eqs. (4.31)—(4.33) we
obtain

is determined by contributions of order two loops
and higher. Equations (4.38}—(4.40) together with
Eqs. (4.1) and (4.26)—(4.28) provide the connection
of our theory with the observable transport coeffi-
cients.

So far, within the present model, the parameters

g i, and g2 represent temperature-
independent background values. On the other hand,
if the static couplings -q

~ $0~ and -c
~ $0~ are

included in the Hamiltonian, the susceptibilities Xq
and X, develop a dependence on the fiow parameter
I corresponding to a critical temperature dependence
of the specific heat and of the mass susceptibility.
This holds true also for the susceptibility
(Ba'lBc)pT which causes a nontrivial temperature
dependence of gi, Eq. (2.18), as emphasized by
Ahlers. We shall account for these nonnegligible
static effects by considering Xq, X„and gi in our fi-
nal expressions as experimentally determined,
temperature-dependent quantities. This is in the
same spirit as for the susceptibility X in the previous
model E analysis of the superfluid transition in pure
4He 51—54, 60

V. EXACT RESULTS

D, co +I OI 2D
Cqq(k co):2k Xq (ro'+ I"0)(ro'+ I 2)

with the linewidths

(4.36)

Since g, and gq are not renormalized there are
only four dynamic g functions determining the five

P functions, Eqs. (3.18)—(3.22). Consequently, there
exists a general relation between the p functions.
The relation reads

I o,2= ID+D, +[(D+D, ) 4DDr]'~2j .— 2 2 1 1

F PFi F PF2
1 W) W2

(5.1)

(4.37)

Equation (4.37) agrees with Eq. (15}of Griffin. 5

From Eqs. (4.5)—(4.7), we see that there are iden-
tical higher-order corrections to the one-loop expres-
sions given in Eqs. (4.31)—(4.33). Thus we have the
general structure

F,(l)'w, (1)
1 ln =0.

dl F2(l)2wi(l)

Hence the ratio

(5.2)

With the use of the flow equations (3.32) and (3.33)
one obtains

D =A,(l) I 1 ——,F2(l) [1+P(l)]j,
kTD=(XqX, )' L(1)

(4.38) Fi(1) wz(1)

F2(1) wi(l)

F, (1)'w, (1) g', X,

F,(1)'wi(1) g,'Xq
(5.3)

X I 1 ——,Fi(l)Fz(l)w5(l) '[1+P(l)]j,
(4.39)

is independent of 1 within the present model. This
exact relation holds, in particular, in the limit 1~0:

F42 4 2X
(5.4)

a kii XqK(l) I 1 4 Fi(1) [1+P(l)]

where

(4.40)
Another exact property follows from the general

form, Eqs. (4.2)—(4.7), of the vertex functions I —,
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F&F2

2N3

(5.5)

I „-, I,—, and I,—. Since they have higher-order
contributions which are identical up to prefactors,
their pole terms and the corresponding Z factors
Z», Zz, and ZL will exhibit this property as well.
This implies a common structure of the higher-order
terms of the ensuing g functions g», gz, and (L.
From Eqs. (4.14)—(4.16) we have in ane-loop order

2
(1) (1)

2 PL, =—

and from Eq. (2.56)

f*=F; =Fz (5.15)

Here w* and f* represent the usual fixed-point
values of model E. ' ' Equations (5.11)—(5.15)
completely determine the dynamic fixed point of the
present model.

An interesting consequence of the relation (5.13)
is that the fixed-point values w i and wz depend on
nonuniversal static quantities, in contrast to w*.
From Eqs. (5.13) and (5.14) we obtain

Thus we are led to the general form
2

(1+Q), (5.6)

w i
——(1+B ')w*,

wz ——(1+B)w

with the purely static parameter

(5.16)

(5.17)

(1+Q),

(1+Q),
2w3

(5.7)

(5.8)

2
gi&c

2
g zXq

T[cr c(dold—c)p T]

(5.18)

(5.9)

F2
Pp ~p = (1+Q)(Fi+Fz)(Fz Fi) . (5.10)

2 ( 4F

This jmphes as a general result to all orders (provid-
ed that F;* and 1+Q~ are finite)

Fi Fz, ——

w3 =1
(5.11)

(5.12)

in agreement with the one-loop result of Siggia and
Nelson. Substituting Eq. (5.11) in«Eq (5 4)
yields the exact relation

2
wz g i&e

2
w~i g z&q

where Q is determined by the pole terms of n-loop
diagrams with n &2. The explicit form of Q in
two-loap order will be given in Sec. VI.

In order to exploit this result it is useful to con-
sider the P functions associated with w3 and Fz/F(.
From Eqs. (3.20)—(3.22) and (5.6)—(5.8) one obtains

p~ = —,(1+Q)(w3F(+w3Fz —2F(Fz),w3 4

It is determined by the finite specific heat and mass
susceptibility at Tz and depends on the pressure P
and the mass concentration c. This implies finite
nonuniversal fixed-point values w ( (P,c) and
wz (P,c) along the A, line (provided that w* is finite).
The disagreement with the concentration-
independent values wi ———, and wz ——ao found by
Siggia and Nelson [Eqs. (4.6) and (4.14) of Ref. 43]
is due to their incomplete static treatment which
takes into account the coupling -c

~ Po~ but not
-q

~ $0 ~

. In O(e) this implies a divergent X, with

Xq remaining noncritical and finite, hence B and wz
become infinite in this treatment. We shall use fi-
nite values for B (see Sec. VII) and a two-loop value
w*«1, which yields both wi «1 and wz «1
along the A, line, except for c~0 and c~c,„,„,
where B diverges

We proceed to a discussion of the transport coef-
ficients. From Eqs. (4.38)—(4.40) and (5.3) we ob-
tain

g,I,Fz(l) w3(l) ——,Fi(l)Fz(1)[1+P(l)]
gzFi(l) 1 4Fz(l) [1+P(1)]It is important ta observe that Eqs. (5.11) and (5.12)

represent the fixed-point version of the conditions
given in Eqs. (2.46) and (2.47). Consequently, there
is a close connection between the fixed-paint values
of the present model and of model E. Specifically,
on the basis of the analogy between Eqs. (2.53) and
(2.54) and the model-E equations, we conclude from
Eq. (2.55)

g (X,Fz(l) 1 ——,Fi(1) [1+P(l)]
g4qFi(1) 1 ——,Fz(l) [1+P(1)]

(5.19)

(5.20)
1 1 1+

m2
(5.14) Using the above fixed-point values we arrive at the

exact results
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lim kT=
T rk

gi&c

g2

i}CT
0 —C

BC PT
(5.21)

and

D, F2(l)2 1 ——,Fi(l) [1+P(1)]
DB Fi(1) 1 ——,F2(l) [1+P(l)]

(5.24}

and

(5.22}

which attain the concentration-independent univer-
sal values

with B given by Eq. (5.18). The asymptotic value of
kT at T2 given in Eq. (5.21) agrees with the conjec-
tures by Papoular ' and by Lucas and Tyler' based
on the hydrodynamics below Ti and on continuity
arguments at Ti, . Here we have presented a general
proof. We conclude that there exist two dimension-
less ratios

kT
gi&c

F2(l) w3(l) ——,Fi (l)F2(l)[1+P(l)]

1 ——,F2(l) [1+P(1)]
(5.23)

I

Rk =Ri'1 ——1 (5.25)

in the limit T~T2.
Another dimensionless ratio of interest is intro-

duced by

—e/2
He 4 D gl/2 Dg1/2

c

g (1+B ')' ' g2(1+B)' '

(5.26)

Froin Eqs. (4.38) and (4.40), with (4.26) and (4.27),
we find

He
w, (1)F,(l) (1+B ')

' 1/2

I 1 ——,F,(l)'[1+P(l)]I+
w2(1)F2(l) (1+B)

1/2

t 1 ——,F2(1) [1+P(l)]],

(5.27)

Here w» and f» denote the (concentration-
independent} fixed-point values of model E. RH, is
identical with the universal ratio"'

R2 (E~/w»f»)'/ [1———,f»+O(f» )]—
entering the asymptotic scaling form of the thermal
conductivity of pure He.

In summary, there are three universal, i.e.,
concentration- and pressure-independent ratios
along the A, line of He- He mixtures which involve
only D, kT, a; (or x), and static quantities. In par-
ticular, there exists an analog of R2 of pure He.
The opposite statements of Siggia and Nelson are
incorrect.

From Eqs. (5.18), (5.22), and (5.26)—(5.28) we ob-
tain in three dimensions the asymptotic power law

D g—1/2( 1 +B) 1/2R» gl /2 (5.29)

which in the limit 1~0 tends to the value
' 1/2

I 1 ——,f*[1+P(0)]). (5.28)

for T~Ti, The exponent —v/2 agrees with earlier
predictions based on dynamic scaling, ' on mode
coupling, and on renormalization-group calcu-
lations provided that RH, is finite (w»)0). The
corresponding power law for D, reads

D g g
—1/2(1+B —1)—1/2R» gl/2 (5.30)

whose exponent also agrees with earlier pr&ic-
tions. ' Here we have presented the complete ex-29,43

prmsions for the asymptotic amplitudes. Our theo'
will praict that these exponents and amplitude are
not experimentally observable.

Next we consider the dynamic transient ex-
ponents. Because of the relation (5.3) we can elim-
inate w2 in terms of wi and F2/Fi. Hence we need
to consider only the transient exponents associated
with the parameters wi, Fi and w3, F2/Fi Owing.
to the simple structure of Eqs. (5.9) and (5.10) we
can determine the transient exponents

3

coF /F independently of those associated with wi

and Fi. Using Eqs. (5.12) and (5.15) we obtain from
Eqs. (5.9) and (5.10) the general result
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=roy /F = (I+Q ) ~ (5.31)

At present it is not established whether w» &0 or
w» =0 is the stable fixed point for He in three di-

mensions. q q7 s Assuming that w» &0, as sug-

gested by the two-loop results, ' ' 's' we have

0&wi & ao, 0&w2 & oo. Then we obtain from Eqs.
(3.18), (3.19), (3.22), (5.6), and (5.7)

~q ~e ~L— (5.34)

Equation (5.33) implies a fast approach of the ef-
fective parameters wi(l) and F2(l)/Fi(l) to their
fixed-point value 1 with a transient exponent —, in

three dimensions. As l~O we obtain from Eqs.
I

0r=0x=0i.=Pi = — (1+0 ) = ——.

