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Josephson tunneling and the proximity effect
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Josephson junctions containing one or two proximity systems (e.g., S -M p-I-S„, S -Mp-I-M~-Sq,
M~ ~~) is a normal metal or superconductor) are studied. An analysis of the thickness and tempera-
ture dependences of the maximum dc Josephson current I~ is carried out. The curvature of the
function I~(L~) is found to depend strongly on the ratio of energy gaps e~/e and on the tempera-
ture. The analysis is based on the thermodynamic Green's-function method, and the effect of strong
coupling is also taken into account. If the proximity system contains two superconductors S and

Sp, then it appears that the electron-phonon interaction described by the constant A, p contributes no-
ticeably even if T & T,p.

I. INTRODUCTION

The present paper is concerned with properties of the
Josephson junction containing one or two proximity sys-
tems. As is well known (see Refs. 1—12) the presence of a
proximity system affects very noticeably the properties of
the junction and, first of all, the behavior of the maximum
dc Josephson current. We are going to consider junctions
of the type S -M~-I-S& containing the proximity
sandwich S -Mp, where S~ and S& are superconductors, I
is an insulator, and Mp is a normal metal or a supercon-
ductor. We will also consider a junction containing two
proximity sandwiches. Lately, these systems have attract-
ed a lot of interest, particularly in connection with the in-
vestigation of Josephson junctions with an artificial bar-
rier, such as Nb-Al-A10„-Pb. Even usual niobium-based
Josephson junctions are characterized isee, e.g., Ref. 8) by
the existence of the proximity layer at the Nb and oxide
interface, and the proximity effect has to be taken into ac-
count. Hence it is important to develop a theoretical ap-
proach which allows one to describe Josephson tunneling
into the proximity sandwich. Moreover, the Josephson
current is very sensitive to the properties of the proximity
system and, in principle, one can change its behavior in
the desired direction.

Consideration of the Josephson tunneling into a proxim-
ity system is interesting also from the point of view of in-

vestigation of the proximity effect. The corresponding ex-
perimental data contain very interesting information about
the proximity effect.

The Josephson tunneling in proximity systems has been
studied, e.g., in Refs. 1—11, and interesting experimental
data describing thickness and temperature dependence of
the maximum Josephson current I~ have been obtained.
Theoretical consideration' is based on the Ginsburg-
Landau theory and results in a good agreement. As is
known, this approach is applicable in the region T-T, .
Gilabert et al. carried out a numerical calculation of I~
based on the McMillan tunneling model' for the systems
Nb Nb+ Oy Cu Pb and Nb Nb& Oy Al Pbs This model
gives a good description of experimental data {see also the
experimental study of the proximity effect' ' }. As is
known, lead is a superconductor with strong coupling and

the auth'ors used the correction -20% which was ob-
tained' for the usual Josephson contact. The calculations
for the pure specular tunneling (x~~

——0) were carried out by
Gallagher. ' He used a method different from' assuming
a spatially constant order parameter. Matsuda et a1. used
the McMillan approach in order to describe the properties
of a Nb-based Josephson junction.

In this paper we analyze the behavior of the Josephson
current in the presence of proximity systems. We evaluate
the thickness and temperature of the maximum current
I~. It turns out that it is possible to develop a theoretical
approach based on the thermodynamic Green's-function
method (see, e.g, Ref. 19) which allows one to describe the
Josephson tunneling for different systems (S -Sp-I-S&,
S -Nli I Sz, S Np -I-Nz Ss-, an-d -so -on). One can intro-
duce the universal functions and investigate the effect of
different factors on the thickness and temperature depen-
dence of I~. The effects of strong coupling are also taken
into account. It turns out that the correction caused by
strong electron-phonon interactions depends not only on
the properties of the superconductor S but also on the
thickness Lp. The thermodynamic Green's-function
method has been used by the present author in order to
evaluate T, of the proximity system.

We also evaluate the Josephson current in the S~-S~-I-
Sz junction containing a proximity system S -Sp with two
superconductors. It appears that this contribution is very
noticeable even if T& T,p (T,~ is the critical temperature
of the isolated P film).

The plan of the present paper is as follows. Section II
addresses the problem of obtaining the main equations.
As was mentioned, we use the thermodynamic Green's-
function method and, moreover, we take into account the
electron-phonon interaction directly. We consider the
thickness and temperature dependence of I~ in Secs. III
and IV, respectively. The junction containing the S -S~
proximity system will be considered in Sec. V.

