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The Shiba-Rusinov theory of magnetic impurities in a superconductor is investigated, with special

attention paid to the role of the potential scattering term in the electron-impurity interaction. The

meaning of Anderson's theorem in the Shiba-Rusinov theory is discussed.

I. INTRODUCTION

About 15 years ago Shiba' and Rusinov independently
gave a theory of a low concentration of uncorrdated mag-
netic impurities in a superconductor. The Shiba-Rusinov
(SR) theory is a generalization of the well-known
Abrikosov-Gor'kov (AG) theory. In the AG model the
interaction between a conduction electron and a magnetic
impurity is assumed weak and the lowest-order Born ap-
proximation is used to treat the scattering. The results of
the AG theory are known to be valid for the rare-earth
(except cerium) impurities in superconductors. In the SR
model the scattering is calculated exactly for a single im-

purity problem by treating the impurity spin classically.
This theory shows not only the existence of bound states
within the Bardeen-Cooper-Schrieffer (BCS) energy gap
but also modifjes the thermodynamic and the transport
properties. Several properties of the superconducting alloy
in the SR model have been calculated by Nagi and colla-
borators, and Ginsberg and collaborators. The results of
the SR model apply to the transition-metal impurities in

superconductors. Recently an extension of the SR theory
to include strong electron-phonon coupling has been made

by Schachinger.
Now the interaction of a conduction electron of spin p

with a paramagnetic impurity atom of spin S is given by

where 0 is the Pauli-spin matrix vector, and V and J,
respectively, are the strengths of the potential interaction
and the exchange interaction. In the AG theory the ther-
modynamic properties do not depend on V. This fact is
sometimes called Anderson's theorem, which can be stat-
ed in a more general form: The thermodynamic proper-
ties of superconductors remain unchanged in the presence
of a static external perturbation which does not break the
time-reversal symmetry. On the other hand, in the SR
theory the role of the potential scattering has not been
clearly recognized in literature. One of the purposes of
this paper is to clarify the roles of the two parts of the in-
teraction potential in the scattering process. This is espe-
cially important, for example, in the discussion of the gap
anisotropy problem, where the potential scattering plays
an important role.

The results of Shiba' and Rusinov are identical for
V =0, but these differ when V&0. For the T matrix, one
may compare Eq. (4.2) of Ref. 1 with Eq. (11) of Ref. 2.
Because of this reason, we restudy the T-matrix problem
bricAy. We follow the method outlined by Muller-

Hartmann to study the Kondo problem. Since the single
classical spin problem is exactly solvable, one may use a
more direct method. However, we prefer the procedure
given in Ref. 9 because it has several advantages in the
quantum case.

II. T MATRIX FOR A SINGLE IMPURITY

~-=(a-,a-,g, a ) (2.2)kt' -k& -kg
and 3 is its con)ugatc. Herc 8 represents thc creation

k kp
operator for a conduction electron. The BCS Green's
function is

6 -„=(to e-„p3 Ap2o—2)—0 —1

where t.- is the energy of the conduction electron mea-
k

sured from the Fermi level, cr; and p; (i =1,2,3) are
Pauli-spin matrices operating on ordinary spin states and
the electron-hole spin states, and 6 is the superconducting
order parameter

A
(2.4)

with A, as the BCS interaction constant and N as the num-
ber of atomic cells.

We consider a single impurity for which interaction is
given by Eq. (1.1). Following the procedure given in Ref.
9 and modifying it to the 4&4 notation, we obtain

6—,=6'-5,+O' TG'kk' k kk' k

with the T matrix

T=—p, (1—I',p, )-
V —1

+ (1—p3+v) t(1 —I'vp3)
J —1 —1

4N

(2.5)

Fx=—g~-,X o

N 7
= —~N(0)X, , „, (X= V,J)N+ AP202

( g2 2)1/2

We use a 4&4 matrix Green's function (sec Ref. 1 for
notation)

G„„,=((~ „;a'„,))„,
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where T-, is defined by
k k'

T-„-„,=(((S a)A-„;A~-„,(S a}))„

with

(2.8)

(2.9)

~here 50 are the scattering phase shifts for an electron of
spin + —,, we can easily show that our T matrix is identical
with the one given in Ref. 2. On the other hand, it is dif-
ferent from that of Ref. 1.

The position of the bound state within the BCS energy
gap for the one-impurity problem is obtained from the
poles of the T matrix given in Eq. (2.14). The energy of
the two bound states, +a~, is given by

( 1+u2 j2)2
(2.18)

( 1 +u2 j2)2+4j2

1+p3M=
2 2

io2,

Eq. (2.9) is rewritten as

T,=(S.a )G-k-„,(S.a )

(2.1 1)

and N(0) is the density of single-particle states at the Fer-
mi level in the normal metal. Here we have considered the
Green's function as [G--,(S)+G--,( —S}]/2. This iskk' kk'
justified in the absence of a magnetic field.