(5.32)

The last equality follows from Eqs. (3.21) and (3.22).
Thus we have the exact transient exponents

w =~F /F = (5.33)

and from Eq. (3.39) the scaling exponents

(5.9}and (5.10}the representations

wi(l) =1—Ai(l)(pl)'/,

F2 (1)/Fi (l) = 1+Ap(l)(pl)'

(5.35)

(5.36)

with

kgXq gi[Kg/wi(1)Fi(l) ] A~(l) (5.37}

with finite subleading amplitudes A3(0)&0 and
A~(0}. As soon as wq and Fz/Fi have come close to
1, the remaining flow of the parameters as I~0 will
be governed by model-E (or model-F) flow equa-
tions, as follows from the structure of Eqs. (2.53)
and (2.54). Hence we conclude, without explicit cal-
culation, that the remaining two transient exponents
are identical with co and co~ of model E. Because
of the smallness of ~ &&1 there will be a slow ap-
proach of w~(l), w2(l}, Fi(l), and F2(1) to their
fixed-point values. Thus we predict significant
departures from the asymptotic behavior in the ex-
perimentally accessible regime for the same reason
as for pure He.

Finally, we consider the thermal conductivity a..
Substituting our results for v„kr, and D into Eq.
(4.1) yields

[wi(l) —,F,—(1)F,(1)[1+P(1)])'
A„(l)=(pl) '/

1 ——,F)(l) [1+P(l)]
1 ——,Fi(1}'[1+P (1)]

(5.38)

With the use of the representations (5.35) and (5.36),
one obtains

A„(1)=2A, (l)+B„(1)( I)'/2,

with a finite amplitude B„(0). This implies

(5.39)

xp'"
K J/Q

k8+q g i

(5.41)

which tends to the asymptotic (nonuniversal) value

R*„=2Ai(0}(2m.w) f») ' p' (5.42)

If the weak-scaling fixed point w*=O of pure

lim a=kzgq gi(K~/w'if») / 2Ai(0) . (5.40)
T~Tg

By continuity x must approach the He behavior at
finite distance from Ti„ for sufficiently small c. In
this regime the nonasymptotic temperature depen-
dence of z is affected by co «1, which enters
mainly through the slow approach of wi(l) to
wi «1. For larger c, however, this effect is com-
pensated by a similar slow approach of Ai(l) to
A q(0). Instead of x we shall work with the ratio

[

He turns out to be stable in three dimensions, then
both w

~
——0 and w2 ——0, with wz/w ~ remaining fi-

nite for c &0 according to Eq. (5.13). In this case
Eqs. (5.33) and (5.34) have to be replaced by

1

N~ =COF /F =
2 (6+CO~) (5.43)

zp ———,(d+a) ), zq
——z, =zL ———,(d —co ) . (5.44)

Correspondingly, Eqs. (5.29) and (5.30) yield
(&+co )/2

D,D, —ga but a remains finite because

A (I)—I —wi(I)'/. At finite distance from cri-
ticality the weak-scaling case is almost indistin-

guishable from the scaling case 0&w» «1 with

co~ && l. In the present paper we consider only the
scaling case in accord with the two-loop results. '4q

Finally, we note that the static terms -q
~ $0 ~

and -e
~ $0 ~

modify the relation (5.1) and lead to
smoothly /-dependent corrections both to our formu-
las for the transport coefficients and to the flow
equations to be derived in Sec. VI. These correc-
tions vanish in the critical limit 1~0 except at the
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tricritical point where the term -c
~ go ~

becomes
quite important. This will be investigated in a
separate paper.

K L
—LR R

K' 0—1

0 A,
' {6.6)

VI. RENORMALIZED PERTURBATION
THEORY

which identifies the matrix elements of R as
' 1/2

1
(K —A, +Q) (6.7)

A. Diagonal representation

A major inconvenience for perturbation calcula-
tions beyond one-loop order is the dynamic couphng
of the fields q, q to c,c through the kinetic coefficient
L even in the absence of the reversible couplings gi
and g2. We shall circumvent this complication by
performing an orthogonal transformation

1

2
(A. —K+Q)

with

Q=[(K —A, ) +4L2]'/2 .

Furthermore,

(6.8)

(6.9)

g —1/2
'

=R
Cgc

-g 1 /2q' 9'
q

C Cgc
~/1/2=R (6.1)

K'= —,(K+A, +Q),

A,
'= —,(K+A, —Q} .

From

(6.10)

{6.11)

cos+ sin+
—sing cosy

(6.2}

Z~K' A'L'
—1

A'L' Zi )I,
'

(6.3)

such that the fields q' and q
' are decoupled from c'

and c' in lowest order in gi and g2. This is
achieved by transforming the matrix of kinetic coef-
ficients, Eq. (3.13),

Zx K ZLL

ZI L Z2A,
R R

A =R 'A'R (6.12)

we now obtain exact expressions for Zx, Z2, and ZL
in terms of Zx, Zi, and A

'
by substituting Eqs. (6.7)

and (6.8) into R and R '. This leads to

[ (K —a+Q)Z,'K'+ (X—K+Q)Z;X'
1

(6.13)

Zl = [(A,—K+Q)Z Kx'+(K —A, +Q)z&A, '1

2d{,Q

such that A' becomes diagonal in the absence of gi
and g2. Thus we require in lowest order in gi and

g2

+4LA'L'], (6.14)

(6.4)

The transformation is completed by introducing new

couplings

gi gi&q
=R —1/2 (6.5)

g2. g2 c

[compare Eqs. (2.29) and (2.35) above]. This per-
mits us to rewrite the dynamic functional J in terms
of primed quantities without any change in struc-
ture, as pointed out in Sec. II.

The latter invariance property implies that the
transformed couplings gi and g2 are not renormal-
ized for the same reason as for the original cou-
plings gi and g2. As an important consequence, the
matrix elements of R in Eq. (6.5) must have no pole
terms -e ". Therefore, we can determine R from
Eq. (6.3) by dropping all pole terms arising from A
and A'. This yields

[2(K A, )A'L'+2L(—ZSK' Zlg') J . —
2LQ

(6.15)
The remaining task is to compute the pole terms of
Zx, Z2, A I, and Zr as fllllctlolls of

' 1/2
p

FZ=g2

(6.16)

(6.18)

where J~ is given by Eq. (3.10), and

w i
—— , , w2 ——

, , w 2
——

, (6.17)

within the transformed theory. Rewriting the
dynamic functional, Eqs. (3.9)—(3.12), in terms of
renormalized primed quantities yields

d = f dt f ddx(l~+d'+d, '+d' '),
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J~ = Z—xK'q 'V q
'

q—'(8, —Zx K'V )q',

(6.19)

J,' = Z—j,l, 'c 'V c ' c—'(8, Z—i„A,'V }c', (6.20)

J'"= A—'L '[q 'V (c ' c—'}+c 'V (q
' q—'}]

+ '(Z—&Z&) '/'(gg'+ PP')(g ', q'+ g', c')

+ Z—g(giq'+grec')(/*V g P—V'g*) .

(6.21)

The perturbation calculation is now substantially
simplified owing to the absence of off-diagonal cou-

plings in zeroth order. Instead, the terms -A'L' inJ'" can be treated conveniently as two-point in-

teractions. They will play the role of counter terms
which absorb pole terms -g igz /e.

The Z factors Zx, Zi, ZL, and Zr are finally ob-
tained as functions of the unprimed parameters w;

and F; by means of Eqs. (6.13)—(6.15) and by ex-

pressing w and F; in terms of w; and F;. The
latter expressions follow from Eqs. (6.16) and (6.17)
after substituting Eqs. (6.5), (6.10), and (6.11). The
result is

The crucial consequence of Eq. (6.33) is this: At the
fixed paint the fluctuations described by the vari-
ables c' and c ' are decoupled from q', q

' and P,f in
all orders of perturbatian theory. Therefore, at the
fixed point, all correlation and response functions
involving q', q

' and 11,$ are identical with those of
model E, ' ' which involve the variables m, m and

This is in agreement with the fixed-point
values w'i' ——w» and (Fi ) =f*, Eqs. (6.29} and
(6.32), which are those of model E As. a particular
consequence, the asymptotic uniuersal part of the
dynamic order-parameter correlation function

C~(k, co) for He- He mixtures is identical with that
for pure He in all orders of perturbation theory.

Similar statements can be made about the correla-
tion function C&z (k, co) in relatian to C~~(k, co) of
model E, and in particular about the asymptotic
critical behavior of the effective kinetic coefficient
which plays the role analogous to the thermal con-
ductivity in model E. Here this is K, Eq. (6.10).
Consequently, there exists a universal ratio which is
analogaus toRi of He, ' ' namely

K (1)+A.(l)+ Q(1) f'
tt —i im —1/2(pl) ' g'i

(6.36)
w'1 ——2w 1 wi(w 1+wp+8)

wq ——2w 1 wq(wi +wq —8)

8=[(wi+wz) +4wiwz(w3 —1)]'

(6.22)

(6.23)

(6.24)

K(l)+ A, (l) f'
1 o (pi)-'~'g, 4

(6.37)

F'1 ——(w'1 )' (wi
' Ficosy+wz ' Fzsiny),

(6.25)

F'z ——(wi )' (wz
' Ficosy —w 1

' Fisiny),

(6.26)

Gasp=(28) ' (wi —wi+8)'

sing=(28) '/ (wi —wg+8)'

(6.27)

(6.28)

At the fixed point determined by Eqs. (5.12), (5.14},
and (5.15) these expressions become

1/21/2

g&+
W W

wigan wiX~

and comparing Eq. (6.37) with Eqs. (4.38), (4.4Q),
and (5.26)—(5.28), one can show that Rtt also coin-
cides with R H„at least in two-loop order.

(6.38)

B. Dynamic Z factors in two-loop order

Here P» describes the higher-order contributions
which are identical with those appearing in Ri of
model E. Using in Eq. (6.37)

wi = wwgi( w+iwp } =w
I Q

W2 = 00

(6.29)

(6.30)

The Z factors Zx and Zi appearing in the
dynamic functional, Eq. (6.18), are determined by
the requirement that the derivatives of the renormal-
ized vertex functions

8 =w
1 +wg

Fi' =Fi =(f*)'",
F'i* ——Q,

co~» =(w»/wi )'~

sing&» =(w»/wi )'~

(6.31)

(6.32)

(6.33)

(6.34}

(6.35)

and

, r, ,, (k,o)
Bk'

I, ,—.(k,0)
Bk k=o

(6.39)

(6.40)
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(F' )
Zx- ——1 — (1y —,Q),

2E
(6.41)

have no poles -e " at d =4. Inspection of the dia-
grams in the diagonal representation shows that the
two-point interaction -A' in J'", Eq. (6.21), does
not contribute to I,—,and I, ,—,up to two-loop or-
der. Consequently, the perturbation calculation is
analogous to that for I —of model E. Thus the di-
agonal representation enables us to infer from model
E, without any additional calculation,

2
Fp

Zz =1— (1y —,Q),
2E

FIFp
ZL ——1 — (1~—,Q) .