II. MAIN EQUATIONS

Let us consider the system S -M~-I-Sz {see Fig. 1),
where S and S~ are superconducting films, I is an insula-
tor, and Mp is a normal metal (or semiconductor), e.g.,
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FIG 1 (a) Sa Mp I Sy system, and (b) self-energy parts.

Pb-Cu-PbO-Pb, or a superconductor (e.g., Nb-Al-AIO„-
Pb). We assume that T, &T, . The contact S -M~ forms
a proximity sandwich and this sandwich is a part of the
Josephson junction. One can consider a more general case
of the system S~-Mp I My Sp containing two proximity
sandwiches. The maximum Josephson current is equal to
(see, e.g. , Ref. 21)

be evaluated on the basis of the theory of the proximity ef-
fect.

Suppose that the thicknesses L and L p satisfy the con-
ditions L &&Lp, Lp«gp, where gp is the coherence
length. Moreover, suppose that the a film is "dirty" in
the Anderson sense. Under these conditions we can use
the well-known McMillan tunneling approach to the prox-
imity effect. ' The electron-phonon interaction can be in-
cluded in the McMillan model (see Ref. 23). The descrip-
tion of a proximity system based on the use of the thermo-
dynamic Green's function was given by the present au-
thor. As is well known (see, e.g., Refs. 7—9 and 14—16),
the results obtained on the basis of the McMillan ap-
proach are in very good agreement with experimental
data.

The equations for the order parameters are seen in Fig.
1(b) or in analytical form:

5,((o„)=Z 'rye fdQg (Q)D(Q, co„—co„)

XK (CO„)6 (Q7„)

I~ = g f dgz~dgq~Fp+ (p, co„)Fy(q, —co„) .— T
m.eR

~n
+z.-'r ~~~ '(~„)a~{~„),

hp((o„) =Zp 'yyTQ fdQ gp(Q)D(fl, co„—(o„)

X~p '(~„)~p(~„)
FP(y)= 2P(y)(P . )

2 2X [N+Zp(y)(p~~z)

+Op(y)(p)+&zp(y)(p ~.)] ',
+Zp 'I ]c '(co„)h~(co„) .

(2) Here

Here co„=(2n+1)m.T and Fp and Fy are the anomalous
thermodynamic Green's functions describing the Cooper
pairing:

(4)

(5)

where gp(y) is the energy of an ordinary electron in the
film P(y) referred to in the Fermi level, Zp(y) is the renor-
malization function, X2p(y) is the self-energy part describ-
ing the Cooper pairing, and R is the normal resistance of
the barrier I. The equation of continuity allows one to
calculate the Josephson current through any section of the
junction, and we have chosen the current flowing through
the insulator I.

It is worth noting that expressions (1) and (3) (see below)
are valid for systems with strong electron-phonon interac-
tion. Equation (1) can be reduced to the form

6P(a)„)b,y(co„)
2

+ pe )]li2[ 2 + g2( )](y2

(3)

Here hp ——Xp(~„)/Z~ and 5y:Xy(N+)/Zy (p =p~) are the
renormalized self-energy parts (order parameters).

Hence in order to evaluate the maximum current IM, we
should calculate the order parameter hp((o„) and hy(co„).
In this chapter we restrict ourselves to the consideration of
the systein S Mp I Sy [see Fig. 1(-a)]. -T-he generalization
for the system containing two proximity sandwiches is
straightforward (see Sec. IIIB). We consider a general
case S~ Sp with A,+0 (Ap d-escribes the electron-phonon

coupling in the P film).
The contact S -S~ forms a proximity system. The su-

perconducting state in the P film is caused by the
electron-phonon interaction in the film and by the proxim-
ity effect. Hence the quantities A~((o„) and hp(co„) should

&a (p)(~n ) = [~n+ ~a (p)(~n )I'" . (6)

The quantities I ~ and I are equal to (see Ref. 13)
~2

I P=yrT vpSLp, I Pg=yrT v+L

(v, vp are the densities of states, T is the tunneling matrix
element, and S is the area of the contact). Hence

~/I -Lp/L and, generally speaking, I ~/I &&1,
since L~ &&L . This means that one can neglect the ef-
fect of the p film on the superconducting properties of the
a film, that is, one can neglect the second term on the
right-hand side of Eq. (4). It also is worth noting that ac-
cording to' the quantity I is equal to

I = VF~(r/2BL p,
where V~ is the Fermi velocity, 0 is the barrier penetration
probability, and B is a function of the ratio of the mean
free path to the film thickness Lp. If p film is clean, then
B is constant with value B=2.'