For a quantum spin the above equations are not closed,
so that, a decoupling procedure or other techniques are
necessary to solve the problem. For a classical spin, how-
ever, we can solve the T matrix exactly. Introducing the
unitary matrix

-2
'2

1 —j
1+j

(2.20)

However, eo depends on u generally. It is worthwhile to
note that Eq. (2.18) can be written in the form

2 '2
jeff60= (2.21)

1+j'ff

(2.19)

One may note that
l col & l. ~hen u=0, Eq. (2.18)

reduces to

=M(S.o )M G-k-„,M(S o. )M

=M(S o ) M 6--,
j.tt= ., l(1+u 1) +2j-

2j

+(1+u' —j')[(1+u'—j2)2+4j2]'~2] . (2.22)

where we have taken S as a classical vector and have also

used the fact that (S o ) commutes with M G--,M.kk'
Inserting Eqs. (2.12) and (2.5) into Eq. (2.8) we find that

t satisfies the following equation:

t =S FJ(1—p3Fy) '[1+—,
' t(1 Fvpi) 'Fr]—

which can be readily solved. Substituting the solution of
Eq. (2.13) into Eq. (2.6), we obtain

1 1 a)T=
En%(0) D (g2 —oi2)'~2

The double signs in Eq. (2.22) come from the fact that Eq.
(2.21) is symmetric between j,ff and 1/j, ff.

III. FINITE CONCENTRATION PROBLEM
AND ANDERSON THEOREM

Now let the concentration of magnetic impurities in the
superconductor be finite. %'e assume that the impurities
are randomly distributed and their concentration n; is low
enough so that the impurity-impurity interaction is negli-
gible, Since our discussion is essentially the same as Ref.
2, we quote merely the results. The Green's function aver-
aged over the positions and the spin directions of ihe im-
purities is written as

t2p2o2+ t3p3, (2.14)
(g2 2)1/2

G =(~—e-p3 —hp2o2)
k k

The quantities Fo, 5, and e- satisfy the equations
k

(3.1)

u2( 1 +u2)+ j2( 1 2v2)+ j4

t2 —-u (1+u ) —j (1+2u )+j
t3 ——u(1+u —j ),

+2+ 2

D —(1+u ) —2j +v+2 ~2

with j =(J&f2)nN(0), u = Vent%(0}.
Using the notation

tan5;+ =u+j

(2.15a)

(2.15b)

(2.15c)

(2.16)

U( 1 U2)1/2
CO=OP+ I 1

{eo—U )

( 1 U2)1/2

(eo—U')

{1—U )+I 3k k (p U2}

where we have used

U =co/6

(3.3)

(3.4)

(3.5)
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I =n; (m =12 3)
(1+ 2 j2)2+4 2

(3.6)
IV. SUMMARY AND DISCUSSION

with

n;
(3.7)

For isotropic superconductors, thermal and transport
properties are obtainable from the knowledge of the func-
tion U. An equation for U can be written from Eqs. (3.2)
and (3.3), and is

N a(1 —U )'—=U 1—
ep —U2

where

a =(I,—I 2)/6 .

(3.8)

(3.9)

It may be noted that (I
&

—I 2) can be expressed in a simple
scaled form

I,—I 2
——n;f(eo)

with

f(ep) = —,
' (1—eo) .

(3.10)

(3.11)

In the presence of potential scattering, the energy of
bound states is a function of both j and v [see Eq. (2.18)],
so that all the properties do depend on v in the SR theory.
However, the dependence on v is only through eo [see Eq.
(3.10)]. This fact may be considered as the extended An-
derson theorem in the SR theory.

In some cases, such as superconductors with energy-gap
anisotropy, the term I ~+I 2 also plays a part. Contrary
to I

~
—I 2, the quantity I ~+I 2 cannot be written in a

scaled form like Eq. (3.10). The only exception is when
v =0. However, this is a consequence of the fact that
there is only one parameter j in this case.

We have studied the paramagnetic impurities in a su-

perconductor treating the impurity spin classically. A
special attention has been given to the role of the potential
scattering term V of Eq. (1.1). In order to clarify the
difference between the results of Shiba' and Rusinov for
V&0, we have restudied the T matrix for the scattering
from a single impurity. Our T matrix and, therefore, all

the properties which follow from it are shown to be identi-
cal to Ref. 2. Although we have only considered the s-

wave scattering in this paper, the other partial waves can
be easily included in our analysis.

In the SR theory the potential scattering term V appears
in the U equation, Eq. (3.8). This is contrary to the AG
theory in which the V dependence is completely canceled
out. The essential feature of the role of the potential
scattering in the SR theory is that the dependences on V
and J can be expressed in terms of one parameter E'p the
bound-state energy. Equation (3.10) is the mathematical
expression for this statement. In isotropic superconduc-
tors, one cannot obtain the information on V and J
separately. All we can get is Eo [Eq. (2.18)] or, in other
words, j,rr [Eq. (2.22)].

When there is an anisotropy in the energy gap, the po-
tential scattering V plays a role even in the AG theory.
Therefore, it is of great interest to investigate the impurity
effect on anisotropic superconductors. This problem is
studied in the following paper.

Note added in proof Very re.cently, Professor H. Shiba
informed us that he had noticed the error in Eq. (4.2) of
Ref. 1. His corrected T matrix agrees with our Eq. (2.14).
We thank Professor Shiba for his letter.
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