2wgE

(6.48)

(6.49)

Here Q is regarded as a function of the unprimed
parameters which is obtained from Eq. (6.43) by
substituting Eqs. (6.22)—(6.28).

The remaining Z factor Zr is determined by the
poles of

(Fz )'
Zj =1— (1+—Q),26'

(6.42) I ~.~(k, co)
k =Decl) =0

(6.50)

where, in two-loop order,

Q =(Fi ) N(wi )+(Fz) N(wz)

with the model-E function

(6.43}

N(w)= —, +w —w (2+w)ln
1 (1+w)

2 1+w +ww

(6.44)

In Eqs. (6.41) and (6.42) we have dropped pole terms
-e " with n & 1 since they do not contribute to the
g functions within the minimal renormalization pro-
cedure.

Next we consider the renormalization factor 3',
which is determined by the pole terms of Q

(61n —, —1)~0(e z),
36&

(6.51)

Within the diagonal representation it is obvious that
the contributions proportional to (Fi )

" and (Fz )
"

can be taken immediately from the terms propor-
tional to f" in model E. Thus Z& must read in
two-loop order

(Fi )'
Zr ——1 — [1——,(Fi ) M(wi )](1+wi )e

(Fz )'
[1——,(Fz ) M(wz )](1 gwz )e

(F' )'(F,' )'
+ H(wi, wz)

2e(1+wi }(1+wz )

I .,—.(k,0)
akz

(6.45)
with the model-E function~ ' 9

T

FiFzA'= — (1y —,Q) .
2Wg E'

(6.46)

Substituting these results into the relations
(6.13)—(6.15) yields

F2
Zx ——1 — (1i —,Q),

2E'
(6.47)

Again, inspection of the diagrams shows that no ad-
ditional calculation is necessary, only the couplings
entering the external vertices have to be modified.
This yields in two-loop order

I I 4M(w) = —,(1+w)(27 ln —, —6)~ w
2(1+w)

+(1+2w)ln . (6.52)
(1 pw)

1 y2w

The mixed term proportional to (Fi )z(Fz )z, howev-
er, must be computed explicitly from new two-loop
diagrams which have both an internal q and c line.
Furthermore, one must verify that there are no con-
tributions proportional to F', (Fz ) and (F'I )'Fz.
The function &(x,y) determining the mixed term in
Eq. (6.51) is calculated as

~(xy)= —, ln —, —3y27 4 1+ln +—(1+x +y)ln
y(1 ~x) x x +xy +x

2(1+y) x +y y (1~x)(x yy)

+ X 1+in ~ —(1+x +y)ln
x (1+y) y p +xy +y

2(1+x) x ~y x (1+y)(x +y)

x+xy+x y+xy+y 1~x ~y
(1+x)(x +y) (1+y)(x +y) (1+x)(1yy)

' (6.53)
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Again all priined parameters in Eq. (6.51) have to be considered as functions of the unprimed parameters ac-

cording to Eqs. (6.22)—(6.28). The coinplexity of the resulting expressions demonstrates the great advantage of
having avoided a direct off-diagonal perturbation calculation in two-loop order.

The g functions are finally obtained from the Z factors Ztt, Zi, and ZL in the form anticipated in Eqs.
(5.6)—(5.8), with Q given by Eqs. (6.43), (6.44), and (6.22)—(6.28). The remaining g function gr reads

(F' )i (Fp ) (F') ) (Fi )

, [1—(F'i ) M(w'i )]— [1—(F&) M(w&)]+, H(wi, wq)
1+wi 1+wp (1+w'i )(1+wi )

(6 ln —, —1)
18'

(6.54)

with the primed parameters expressed in terms of
unprimed parameters according to Eqs.
(6.22)—(6.28). This completes the determination of
the P functions, Eqs. (3.18)—(3.22), and of the
renormalization-group flow equations (3.32) and
(3.33) in two-loop order.

VII. NONLINEAR
RENORMALIZATION-GROUP ANALYSIS

There are several reasons for carrying out a non-

linear renormalization-group analysis of the critical
dynamics in He- He mixtures: (i) the smallness of
the dynamic transient exponent co„«1 which
makes the asymptotic critical region experimentally
inaccessible and which invalidates the conventional
power-law description in the accessible region even

very close to criticality (10 &t &10 ); (ii) our in-

terest in explaining the crossover behavior in the
range 10 & t & 10 ' and in providing a semiquan-
titative connection with the noncritical background
properties; (iii) the possibility of predicting the con-
centration dependence of various physical quantities
for arbitrary c «1 without adjustable parameters
once the initial values w;(lo) and F;(lo) have been

identified in the background region lo &O(10 ') at
a particular concentration co «1. These points re-

quire a global integration of the nonlinear
renormalization-group flow equations rather than
the usual linearization in the vicinity of the fixed

point.

A. Effective dynamic parameters

In the following we shall illustrate some features
of the effective dynamic parameters by numerical
integration of the two-loop flow equations. For sim-

plicity we shall neglect the effect of static correc-
tions to scaling and therefore set u (l) =u'=e/40 in

Eq. (6.54). In the remaining five-dimensional space
the dynamic parameters vary in the range

and

0&w; & oo, i =1,2 (7.2)

—1(w3(1 (7.3)

w3(l) =1,
Fi(l) =Fp(1),

(7.4)

(7.5)

which was also considered by Siggia and Nelson.
As we shall see below, the most serious restriction is
that of Eq. (7.4), which excludes the crossover
behavior in the precritical region t&10 . Substi-
tuting Eq. (7.5) into the exact relation (5.3) deter-
mines the ratio of w

~ (I) and wi(l) as
wz(l)/wi(l)=8, with 8 given by Eq. (5.18). Thus
within the subspace defined by Eqs. (7.4) and (7.5) it
suffices to study the flow of the parameters

and

f(l)=Fi(1) =Fi(l) (7.6)

The range
~
wi

~
& 1 is excluded as it corresponds to

an unphysical, negative eigenvalue A, ', Eq. (6.11), of
the matrix of kinetic coefficients. Also the large F;
domain, F; &O(1), will not be discussed since our
perturbation results are not conclusive in this
domain. By contrast, the dependence of the P func-
tions on w;, i =1,2, 3, is exact within the loop expan-
sion and fully nonlinear. This permits us to include
the entire range (7.2) and (7.3) in our analysis, with
the restriction F; &O(1). Fortunately, as for pure
He, it is indeed the small F; region which turns

out to be relevant for the dynamics of He- He mix-
tures in three dimensions. The large F; domain may
become relevant near two dimensions.

As shown in Sec. V, the parameters wi(l) and

Fq(1)/Fi(l) have a fast approach to their fixed-point
values wi F& /F; =1 ——in three dimensions. There-
fore, for a preliminary study, it is of some interest to
illustrate the flow of the remaining parameters in
the simpler subspace

(7.1) w (I)= [wi(l) '+ wi(l) '] (7.7)
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The resulting flow diagram for f and w is identical
with that for model E, for reasons given in Secs. II
and V, and is shown in Fig. 1(b) of Ref. 53 for
d =d'=3. Here d' denotes the borderline dimen-
sion below which the weak-scaling fixed point
w*=Q becomes stable. We note that the previous
one-loop theory with w'=1+0(e) implies a flow
diagram of the type shown in Fig. 1(a) of Ref. 53
and is therefore misleading. For a detailed discus-
sion of the two-loop flow diagram we refer to Refs.
51 and 53.

Outside the subspace defined by Eqs. (7.4) and
(7.5) the global topology of the flow diagram may
become quite complicated. We have not systemati-
cally investigated the entire five-dimensional param-
eter space but only the region that is expected to be
relevant for He- He mixtures in three dimensions.
By continuity it is clear a priori that for low concen-
trations the projections of the He- He trajectory
onto the fi-wi plane must yield a trajectory siinilar
to that for pure He. The latter was first identified

by Dohm and Folk as shown in Fig. 7 of Ref. 53.
Using our two-loop result for the

renormalization-group flow equations and compar-
ing with the recent measurements of Gestrich and
Meyer 3 at c=0.04 we have approximately deter-
mined a trajectory typical for He- He mixtures at
low concentration. The corresponding effective
dynamic parameters w; (1) and f; (1)=F; (1) are
shown in Figs. 1(a)—1(e). We see that both f i (1) and
wi(l) are consistent with f(1) and w(l) of pure
He. The new information is contained in our ap-

proximate determination of the 1 dependence of
f2(1), w2(1), and w3(1). In the following we discuss
the procedure that leads to this identification.

B. Theoretical amplitudes

In order to clearly separate the genuine dynamic
properties from purely static effects it is appropriate
to rewrite the transport coefficients in terms of stat-
ic prefactors multiplied by dimensionless dynamic
amplitudes RD, Rk, and R„. From the expressionT'

derived in Secs. IV and V we obtain in three dimen-

SionS

F2(1) w3(l) ——,F, (l)F2(l)
Rk =

Fi (I) I —f2(l)
(7.12)

R„=
' i/2

2m. wi(l)fi(l)

[w3(l) ——,Fi (l)F2(l)]
X 1 ,fi—(1—)

1 ——,f2(1)

(7.13)

These amplitudes contain the relevant information
about the critical dynamics since they depend only
on the dynamic parameters w;(1) and F;(1). In the
limit 1~0, they attain finite values Rk, R*„[seeT'

Eqs. (5.25) and (5.40)], and

RD ——(2m. w2f') ' (1——,f') . (7.14)

l=tt, .

This corresponds to the identification

(7.15)

Note that R„'and RD are nonuniversal dynamic
quantities. They cannot be expressed in terms of
purely static quantities, contrary to what is implied
in Ref. 41 concerning RD.

Alternatively, one can work with the set of ampli-
tudes Rk, RH„and Rii defined in Sec. V, which be-

come universal quantities for 1~0. They are ap-
propriate for demonstrating the nonuniversal depar-
tures from the asymptotic values in the experiinen-
tally accessible regime. On the other hand, the ex-
perimental values corresponding to RH, and Rii are
not directly measurable in a single experiment but
must be extracted simultaneously from three
separate measurements (D, kT, and K) at the same
concentration. Therefore, it seems preferable to em-
ploy the amplitudes given in Eqs. (7.11)—(7.13).