Consider Eq. (5) in detail. The renormalization func-
tion Z~ is equal to (see Refs. 13 and 20)

D=Q /[II +(co„—('o„) ]

is the phonon thermodynamic Green's function,

ga (p) (~ ) =a a ( p) (0 )Fa ( p) ()
[F (p)(Q) is the phonon density of states in a (P) film
and a (p)(Q) describes the electron-phonon interaction],
and )r (co„) and )rp((o„) are defined by the relation
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Z~=1+ r/~. (~„)—X»/~„.

A}r= J dQgp(Q)Q (10)

Substituting (8) and (9) into (5), we arrive, after simple
manipulations, at the following equation:

bgr0„)=g(r0„)nTQ JdQgpD(Q, co„~„)

Here X&~ is connected with the self-energy part describing
the electron-phonon scattering (see, e.g., Refs. 24—26). If
P film is a normal metal or a superconductor with weak
coupling then

X)p/6)~ = —A,p,

Approximately,

g(a)„)=Qp/(Qp+m„), Ap-Op . (19)

In order to make the transformation to the BCS descrip-
tion, which i.s valid in the weak coupling approximation,
one should put X(co„)=1 in Eq. (17}. Then we obtain the
well-known logarithmic divergence which has been avoid-
ed by the cutoff at the frequency 0-Qp. The presence of
the function X(co„) in Eq. (17) results in the vanishing of
the divergence, and one can obtain the same solution of
Eq. (17}as in the BCS approximation.

Our goal is the find the solution of the nonlinear equa-
tion (17) and then to evaluate the current JM according to
Eq. (3). One can seek the solution of Eq. (17) in the form

gap '(~„)Ap(~„}+S(m„). where g(co„) and S(a&„) are defined by Eqs. (12) and (13)
and the quantity P does not depend on co„. Substituting
(20) into (17) we arrive at the following equation for the

(11) parameter P:

g(s)„)=«(co„)/[I"+«(co„)],
S(co„)=[1—g(co„)]b (ro„)

=[I /[I +«(co„)]]h (co„),

r = r/(1+Xp) = V~,o/28Lp,

(12}

gA (co„)~ ' (co„}.

We assume now that the P film is a superconductor
with weak electron-phonon coupling (e.g., Al, Zn, etc.; we
do not limit the strength of the electron-phonon interac-
tion in the a film). In the weak coupling approximation,

2
-2'

one can disregard the terms of the order of -T, /Q~,
Qtt-Qp, Qp is the Debye frequency of the P film. The
weak coupling approximation allows one (see Ref. 27) to
neglect the term m„ in the denominator of the integrand in
Eq. (11). We obtain

&)t(~„)=g (~„)p~TQ«p '(~„)&s(~„)X(co„)

+[1—g(~„)]& (~„) .

Here p~ ——A}t/(1+A)t), kp and the function «}t(eo„) are de-
fined by Eqs. (6—10), and

X(ro„)=pp ' JdQg p(Q)D(Q, r0„) . (18)

and VF = VF(1+A~) and g}t
——gp/(I + Ap} are the renor-

malized Fermi velocity and the electron-phonon coupling.
As it should be, Eq. (11) contains only renormalized quan-
tities.

If the coupling g~ ——0, then the order parameter A&(~„)
is equal t,o

b,p(~„)=S(m„},
where S(m„) is defined by Eq. (13). The function 6 (~„)
is described by the usual Eliashberg equation

5 (co„)=Z 'mTg J dQg (Q)D(Q, co„—co„)

g(co„)P +S(co„)
I=W TX 2

"
2 &nX(

[ co'„+[S(co„)+g(co„)P]']' '

Let us introduce the dimensionless quantity

5=P/e

where e~=e~(T) is the energy gap of the superconductor
o, . With the use of Eqs. (6), (12), and (22}, after some ma-
nipulations one can reduce Eq. (21}to the form

f +6«
„[x„(1+t«)'+(f, +5r«)']'"

x„=co„/e,=(2n+1)mT/e, f =6 (x„e,)/'e

«=(x„+f }'i a. ,

a=a /mT, . (26)

Here /=Lp/Lp is a dimensionless quantity, where Lo is
some fixed thickness {we have chosen Lp=10 A). The
parameter So is defined by the relation

So=ro/ (28}

where I'0 ——VF'qo/28LO [cf. Eq. (14)].
Solving Eq. (23), one can find the quantity 5 and then,

according to (6), (12), (13), (20), and (22), the order param-
eter 4~(~„). The solution of Eq. (23) will be obtained
belo~ (see Sec, V).