In order to compare with experiments one must
specify the absolute temperature scale in the connec-
tion between 1 and ta, Eq. (4.22). For reasons given
previously we choose

D =g2ga g, RD,1/2 —1/2 (7.8) 12 =Op (7.16)

—1
kT =gig2 XcRk (7.9}

For simplicity we shall approximate gp(P, E) by the
He value

K =g iraq kiiP R»,1/2 —1/2 (7.10) gp
——1.41 X 10 (7.17)

where

RD ——[2ir w2(l)f2(l}] ' [1——,f2(l)], (7.11)

in units of cm. The remaining task consists of
determining the nonuniversal initial values w;(lp)
and F;(lp) by means of comparison with experiment.
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FIG. 1. Effective dynamic parameters vs flow parameter I as calculated by numerical integration of the flow equations
(3.18)—(3.22), (5.6)—(5.8), (6.43), and (6.54) with the initial conditions given by Eqs. (7.24)—(7.28) at 10——0.0884. The initial
conditions have been determined by a four-parameter fit of the amplitudes Eqs. (7.11)—(7.13) to the data for the ampli-
tudes Eqs. (7.18)—(7.20) at X=0.05 shown in Fig. 2. The fiow parameter I is related to t (see top scale) according to Eq.
(A12). The fixed-point values are w ~

——0.02, w2 ——0.19, wq ——1,f ~ f2 f =0.83. ————
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1.0-

log our analysis we are primarily interested in a com-
plete set of data for D, kT, and K at one particular
concentration. This permits a simultaneous identifi-
cation of all five initial conditions w;(lo) and F;(lo)
at this concentration. Furthermore, it seems advis-
able to start with an analysis of measurements at
low concentration X« 1 in order to be able to make
contact with our previous analysis of pure He
(X=0) and to verify continuity in X. Fortunately
such measurements have been performed very re-
cently at X=0.053 by Gestrich and Meyer. ' The
corresponding data for the amplitudes R~" ', Rk" ',

and R „'"p' are readily obtained from Eqs.
(7.18)—(7.20) by using the known experimental re-
sults for the various static quantities, as described in
the Appendix. The data are shown in Figs.
2(a)—2(c) as a function of the relative temperature

(e)
T —Tg(c)

Tg(c)

T —Tg [X]
T~[X]

(7.22)

-5
where T~[X]=T~(c(X))=2.10 K at X=0.053 or
c =0.04 according to

FIG. 1. (Continued ).
Pl 3

c(X)=
m3X+m4(1 —X)

(7.23)

C. Experimental quantities

expt p r)c

cm kryo T(g Bb,
(7.18)

r

R t:xPt
kT Tg Bc pT

—1

~~p( K16 (0
K

cr Tm4 pkg Cp, c

with

(7.19)

(7.20)

The experimental values corresponding to the
theoretical amplitudes, Eqs. (7.11)—(7.13), are ob-
tained as

I /2

All data exhibit a more or less systematic tem-
perature dependence even close to T~ which is con-
sistent with our prediction of the importance of
dynamic transients in the accessible region. Owing
to the fast transient co =roF &F

———,, Rk" ' is not

far from its asymptotic value Rk =1 in the exper-
T

imentally accessible region t &10, as predicted
in Sec. V. According to Fig. 2 we expect
Rk"p'=Rk and R„'"p'=R'„near t =10 whereas
RgP' should increase further even for t & 10 . We
note that the scatter of the data for Rn may partly
be due to the logarithmic representation of the origi-
nal data for D which introduces some uncertainty on
our nonlogarithmic scale. There might also be sys-
tematic errors introduced from static quantities such
as o, Bc/Bb„etc.

V=+—c
P, T

(7.21)
D. Determination of the initial conditions

Since the experiments are performed at constant c
rather than at constant b, one must take into ac-
count the well-known effects of the Fisher renormal-
ization. Furthermore, the various static quantities
have to be rewritten in terms of the molar concen-
tration X and the molar chemical potential P used in
the experimental literature. These points are
summarized in the Appendix.

The dynamic quantities D, kT, and K have been
measured at several concentrations above
T„' ' ' ' ' ' ' At the present stage of

Our procedure of identifying the He- He trajec-
tory is an extension of that introduced previous-

ly ' ' for He. Here we have to determine five ini-
tial values w;(lo), F;(lo). We have found that this is
possible only if all of the three theoretical ampli-
tudes, Eqs. (7.11)—(7.13), are fitted simultaneously
to their experimental counterparts, Eqs.
(7.18)—(7.20). The data for only one or two of these
amplitudes do not provide sufficient information for
this purpose. This is plausible according to the
dependence on w; and F; in Eqs. (7.11)—(7.13). For
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example, Rti and Rk are quite sensitive to the
T

parameters wz(lp) and w3(lp), but not to wi(lp).
There exists only an indirect coupling of RD and
Rk to wi(l) through the flow equations. Thus the

data of R„'"~' are needed as well in order to identify
wi(lp) unambiguously via Eq. (7.13).

Besides w3(lp) there are only three of the four
parameters w;(lp},F;(lp), i =1,2, that can be con-
sidered as freely adjustable. The remaining parame-
ter, for example wz(lp), is determined by the exact
relation (5.3). It contains the nonuniversal quantity
B, Eq. (5.18), which within the present model plays
the role of a temperature-independent background
parameter. We use an experimental value for B
which is taken from static quantities at tp ——10
For X=0.05 we find B'" i'(t p)=9.2 6 (see Appen-
dix).

We have carried out a four-parameter least-
squares fit of R to RP' (a=D, kr, tr) by numerical
integration of the fiow equations for wi(1), wz(l),
W3(1), Fi (I), and Fz(1) with adjustable initial condi-
tions wi(lp), wz(lp), Fi(lp), and Fz(lp) at tp ——10
and with wz(lp) determined by

wz(lp ) =9.26wi (lp )fz(lp)/f i (lp ) (7.24)

We used equal weights for the data points of Rk"~'

and R'„""' shown in Fig. 2. Since there are only a
few data points for RD"~' we attached weights to
these points which are twice as large as the weights
for Rk"~' and R„'"~' in order to have comparable

overall weights for the different amplitudes (the re-
sults are rather insensitive to these details). The fit
leads to the following initial conditions (at
tp=10, Ip ——0.088)

0 GESTRICH ANO MEYER

X= 0.05

(c)

wi(lp) =0.764,

W3(lp ) = —0.050

fi(lp) =Fi(lp) =0.298,

fz(lp) =Fz(lp) =0.308 .

(7.25)

(7.26)

(7.27)

(7.28)

0

log)0 t

FIG. 2. Amplitudes according tp Eqs. (7.11)—(7.13)
and (7.18)—(7.20} for the transport coefficients D, kT, and
a. vs t, Eq. (7.22) at X=0.05. The data are taken from the

dynamic measurements of Ref. 23 using the values for
static quantities given in the Appendix. The curves are
four-parameter fits of Eqs. (7.11)—(7.13) to the data, with

adjustable wi(4}, wi(lp}, fi(lp), and fz(lp), and with wp(lp}

determined by Eq. (7.24). The corresponding effective
parameters are shown in Fig. 1.

The corresponding value for wz(lp) is 7.31.
The ensuing I dependence of the fiow parameters

is shown in Figs. 1(a)—1(e) and the corresponding
theoretical amplitudes are shown in Figs. 2(a)—2(c)
(solid curves). The good quantitative agreement
with the three different experimental amplitudes
over two decades of relative temperature is nontrivi-
al since in our four-parameter fit there are only two
entirely new parameters, namely fz(lp) and w3(lp),
whereas fi(lp} and wi(lp) are expected a priori to be
comparable to our previous He values

f(Ip) =0.253, w (lp) =0.572 (model-E, cell-D data),
or f(lp) =0.186, w(lp) =0.759 (model-E, cell-A
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data). The latter difference between the two sets of
values for f(lo) and w(lo) arises from the as yet
unexplained dependence of the He thermal conduc-
tivity on the cell size. ' The same kind of uncer-
tainty inay be expected for the He- He thermal-
conductivity data and for the ensuing values of the
fit parameters given in Eqs. (7.25)—(7.28).

Another source af uncertainty in determining
w;(lo) and f;(lo} is the neglect of the static cou-
plings -q

~ $0 ~

and -c
~ $0 ~

in the present
model. Including these couplings would lead to ad-
ditional terms in the flow equations and to an l
dependence of the quantity 8 in Eq. (5.3). Using ex-
perimental values for 8 yields the nonnegligible tem-
perature dependence shown in Fig. 3. The decrease
of 8'"r'(t) toward a small value 8'" '(0) « 1 at Ti is
due to the increase of Ct, for t~0 In .order to test
the sensitivity of the present results to this variation
of 8 we have repeated the fit with a smaller value of
B. We have found that the fit quality is not very
sensitive to a change of 8 within the range
1&8&10, but the initial values w;(lo), f;(lo) do
change. For example, for 8 =3.0 (corresponding to
8'" ' at t =10, X=0.05) we find wi(lo)=1. 24,
w2(lo) =7.63, w3(10)= —0.019, fi(lo) =0.137, and

fz(lo) =0.281, instead of Eqs. (7.24)—(7.28).s7

These differences yield a reasonable estimate for the
uncertainty of the present determination of the
background values. Nevertheless, we believe that
our present analysis is sufficiently conclusive to ex-
plain the main features in the range X &0(0.1). A
fully quantitative treatment of all nonuniversal de-
tails is not the purpose of this paper and would re-
quire extensive additional computations such as
those far madel F in the He case, as noted in the
Introduction.

In Figs. 2(a)—2(c} we have extended toward Tt,

12

10
~exp'

the theoretical amplitudes (solid curves) outside the
range of the experimental data employed for the fit.
Thus our theory predicts a measurable increase of
R„'" ', RD" ', and Rk" ' in the range 10 & t & 10
It would be interesting to test this prediction. At
present it is not possible to determine reliably the
true asymptotic value RD since it is quite sensitive
to w' and to the asymptotic value of 8'"t" at T~
which is not accurately known. Nevertheless, be-
cause of w2 «1, we predict RD to be considerably
larger than the abservable amplitude RD-0. 1. By
contrast, Rt, should remain close to Rk forT T
t & 10 because of the fast transient

1

CO~ =Ci)F ]F ——2.
Farther from Ti our theory predicts an increasing

RD with increasing t for t & 10 [Fig. 2(a)], due to
the strong decrease of fz(1) as I—+I according to
Fig. 1(e). Furthermore, since w3(l) changes sign in
the background region [Fig. 1(c)] our theoretical Rk
becomes negative for t & 10 . These points require
further thearetical investigatian since the present
model is not expected to be fully quantitative in the
background region. Additional measurements in the
range t & 10 would be quite interesting.

Finally, in Figs. 4(a)—4(c) we show the compar-
ison between our fits (solid curves) and the data of
Gestrich and Meyer for the complete transport
coefficients. The solid curves are obtained from
Eqs. (7.8)—(7.13), where the static prefactors are
taken from experiments (see Appendix). The
theoretical and the experimental temperature depen-
dence of RD in Fig. 2(a) implies an effective critical
exponent for D in Fig. 4(a) which deviates slightly
fram the dynamic-scaling exponent ' -v/2 in the
accessible region (in addition there is an almost
negligible effect from the Fisher renormalizationss).
For t &10 this deviation is mainly due to the l
dependence of w2(l) shown in Fig. 1(b). A corre-
sponding statement applies to the dashed and dot-
dashed curves in Fig. 4(a), which will be explained
below.

E. Concentration dependence

0.15
-2

I

-3
0 I

-6

log, o
t

FIG. 3. Experimental values for B'"~'=g &P, /g2+q vs

for various X. The curves are obtained from Eqs. (A2),
(A4), (A7), and (AS) and from the curves in Fig. 14 in the

Appendix.

It has been demonstrated experimental-
ly ' ' that the critical behavior of D, kT, and
lr depends on the equilibrium concentration c or X in
a nontrivial way. Sa far this has been studied
theoretically' ' only for the special case of a at
Ti(c) in the dilute limit c~0, with conflicting
asymptotic results a(Ti)-c ' and ~(Ti)-c
due to Siggia and to Kawasaki, ' respectively.
Neither of these results was convincingly confirmed
by experiment. ' ' ' Our theory permits us to
resolve this problem by predicting the obseruable c
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(b)

tions of X with finite limiting values for X~O. The
parameters I p(0) and Kp(0) are clearly finite since
they represent the kinetic coefficients for pure He.
Furthermore, we expect that in the background the
mass diffusivity D(X) and the thermal diffusion
factor

kT (X)

X(1—X)
(7.29)

depend on X only smoothly. From kinetic theory it
is known that D(X) and aT(X) have finite limiting
value as X~O. According to Eqs. (2.25) and (2.26)
we therefore expect that Q(X)X, ' and
Lp(X)X '(1 —X) ' are the appropriate quantities to
be considered as smooth functions of X. In terms of
the bare model parameters

2 2
g

leap

g2(p
f"=2~r~, f"=2.~,r,

and

E
LJ

LJ
CU

2
CFI

QJ
rn

CD

—0.11

0.05
—0.01

(c)
I

-51 I I

-6 -3 -1
log, o

t

FIG. 4. Transport coefficients D, k~, and x vs t. The
fit (solid curves) and the data correspond to X=0.05 and

are obtained from those in Fig. 2 according to Eqs.
(7.8)—(7.13) and (7.18)—(7.20), respectively. The dashed
and dot-dashed curves are theoretical predictions without

adjustable parameters based on extrapolations from
X=0.05 to X=0.11 and 0.01 as described in the text. The
corresponding initial conditions are given in Eqs. (7.39)
and (7.40) and in Table II.

l

-2

dependence of s. in the accessible temperature range
near T&. Furthermore, we present predictions of the
present model for the c dependence af D and kT.

Following Siggia~ we incorporate the dependence
on c via the bare inodel parameters which represent
noncritical background values. The c dependence of
the parameters X„X~,gi, and gz is already deter-
mined by Eqs. (2.5), (2.8), (2.18), and (2.19) in terms
of static quantities which can be taken from experi-
ment. Therefore, we anly need to specify the c or X
dependence of the bare dynamic parameters I p Kp,
Q, and Lp.

We expect that I p(X) and Kp(X) are smooth func-

r,x, r,x,WIp=, Wpp=
Kp Ap

Lp
(7.31)

this means that wip(X), wip(X), and fip(X), as well
as

and

wip(X)X,
' '

X(1—X)

fop(X)X, fi-
tz

(7.32)

(7.33)

should be smoothly X dependent. Therefore, it suf-
fices to determine wip, wzp, f ip, wi, and fi at a few
different concentrations and to interpolate smoothly
between X=O and X, =0.675. Employing the re-
sulting background values as noncritical initial con-
ditions for our renormalization-group flow equa-
tians should then permit a complete treatment of the
critical dynamics along the A, line abave and below
Ti. Here we have assumed that at some
lp & O(10 ') in the background region the renormal-
ized parameters w;(lp) and f;(lp) have approximate-
ly the same concentration dependence as the bare
parameters w;p and f;p.

In the follawing we shall consider only the low-
concentration range X&&1, where I p, Kp, Q/X„
w 3 and fz can be taken to be roughly independent,
af X. Identifying the initial valum given in Eqs.
(7.24)—(7.28) with the bare parameters defined in
Eqs. ('7.30) and (7.31), and using experimental values
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for X~, X„gt, and g2 (at X =0.05, tp ——10, see
Appendix), we obtain

I p=0. 568X10 cm /sec,

Kp =2.02 X 10' cm ' sec

A,p/X, =Dp=7. 77X 10 cm /sec,

u)3 ———1.18)(10 ' cm

f2 ——1.62 sec /cm

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

l. Extrapolation to X=0.ll and 0.15

Our results for X =0.11 are shown by the dashed
curves in Figs. 4(a)—4(c). They have been calculated
from Eqs. (7.8)—(7.13) with experimental values for
the static prefactors. The initial conditions w;(lp)
and f;(lp) have been determined without adjustable
parameters by substituting the values given in Eqs.
(7.34)—(7.38) into Eqs. (7.30)—(7.33). The result is

and

w ](lp) =0.784, w2(lp) =7.31

w 3 ( Ip ) = —0.0648
(7.39)

f ] (Ip) =0.281, f2(lp) =0.592 (7.40)

These numbers should be considered only as order-
of-magmtude estimates for the background values of
the transport coefficients. s9

Keeping the parameters (7.34)—(7.38) fixed we
can use Eqs. (7.30)—(7.33) to calculate w;p(X) and
f.p(X) for arbitrary X within the range X« 1. This
enables us to determine the X dependence of the ef-
fective parameters w;(1),f; (I) by integrating the flow
equations with the initial conditions w;(lp) =w;p(X),
f;(lp)=f;p(X). Consequently, we can predict the
critical behavior of the transport coefficients for ar-
bitrary X«1 without adjustable parameters. The
reliability of this procedure does of course depend
on the accuracy of the present model and on the ex-
perimental data at X =0.05 which were crucial for
identifying the background values given by Eqs.
(7.24)—(7.28) or Eqs. (7.34)—(7.38). Note that some
uncertainty enters also through the ambiguity for an
appropriate value of tp or lp.

We shall apply our concept to the following
points: (i) predicting the critical behavior at
X=0.11 and 0.15, and comparison with existing
data, ' ' ' ' (ii) predicting the results of measure-
ments in very dilute mixtures, and testing con-
sistency with the thermal conductivity ' in pure
He by extrapolating to X=Q, and (iii) resolving the

Siggia-Kawasaki problem ' concerning the X
dependence of K(T3 ).

at Ip ——0.082 corresponding to tp
——10 3~2 for

X =0.11 (see also Appendix).
We see that the difference with the X=0.05 case

is most pronounced for tt [Fig. 4(c)]. The dashed
curve shows a weakly nonmonotonous behavior very
close to T3 which results from the temperature
dependence of g, . This feature becomes more pro-
nounced at larger X as indicated by preliminary ex-
trapolations. Whether this should be an observable
effect can be answered conclusively only by means
of a more complete theory including the static cou-
plings -q

~
11

~

and -c
~ y ~

.
The direct comparison of our theory with the data

of Tanaka and Ikushima' for a. and kT is shown in

Figs. 5(a) and 5(b). The agreement with the t~ data is
excellent, which is perhaps partly fortuitous. Also
for the kT data the agreement is well within the ex-
pected accuracy of the present model (and of the
data). It should be noted that the kT data of Tanaka
and Ikushima are higher than suggested by interpo-
lating between the X=0.15 and 0.05 data of Ges-
trich and Meyer. Furthermore, the kT data of Ta-
naka and Ikushima' (for X =0.23 and 0.33) do not
show the expected X dependence (kT-X) in the
background region.

A conclusive comparison between our dashed
curves in Fig. 4(a) and the measurements by Ahlers
and Pobell at X =0.10 is not possible since the rela-
tion which converts their measured relaxation time r
into the desired values for D is not accurately
known. With simplifying assumptions about the
geometry of the cell and about the boundary condi-
tions one would expect the relation D =(L/m. ) ~
corresponding to Eq. (19) of Behringer and Meyer '

for n =1, where L is a characteristic length of the
cell. Use of this relation and identification of L
with the height H =0.6 cm yields experimental
values for D which agree with our dashed curve in
Fig. 4(a) within 15%.

In this context we comment on the indirect esti-
mate of the damping coefficient D2 for . econd
sound presented by Tanaka and Ikushima. ' These
authors employed values for D which were calculat-
ed from the data for r via the Ahlers-Pobell formu-
la D =L /r with L-0.7 cm, and obtained values
for D2 which disagreed with those of Ahlers and
of Crooks and Robinson by a factor of 5 (see also
Ikushima, Secs. 3.3.5 and 3.3.6). We have found
that using the Behringer-Meyer relation
D =(H/tt) r ' essentially eliminates the major in-
consistencies. Nevertheless, we expect the simple
procedure of Tanaka and Ikushima' to yield an
order-of-magnitude estimate only; in particular,
their formula for D2 does not take into account the
non-negligible contribution D& related to the order-
parameter damping below Tq.9s
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FIG. 5. Comparison between our theoretical extrapolations (solid curves) and experimental data of Ref. 14 for k r and a.

at X=0.11. The curves are calculated without adjustable parameters and are identical with the dashed curves in Fig. 4.

Next we present our extrapolation to X=0.15.
Substituting the parameters of Eqs. (7.34)—(7.38)
into Eqs. (7.30)—(7.33}yields the initial conditions

and

w](lp ) =0.787, w2(lp) =7.31

w3(lp) = —0.072
(7.41)

f)(lp) =0.266, f2(lp) =0.810 (7.42)

at lp =0.077 corresponding to tp 10 ~ for-—
X=0.15 (see also Appendix). The resulting trans-
port coefficients can be calculated from Eqs.

(7.8)—(7.13) without adjustable parameters. They
are shown in Figs. 6(a)—6(c) (solid curves) and are
compared with the data of Gestrich and Meyer
and of Ahlers. The agreement with D and kz.
[Figs. 6(a) and 6(b)] is reasonable and well within the
expected accuracy of the present theory. The same
statement holds for a' for t & 10 ' [Fig. 6(c)]. The
deviations of O(15%) for t & 10, however, seem
to indicate a systematic inaccuracy of the present
model. In particular, the decrease of a for t & 10
which in the present treatment results from the tem-
perature dependence of g&, is not supported by the
data. We consider the neglect of the static couplings
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of a. is expected to exhibit a nontrivial crossover be-
tween pure He-like behavior farther from Tx and
the ultimate A,-line behavior very close to Tq. Cor-
responding measurements are planned by Meyer and
co-workers. '

Our theoretical results for the transport coeffi-
cients at X=0.01 are shown by the dot-dashed
curves in Figs. 4(a)—4(c). In addition, Fig. 7 shows
the predicted temperature dependence of tr for
X =0.01 and 0.005. [The corresponding initial con-
ditions w;(lo) and f;(lo) are given in the Appendix. ]
It is understood that these predictions are not to be
considered as highly precise since the present model
is not yet complete. Nevertheless, our curves should
correctly predict the trend of the observable tem-
perature dependence.