Now let us turn to the evaluation of the maximum
current I~. According to (3), (20), and (22), we obtain,
after simple manipulations,

The function f can be obtained from the theory of
strong coupling (see Sec. III C). In the weak coupling ap-
proximation f = 1.

We introduce a parameter t which is defined by the rela-
tion
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(f +5ta)f»
IsteR =r2»rT g„)0[x„(1+tx)+(f +5ta} ]'/(x„+r f»)'/

Here r =e»/e; the quantities x„, t, s, and f are defined by Eqs. (24)—(27)„f =EL»(x„e~)/ez and the parameter 5 is the
solution of Eq. (23).

If T~O one can pass from summation to integration, according to the rule (see, e.g., Ref. 19)

(2mT/e, )g~ fdx,

and we obtain

CO
ff

(x)+5tx(x)
IMeR =e»(0} dx

[x [1+ta(x)] +[f (x)+5tx(x)]2j'/2 (x +fp )'/2 (30)

With the use of the Poisson formula, it is easy to prove that the expression (30) is valid if T ~&e (T), that is, up to
T/T, -0.5. A more detailed discussion of Eqs. (23) and (29) will be given below (see Sec. V).

Equations (29}, (30), and (23) are the basic equations of the theory. They allow one to evaluate the Josephson current
IM in the S -M~-I-S& junction. It is easy to get an expression describing the system S -Mp-I-Mz-S~ containing two
proximity sandwiches (see Sec. III 8). The expressions describing the junction S~-Ep-I-S&, where Xp is a normal metal
and p~

——0, can be obtained from (29) and (30) if we put 5=0, that is,

IMeR s ~ t s =r2»rT
a s» [ 2( I t

—)2 f2 ]I/2( 2+r2f'2 )i/2

CO (x)»(x)
[x'[I+ta(x)]'+f (x)j'/'[x +r f ( )]'/2

Equations (23) and (29}—(32) describe the thickness and
temperature dependence of I~. As one can see, the
behavior of functions IM(Ltt) and IM(T) depends on the
strength of the electron-phonon interaction [see Eqs. (16),
(24), and (29)] on the ratio r =ege, and on the properties
of the S -Stt contact [see Eq. (23)]. In the weak coupling
approximation, one should put f =f»= l. If Ltt~0, we
obtain [see Eqs. (29) and (30}] the expression describing
the usual Josephson contact S -I-S&. Note that if L~ 0
and f =f» 1(weak coup——ling), we get the weil-known
expression that was obtained by Anderson and by Am-
begaokar and Baratoff.

Hence the maximum Josephson current in the presence
of a proximity system is described by Eqs. (29) and (31),
and in the low-temperature region by Eqs. (30) and (32).
The parameter 5, appearing in Eqs. (29) and (30), is the
solution of Eq. (23). Now we turn to evaluation of the
dependences I~(L~) and I~( T) for different systems.

III. THICKNESS DEPENDENCE
OF THE MAXIMUM dc JOSEPHSON CURRENT

A. S -Np-I-S„system

Consider a Josephson junction containing the proximity
sandwich S~-&p, where Xp is a normal metal and the
electron-phonon coupling pp

——0. Then the parameter
5=0 [see Eq. (23)] and, according to Eq. (32}, the current
I~ in the low-temperature region (T ~&e~, that is,
T ~0.5T, ) is described by the following expression:

q =G,(t)/G, (0) .

Here q =I~R/(I~A )o, (I~A )o=I~A (Lp ——0), and

G„(t)=f dx(x [I+at(x +1)' ] + 1j

The quantities o and t are defined by Eqs. (26) and (27)
and

is the ratio of the energy gaps. Equations (33) and (34) are
written in the weak coupling approximation (the effect of
strong coupling will be considered in Sec. IIIC) so that
fz f» ——1 and a——=aacs ——0.56.