As a test for our procedure we have also per-
formed the X~O limit (based on the data at
X=0.053). The resulting curve for tr can then be
compared with existing thecal-conductivity data94

for pure "He. This comparison is shown in Fig. 7
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FIG. 6. Comparison between our theoretical extrapola-
tions (solid curves} and experimental data for D, kr, and a
of Ref. 23 and for ~ of Ref. 2 at X=0.15. The curves are
calculated without adjustable parameters in the same way
as the solid curves in Figs. 4 and 5, with initial conditions
given in Eqs. (7.41) and (7.42).
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in the present analysis as
the main source of inaccuracies on the theoretical
side. Also the extrapolation procedure employing
the X-independent parameters of Eqs. (7.34)—(7.38)
should be corrected for X&0.1. It remains to be
seen whether the systematic deviations from the
data in Fig. 6(c) are eliminated in a more complete
analysis of the model-F type. It should be noted, on
the other hand, that also the data ' themselves are
not highly precise, as indicated by the differences in
Fig. 6(c), and may be subject to uncertainties due to
cell-size effects similar to those in pure He3z's '9

which are as yet unexplained.

2. Extrapolation to dilute mixtures

The study of very dilute mixtures is of particular
interest since at small X the temperature dependence

log, o
t

FIG. 7. Thermal conductivity ~ vs t on logarithmic
scales. The lower data refer to X=0.05 and are identical
with those shown in Fig. 4(c). The upper set of data are
the cell-A data for pure He from Ref. 55. The lower
solid curve is the four-parameter fit corresponding to the
solid curves in Figs. 2(c} and 4(c}. The upper solid curve
is a (two-parameter} model-E fit using the data for
t &10 2 (with the weights suggested in Ref. 55}. The
dashed curves are theoretical extrapolations from X=0.05
to X=0.01, 0.005, and 0, respectively, without adjustable
parameters. The corresponding initial conditions are
given in Table II.
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(upper dashed curve and upper set of data). We at-
tribute the systematic deviations from the He data
for t &10 and t &10 mainly to the inaccuracy
of the present model rather than to our extrapola-
tion procedure. For comparison we have also shown
the best fit to the He data using model E (upper
solid curve in Fig. 7). The deviations of the data
from the upper solid and dashed curves provide a
realistic estimate for the degree of inaccuracy that
we have to expect at the present stage of the theory
for He-~He mixtures.

3. The Siggia-Kawasaki problem

Since a'(Ti) is infinite in pure He and finite in
He- He mixtures it is an interesting theoretical

problem' ' to predict the type of divergence of
«( Ti ) as a function of the concentration c in the di-
lute limit c~0. On the other hand, we have seen in
Fig. 7 that the asymptotic value «( Ti ) is not observ-
able for small c. Therefore, the more relevant ques-
tion is to study the concentration dependence of «at
finite relative temperature t ~ 0. With the extrapola-
tion procedure described above our theory provides a
quantitative answer which is illustrated in Fig. 8.
At the accessible relative temperatures t=1010,and 10 ' the curves predict an increasing «
with decreasing X which saturates at roughlyX=10,10, and 10 ', respectively. Thus we

100

10—

l ( l

-4 -2 -1

log, o X

PIG. 9. Thermal conductivity a vs X on logarithmic
scales. The data are identical with those shown in Pig. 2
of Ref. 13 and in Pig. 19 of Ref. 26. The solid curves are
our theoretical extrapolations without adjustable parame-
ters. The lower curve is identical with the curve at
t =10 shown in Pig. 8; the upper curve is calculated at
t = 10-".

0.1

do not expect a simple power-law behavior but rath-
er a crossover behavior in the experimentally acces-
sible regime, in contrast to the previous predictions
by Siggia and by Kawasaki. '

The reason for the unobservability of a power law
is mainly the shrinking (as X~O) of the asymptotic
region where w&(l) =1 [see Fig. 1(c)]. In order to il-
lustrate this point we have extended our analysis to
t =10 and 10 ', corresponding to the two upper
curves in Fig. 8. Now we see that «. does indeed ap-
proach a power-law behavior -X ' at extremely
small t over two decades in X until, for X~O, it
shows the final crossover to a finite ~He value be-
cause t is finite. From these results which are based
on numerical integration of our two-loop flow equa-
tions we infer that at Ti the thermal conductivity «
diverges as

a(Ti )-X '-c (7.43)
' DUKE UNIVERSITY

I

-5
I I

-3 -2 -1 0

logy X

PIG. 8. Thermal conductivity x vs X on logarithmic

scales at constant t. The dots correspond to the maximal

values of the data of Refs. 20 and 23 very close to Ti, ac-

cording to Ref. 61. The curves are our theoretical extra-

polations without adjustable parameters, based on the fit
at X=0.05 shown in Pigs. 2 and 4, as described in the text
and in the Appendix. The dashed line has the slope —1

corresponding to a power law -X ' and is sho~n for
comparison with the curve at t = 10 ' .

This agree with Siggias pr&iction~ bm& on a
one-loop calculation, but disagrees with the predic-
tion x(Ti )-X "~~, v/2= —, of Tanaka, Ikushima,
and Kawasaki' based on an ad hoc scaling assump-
tion. We note that according to Eq. (5.40) the ana-
lytic proof of Eq. (7.43) would consist of determin-
ing the X dependence of the subleading amplitude
A3(0) of ui3(l), Eq. (5.35). We conjecture that the
asymptotic power law (7.43) remains valid in all or-
ders of perturbation theory.

Our nonasymptotic theory is consistent with the
data of Meyer and co-workers ' 3 for tr very close to
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Ti, (dots in Fig. 8) which do not exhibit the asymp-
totic X dependence -X ' for X&0.05. This is

seen to be in agreement with our theoretical predic-
tion at some t between t =10 ' and 10 '. (For a
comment on new data at X & 0.05 see Note added in
Proof. }

Finally we turn to the work of Tanaka, Ikushima,
and Kawasaki. ' Their data for x very close to Ti
together with those of Ptukha' (extrapolated from
below Ti ) and of Ahlers are shown in Fig. 9. Un-
fortunately, we do not precisely know at what dis-
tance t from Ti these data have been actually mea-
sured. A realistic assumption may be t =10
Our corresponding theoretical curve, which is based
on extrapolations from the X=0.05 data without
adjustable parameters, is shown as the lower curve
in Fig. 9. This is in considerable disagreement with
the data for X&10 . We can reproduce the data
only if we extrapolate our theoretical result to the
unrealistic value t —10 (upper curve in Fig. 9).
We doubt, however, whether for X &0.01 these data
can be considered as quantitatively reliable since the
data at X=0 shown in Fig. 1 of Ref. 13 and in Fig.
2 of Ref. 26 are much higher than the pure He data
of Ahlers and of Ahlers and Behringer. New
measurements very close to Ti and at very small X
are therefore highly desirable. (See Note added in
proof. )

5n(x, t)= TXq
' q(x, t)

, P,c

C P, T
5c(x,t), (8.2)

S(k,co) = constI a~Cqq(k, co)

+aq, [Cq, (k, to }+C,q(k, co )]

+a„C„(k,co)), (8.3)

where C~ti denotes correlation functions analogous
to that defined in Eq. (2.57). The static coefficients
are

qq

'(3n

dT
(8.4}

Bn Bn

BT c}
p, g p T

(8.5)

&cc =
P, T

(8.6)

with q and Xq defined in Eqs. (2.7) and (2.8). Thus
we obtain

VIII. LIGHT SCATTERING SPECTRUM
FOR T & Tq(c)

An important application of our theory is the pre-
diction of the dynamic structure factor S(k,co) near
Tq(c) without adjustable parameters. This provides
the possibility of an independent test of the theory
by means of light scattering experiments.

As noted by Rockwell, Benjamin, and Greytak,
Brillouin scattering from He- He mixtures is
predominantly determined by the local fluctuations
5n(x, t) of the number density n =(N&+N4)/V of
helium atoms,

S(k, tn)=const f tttn f dt(()n(xt)()n(00)), ,

A. Evaluation in one-loop order

We use our expressions for the correlation func-
tions C ti given in Eqs. (2.64)—(2.70) as well as our
one-loop results for the vertex functions I tt accord-
ing to Eqs. (4.2)—(4.11). No new computations are
necessary since we can employ the previous analytic
result for the one-loop integral I"'(k,co}, Eq. (4.8),
as given in Eqs. (4.7)—(4.10}of Ref. 49 for arbitrary
k, co, and ~0 in 4 ediinensio—ns. We only need to
substitute the effective parameters w;(1), F;(1), and
q.(l), in complete analogy to Eqs. (3.2) and (3.3) of
Ref. 53 for the case of pure He. This leads to the
results

Xexp[ i (k.x —ait—)] .

(8.1)

Neglecting fluctuations of the pressure one can ex-
press 5n in terms of fluctuations of the mass concen-
tration 5c and of the temperature 5T—q according
to

I -= ico+K(l)k—[1+f,(l)II(k,co)],

I „= ito+A(1)k [—1+f (l,)II(k,co)],

r„=(X,rr, )'"L,(l)k'

X [1+F,(1)F (l)w (1) 'II(k, co)],

where

(8.7)

(8.8)

(8.9)
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Il(k, ai)=F(y, 8)——, ln[(8 —y)k /p 1 ],

with

(8.10)

and

i CO i

2I (1)k
(8.11)

F(y, 8)=y +(2y —y+8 ——,)ln

1

4

i/2 2y —1+2(y' —y +8)'" y+2y y —y+ ln
2y+1 —y8 '+2(y' —y+8)'~' (8.12)

The other vertex functions I --, I,—,—,I —,—,I,--, I —,
and I,, are determined in one-loop order by Eqs.
(4.9)—(4.11) and by the relations

I,--(k, co) = I -,-(k,co),

r,,(k, ) =1„(k,—~),
I,—,(k,ai) = I „-(k,—ai) .

(8.13)

(8.14)

(8.15)

r(l) k2 ice+ =1,
p 1 4p 1 21 (l)p 1

(8.16)

as suggested by the logarithmic term in Eq. (8.10).
This implies

The effective kinetic coefficient I (1) in Eq. (8.11)
can be rewritten as

I (1)=wi(l)K(1) =w2(l)k(l),

with K(1) and A,(1) given by Eqs. (4.26) or (4.27),
respectively. Since our results are valid both in the
hydrodynamic and in the critical region we relate I
to k and co by generalizing Eq. (4.20) to

reduces to Eq. (4.20), and instead of Eq. (8.12) we
only need the limiting hydrodynamic value

IF(0, oo)= ——, . (8.18)

D~'+D, r,r,
C„(k,ai) =2k X,

(co +I 0)(ai +I 2)
(8.20)

with the linewidths I O, I 2 given by Eq. (4.37). Us-
ing Eq. (8.3) we arrive at the following hydrodynam-
ic expression for the dynamic structure factor:

a~'+bl OI 2S(k,co) =const X 2k (~'+ I 0)(~'+ I 2)

(8.21)

In this limit Eqs. (8.7)—(8.9) simplify to Eqs.
(4.23)—(4.25). This leads to Eq. (4.36) and to

2~ —r,r,
Cq (k co) 2k kTD 2 2 Cq(k ai)

(ai'+ I o')(~'+ I')
(8.19)

and

II(k,ai) =F(y, 8) ——arctan
1 2N

4 r(1)[k'+4&(1)]

(8.17)

a =aqqXqD +2aq kTD+a X D

b =aqqXqD 2aq kTD+a X D—
(8.22)

(8.23)

The dynamic structure factor is finally obtained by
substituting our results into Eq. (8.3). It predicts the
dependence of the light scattering spectrum on k
and ai for T& Tq(c) without adjustable parameters,
provided that the effective parameters w;(I) and

F; (1) have been identified. In the limit c~0, S(k,ai)
reduces to the entropy correlation function which
was presented by Dohm and Folk [Eqs. (3.2}—(3.7}
of Ref. 53] and was subsequently discussed by
Hohenberg and Sarkar. '

B. Application to the hydrodynamic region

In the following we present explicit results for the
hydrodynamic region k g « 1. There Eq. (8.16)

The dependence of D, D„kT, and of I o z on tem-
perature and concentration is predicted by our
theory while the coefficients a ~ can be taken from
static experiments as described in the Appendix.

Equation (8.21) can be written as the sum of two
Lorentzians,

r, I2
S(k,ai) =const X 2 Ao 2 +A2

CO +ID N +I
(8.24)

which correspond to the normal modes related to
concentration fluctuations and thermal fluctuations
analogous to those given in Eqs. (33)—(36) of Ref.
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40 below T~. From Eqs. (4.36) and (8.19)—(8.21) we
can identify the amplitudes as

0.5

aI p
—bI 2

p= 2 i kr,—r, (8.25}
O.l—

bI p
—aI 2

A2 ——
2 i k

r,—r,
(8.26)

Integration over rp yields the static structure factor

E
0, 3—

PV

I

CO

PV

0.2—

A p+A 2:aqqXq + t CXC (8.28)

Here the contributions -aq, are canceled. This is
due to the vanishing of the equal-time correlation
function

l d~ C~, (k,m)=0, (8.29)

since there is no static coupling between q and c
within the present model. Including the couplings

yiq ~ P ~

' and y2c
~ P ~

in the Hamiltonian would
yield an additional term proportional to yi(l)y2(l) on
the rhs of Eqs. (8.28) and (8.29). We expect the cor-
responding corrections to Eqs. (8.25) and (8.26} to be
small for c « l.

The hydrodynamic structure factor, Eq. (8.24), is
completely characterized by the linewidths I p, I 2

and the amplitudes Ap, A2. Their dependence on
temperature and concentration in the range X &0.05
is shown in Figs. 10 and 11. These predictions fol-
low from using in Eqs. (4.37) and (8.22)—(8.26) the
results for the transport coefficients D, kT, and tr de-

E
4J

3
I

ED

2

1 — X = 0.05 X=0

0
r

I

log„o t

FIG. 10. Hydrodynamic linewidths I p (dashed curves)
and I q (solid curves) entering the dynamic structure fac-
tor S(k,ro), Eq. (8.24). For X=O (pure He) compare Fig.
8 of Ref. 53, Fig. 9 of Ref. 54, Fig. 6 of Ref. 100, and Fig.
7 of Ref. 105. The vertical scale is normalized to k 2.

Sp = S(k,cp) =const(Ap+A2), (8.27)
277

with

0.1—

0
-5

log„o t

FIG. 11. Hydrodynamic amplitudes Ap (dashed curves)
and A2 (solid curves) entering the dynamic structure fac-
tor S(k,co), Eq. (8.24). The intersections between the
dashed and solid curves at a particular concentration X
determine the crossover temperature t,{X), where

Ao/A2 ——1. The vertical scale is normalized to n' with
n =(N3+N4)/Vbeing the density of He particles.

rived in Sec. VII. The curves at X=0.05 correspond
to the solid curves in Fig. 4. The curves for
X&0.05 are extrapolations without adjustable pa-
rameters corresponding to the extrapolation pro-
cedure of Sec. VIIE (see also the Appendix). The
applicability of these results is of course limited to
the hydrodynamic region. For a finite wave number
k —10 cm ' this means that the curves in Figs. 1Q

and 11 can be used only for t & 10 corresponding
to kg&1.

We briefly discuss the consequences for the shape
of the dynamic structure factor. The linewidths I p

and I z are only weakly X dependent for X« 1, with
finite limiting values k D and k D, =k DT, respec-
tively, for X~O, t&0 (see Fig. 10). The shape of
the dynamic structure factor is governed by the
strong X dependence of the ratio Ap/A2. In the
range 0&X&0.05 it varies between Ap/A2»1 at
X=O.Q5 and Ap/A2 ——0 for X=O. In these two cases
we have a Lorentzian shape, with a halfwidth at
half-height I p of I p/k -0.5X10 cm /sec typi-
cal for the A, line, and with a halfwidth I 2 of
I 2/k -2X 10 cm /sec typical for pure He,
respectively. More interesting is the crossover be-
tween these two types of Lorentzians. According to
Fig. 11 our theory provides a prediction where this
crossover region with Ap/A2 O(1) should occur.
This depends on t due to the temperature depen-
dence of A2 (Fig. 11). The strong decay of A2 to-
ward the minimum near t =10 is a combined ef-
fect of the vanishing of aqq (due to the vanishing of
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0.5 1-- S(k, e)

0.4—

E

0.3—

x 0
0

~ I
~ ~

~ ~

~ ~
~ ~
~

\

~ ~
~ ~
~ ~

~ ~

~ ~
~ ~
~ ~
~ ~

t =10

X=10

0.01 ———'

0

log„ t

FIG. 12. Contributions a„X, (dashed lines) and a~X»
(solid curves) to the static structure factor So, Eqs. (8.27)
and (8.28), as obtained from experimental values accord-

ing to the Appendix. The intersections between the
dashed and solid curves determine the static crossover
temperature where a„P,/apq ——1. The vertical scale is
normalized to n' (compare Fig. 11).

-1 0 1 2

e/2z [MHz)

5." S(k,u))

t=10 "zs

X= 0.005

I

3

the thermal expansion coefficient; see the Appendix)
and of the smallness of kr in this regime. We note
that the dynamic crossover temperature t, (X), where

Ap/Az O(1), is comparable to the static crossover
temperature, where a„X,/aqqIq -O(1), as illustrat-
ed in Fig. 12. Both crossover temperatures would be
identical if kr ——0, in which case Ac/A2
=a„X,/aqqXq. In Fig. 13 two shapes typical for
the crossover region are presented, with a ratio
Ao/Az ——0.35 in both cases. The non-Lorentzian
structure is well pronounced. It would be interesting
if these predictions could be tested by light scatter-
ing experiments of sufficiently high resolution.

Note added in proof. Very recently new measure-
ments of tr in the range 10 &X & 10 and
10 &

~

t
~

&10 ' have been made by Gestrich,
Dingus, and Meyer (private communication). Their
data confirm our prediction presented in Fig. 8 that
for X «0. 1 the asymptotic value tr(Ti ) is not ex-

perimentally observable on the normal side ( T & Ti )

of the A, line. This can be explained, according to
Eqs. (5.37)—(5.41), in terms of the amplitude Aq(1)
or of w3(l), Eq. (5.35). For very small X, ws is very
small in the background region, therefore it takes
many decades of 1 until w3(l) reaches its asymptotic
region ws =1, hence R„comes close to R*„only ex-
tremely close to Ti if X« 1. For larger X & 0. 1, R„
is close to R'„already near t-10 because in this
case w3(1) =1 already for t —10 [see Fig. 1(c)]. In
summary, although the small transient exponent co

is the reason for the smallness of the asymptotic re-
gion for tr, and D, this is not the case for kr and tr.

~ ~

~ ~

~ ~

1

-4 -2 -1 0 1 2 3 4

The latter quantities reach their asymptotic values
with the fast transient exponent e/2, in agreement
with Siggia and Nelson and with Onuki [J. Low
Temp. Phys. (in press)], provided that X&0.1. We
note that Onuki's theory is restricted to the asymp-
totic region and therefore does not describe the 1

dependence of w3(l). In particular we have found

by ineans of our nonasymptotic theory that Onuki's

asymptotic result, Eq. (6.12), should not be observ-
able in the range of the recent experiment by Ges-
trich, Dingus, and Meyer mentioned above. We

+l 2z [MHz]

FIG. 13. Theoretical prediction for the shape of the
dynamic structure factor, Eq. (8.24) (solid curves). The
dotted curves represent the Lorentzian contributions -Ao
and -A2 of the two normal modes, with Ao/A2=0. 35.
The frequency scales are given for the example of
k =1.8X10' cm ' (Ref. 40). In part (a), t =10 ' and
X =10 '; in part (b) t =10 . ' and X=0.005. [Note that
the latter case lies in the hydrodynamic region only for
k &10' cm '.] The vertical scales of parts (a) and (b)
have the same units.
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APPENDIX: STATIC QUANTITIES

In this appendix we present the necessary infor-
mation on the static quantities employed in the com-
parison with experiments. Following the convention
of the experimental literature we shall use, in-

stead of c and 6, the molar quantities X and P. The
molar concentration is given by

70

l

log)o t'

Pl )
7

Pf y+Pf4
(A 1)

where n; denotes the number of moles of 'He or He
atoms. In terms of X, Eq. (2.19) becomes

ks T mgm4X V,i
Ã2=

fmgX+m4(1 —X)]

where V,~
——V/(n&+n4), with V being the total

volume of the mixture and %„=6.02X10 mole
is Avogadro's constant.

The chemical potential conjugate to X is defined
as P=(Bg/BX)p z, with g =G/(nq+n4)=g(TPX)
being the Gibbs free energy per mole of solution.
This implies

40
o
E

P0

0-6

(A3)

where P; and p; denote the chemical potentials per
particle (see the definition in Sec. II) and per mole,
respectively, with

pp ——(BG/Bng)p z „NaPg——

and similarly p4 ——XgP4. Our P is identical with P
used in Refs. 24 and 75 and with 5 used in Refs.
20—22 and 41. Furthermore, our 4,P;, and p; are
identical with {i),m;p;, and p;, respectively, of
Refs. 24 and 75. [Note that Eq. (3.8) of Ref. 75 has
been corrected by Eqs. (2.1.75) and (2.1.76) of Ref.
24, but p; is not correctly defined in Eq. (2.6) of
Ref. 75 or in Eqs. (2.2.35) and (2.2.36) of Ref. 24.]
With the use of the relation between (BPIBX)p r and
(BE/Bc)p r given by Eq. (2.2.40) of Ref. 24 one can
express X„Eq.(2.5), in terms of X and P as

gp, 1.0

E
1
CD

&& 0g

0.05

0.0)

log, o t

FIG. 14. Static quantities, Eqs. (A5) and (A6), &«
(QX/Qp)pz taken from experiments (for references see

text). See also Fig. 1 of Ryschkewitsch and Meyer [J.
Low Temp. Phys. 35, 103 (1979)J.
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TABLE I. Experimental values for static quantities at t =10 ". For X=0.05 they are

used in Eqs. (7.30)—(7.33) for calculating from Eqs. (7.24)—(7.28) the parameters given in Eqs.
(7.34)—(7.38). For X =0.11 and 0.15 they are used in Eqs. (7.30)—(7.33), with the parameters

of Eqs. (7.34)—(7.38} kept fixed, to extrapolate the dynamic parameters w;0 and f;0 from

X =0.05 to X =0.11 and 0.15. The extrapolated values are given in lines 7 and 8 of Table II.

X

0.053
0.11
0.154

g, (10" sec ')

2.19
2.12
2.06

g2 (10 " cmisec ')

5.18
10.8
15.1

X~ (10 cm ')

2.72
2.79
2.80

X, (10 cm)

1.41
3.19
4.58

ktt TV,im 3m 4
2 2

[m3X+mq(1 —X)] t)P p T
(A4)

and

S=S—X
BX pr

dtr=N„m4 tr c-
t)C pT

(A5)

p x ——VmoipC

Thus we obtain from Eqs. (2.18) and (2.8)

(A6)

and

—X
BX pT

(A7)

P, X

ktt V,i

(A8)

We shall use the entropy per mole of solution
S = —(Bg/BT)p g and the specific heat per mole

Cp y = T(t)S/BT)p y at constant P and X. These
quantities satisfy the relations

In our paper we use experimental values for gi, g2,
X~, and X„which are primarily based on the experi-
ments by Gasparini and Moldover' ' and on the
analysis of Ahlers. In the range 0.05 &X&0.15
we have determined these quantities in the following
way. In Eqs. (A2), (A4), (A7), and (A8) we set
T =Tt„S=S~, and V,i

——V~ with T&,St„and Vx
taken from Table II and Eq. (3.21) of Ahlers.
Furthermore, we determine the temperature depen-
dence of (aS/aX)p T and of Ct z from Eq. (3.19)
and Table II of Ref. 75 and from Eqs. (3.11)—(3.15)
and Table I of Ref. 75, respectively. The derivative
(t)X/BP)p T can be expressed in terms of other ther-
modynamic quantities, according to Eq. (3.18) of
Ahlers, which are given in Table II of Ref. 75, ex-

cept for Cp~ which we have taken from Eq. (1) and
Table I of Gasparini and Gaeta. ' For convenience
we have plotted the resulting temperature depen-
dence of Sx —X(BS/t)X)p T, of (t)X/Bit )p T, and of
Cp ~ ui Fig. 14. Tile corresponding cui'ves foi B
are shown in Fig. 3. We note that the parameters at
X=0.011 given in Table I of Gasparini and Mold-
over' ' can be employed for interpolations in the
range 0.01 (X(0.05.

TABLE II. Initial conditions for the effective parameters w;(I) and f;(l) at I = lo corresponding to t = to 10 "at——vari-

ous 'He concentrations X. The values for 8 =g &P, /g&Pq are experimental values at t =10 ". For X =0.053, we have

adjusted f i, f2, w i, and wq in fitting the data of Fig. 2. For all other values of X & 0, w; and f; have been calculated ac-

cording to the extrapolation procedure described in Sec. VII E. In all cases, 8 is an I-independent constant according to the

invariance property of Eq. (5.3). The cases X =0 refer to model-E fits to the thermal-conductivity data of cell D and cell A

(bottom line}, respectively. The numbers in the last column indicate the figures where the initial conditions have been used.

X

10-'
0.001
0.005
0.01
0.053
0.053
0.11
0.154
0
0

9.70x 10
9.68x10 '
9.59 x10-'
9.48 x 10
8.84 x 10-'
8.84 x 10-'
8.2x10-'
7.73 x 10-'
9.70x10 '
9.70x 10-'

0.298
0.298
0.298
0.298
0.298
0.137
0.281
0.266
0.253
0.186

6x10-'
5.8 x10-'

0.029
0.058
0.308
0.281
0.592
0.810

0.764
0.764
0.764
0.764
0.764
1.24
0.784
0.787
0.572
0.759

7.31
7.31
7.31
7.31
7.31
7.63
7.31
7.31

—2x 10-4
—6.8x10

—0.015
—0.022
—0.050
—0.019
—0.065
—0.072

5 x10'
491
98
49

9.26
3.0
4.4
3.05

Figs.

7,8,10,11

8,9,11,13
7—9,11,12
4,7—9,11

1,2,4,7—10

4,5
6
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Since no experimental data for the quantities
(BPIBT)i and (BS/BT)i are available in the dilute
regime X & 0.01 we have to resort to a reasonable ex-
trapolation for X~O. Within the theory for dilute
ideal solutions one has (BPIBT)i-X ' and
(Bs/BT)i-1nX as X~O [see Eqs. (2.1.86) and
(2.1.87) of Ref. 24]. Thus we assume, as an approxi-
mate representation for small X,

(A9)

and

I

I
CO

x ]-
CD

PD

0
I

C g10

as
dT

=b +R nX,ax
(A10)

FIG. 15. Thermal expansion coefficient, Eq. (A14),
taken from experiments (for references see text).

with R being the gas constant and

(BX/BT)i = —0.714 K ' according to the X=O
value given in Table II of Ref. 75. The constants a
and b can be determined such that the rhs of Eqs.
(A9) and (A10) reproduce the estimated values of
(BPIBT)i and (Bs/BT)i at X=0.05 given in Table II
of Ahlers. This yields a = —13.75 JmoleK ' and

b =0.783 Jmole 'K . For Cpz we have used

Eqs. (3.11)—(3.15) of Ref. 75 also in the dilute re-

gime X & 0.01. For all other thermodynamic quanti-
ties that remain finite in the X~O limit we have
taken their X=O ( He) values. This defines our ex-

trapolation procedure for the static quantities in

producing the curves for X&0.05 in Figs. 4 and
7—14.

For our nonlinear renormalization-group analysis
we need background values at some tp far from
Tx[X]. We have chosen

Eqs. (7.35) and (7.36). (iii) The X dependence of
w 3 ( lp ) and f2 ( lp ) results from the X dependence of
the coefficients 1,' /X(1 —X) and X, /g2 in Eqs.
(7.32) and (7.33).

Now we turn to the relation between the flow

parameter 1 and the relative temperature t, Eq.
(7.22), used in the figures. As is well known, the

distance t from Ti for a path at constant c or X is

different from the distance tt, t~ a——t constant b, or
The relation between tt, and t is given (for

T & Ti ) in Eqs. (8.2)—(8.4) of Ref. 75. According to
Eq. (7.15) we have 1 =(t~)" with' v=0.675. Ex-
pressing t& in terms of t and using the relation

(Qf/BT)p y = —(Bs/BX)p r as well as Eq. (3.19) of
Ref. 75, we finally obtain

dT dTt+

Tp —T~[X]

T~.[X]
(Al 1)

as
X t —

0
pxt

BT ~p Ti„

although the noncritical background region may be
even farther from Ti„. The limited accuracy of the
present model, however, does not allow for a fully
quantitative treatment of the range t &10-". Fx-
perimental values for the static quantities at tp for
X & 0.05 are collected in Table I. Using these values
and the constants given in Eqs. (7.34)—(7.38) we can
calculate from Eqs. (7.30}—(7.33) the initial condi-
tions w;(lp ) and f (lp ) at lp corre. sponding to
tp 10 ' without adjust——able parameters. The re-
sulting initial conditions are presented in Table II.
The following comments should be made. (i) For
X &0.05, f i (lp) and wi (lp) are independent of X be-
cause we have approxitnated the static values g i and

X& in Eqs. (7.30) and (7.31) by their X=0.05 values.
For X & 0.05 we have used the values of Table I. (ii)
w2(lp) is independent of X in our procedure because
we keep Kp and A,p/X, fixed at the values given in

Bn

Bc

Bn

BX pT

[m3X+m4(1 —X}]
m3m4

(A13}

(A12)
where the derivatives are taken along the A, line at
constant P. Experimental values for the A,-line

parameters and for Cp ~ are given in Tables II and I
of Ref. 75. At given t the rhs of Eq. (A12) is still X
dependent. This is the reason for the slight X
dependence of lp in Table II. For X=0.05, the cor-

responding values for 1 and t are given in the lower

and upper scale of Figs. 1(a)—1(e). See also Fig. 16

of Ref. 102.
In order to determine the static coefficients aqq,

aq„and a«entering the dynamic structure factor,

Eq. (8.3), we need in addition experimental values

for (Bn/Bc)t T and (Bn/BT)p, . For
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we have taken the A,-line values given in Sec. 5.3 of
Ref. 40. For (r)n/dT)p, ——(Bnlr)T)t x we use the
relation for the thermal expansion coefficient

1 tin

n BT
7

(A14)

[see Eq. (3.22) of Ref. 75]. Here the derivatives are
taken along the A, line in the P T-plane at constant
X. For V~T&(t)P/BT)~x and (AS/r)P)t, x we have
used interpolations between the values given in
Table IV of Kakizaki and Satoh' and in Table II
of Buchal and Pobell, respectively. The resulting
temperature dependence is shown in Fig. 15. The
vanishing of (Bn /d T)t x near t = 10 corresponds
to the minimum of the molar volume shown in Fig.
4 of Ref. 104.
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