The thickness dependence of I~, as obtained from Eqs.
(33) and (34), is shown in Fig. 2(a). %e see that I~ de-
creases with increasing L~ and that the sharpness of this
decrease depends on the ratio r. Curve 2 in Fig. 2(a) corre-
sponds to the simplest structure S -Np-I-S {r=1).
Hence this dependence is described by a universal function
of the parameter t =1/So. The value of the parameter So
depends on the quality of the proximity contact and on
the critical temperature T, [see Eq. (28)], and this value
determines how rapidly I~ drops with increasing L~. A
decrease in So results in a slower decrease of I~(Lp). The
numerical value of So can be obtained experimentally (see
Refs. 14—16). As is known, if the P film is clean, the pa-
rameter So does not depend on L. The simplest method is
to measure I~A at definite Lp. For example, if we inves-
tigate the properties of the junction S -S~-I-S and
we know the value of g&=q (Lp ——10 A) (then 1=1
and t =So '}, we can use curve 2 in Fig. 2(a) to determine
So. Indeed, in this case this curve describes the depen-
dence»t(SO ') and this allows us to find So directly by
measuring g. This value can be used subsequently in or-
der to obtain the dependences I~(Lp) and I~(T). More-
over, the Josephson tunneling appears here as a method of
investigating a proximity system.

Thus I~ decreases with increasing Lp and the sharpness
of this decrease depends on the ratio of the energy gaps r
and on the parameter So. The asymptotic dependence
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FIG. 2. Thickness dependence of I~R for (a) S -Xp-I-Sy sys-

tem ' ( 1 ) I —
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(2) P —1
& (3) f 6& f E'y/6& is the ratio of the en-

ergy gaps. (b) S -Xp-I-Xy-S~ system: (1) t '=10, (2) t '= I, (3)
t'=0, (4) t'=t, t '=0 56t': t =l /SQ ' t'=ly/SQ,
g =IMR/(IMR )Q.

IM(Ltt) turns out to be nontrivial. This asymptotic depen-
dence can be evaluated analytically in the general form
(see Appendix). It appears that in the region of small
thicknesses (I~0)

5(IMR )—3 ln/,

One can also determine the dependence of IM for t ~ 00.
According to Eq. (27), large values of t correspond, for ex-

ample, to small values of So (e.g., small values of the prob-
ability o). Analytical evaluation of the integral (34) (see
Appendix) results in the dependence

[IMR]t „-lnt/t .

B. Josephson junction with two proximity systems

%e have described (see above) the thickness dependence
of IM in the S -Xp-I-Sz system. Let us consider a more
complicated structure S~-Sp-I-S&-S~ containing two
proximity systems. The approach developed above (see
Sec. II) ean be generalized for the case when both elec-
trodes are proximity sandwiches. IM is described by Eq.
(3) and b,pro„) can be found from Eqs. (11)—(13) (ptt ——0).
An analogous equation ean be used to determine hz(~„)

I

and finally we obtain [cf. Eq. (33)]

q= f(t, t')/f(O, t'),

where g =IMR!(IMR )o, (IMR )o—=IMR (L~ ——0), and

f(t, t')= f dx[x [1+at{x +1)' ] +I]
X [x [1+at'(x .+r )'~ ]+r ]

Here a=0.56 [see Eq. (26)], r =as/e, the parameter t is

defined by Eq. (27), and t' is the same parameter for the

system S~-Nz. One can see that the behavior of g has be-

come more complicated than in the picture considered in

Sec. IIIA. The decrease of q with increasing t depends

parametrically not only on r, but also on the properties of
the Ss-X& sandwich (parameter t'). The dependence g(t)
for different values t' (if r =1) is shown in Fig. 2(b}.

A specific dependence rt(t) appears in the case when

t =t', that is, in the case when the Josephson tunneling be-

tween two identical proximity systems is studied. The
equality Lp

——L& should be kept during the experiment. In

this case the function g(t) drops more rapidly with in-

creasing Lp. One can obtain the asymptotic dependence

of IMR [cf. Sec. III A, Eqs. (36) and (37)]. Evaluation of
the integrals (see Appendix) results in the dependence

6(IstR)-t for t~D and IMR-t ' for t~aa [cf. Eq.
(37)]. For systems with t=t' (see above), the asymptotic
behavior is different. Namely, 6(IitR)-tint [t~O or
1~0, see Eq. (27)] and IMR-lnt/t (t~ oo).

IMeR =e (0)G~(t) . (40)

C. Strong coupling effect

Let us consider again the system S -X~-I-S~ and take
into account the strong coupling factor. The correction
due to strong electron-phonon interaction is noticeable (see

below) if we consider junctions containing such supercon-
ductors as Pb, NbN, Nb, etc. In the low-temperature re-

gion T &&e,ez one can use the general expression (32),
and we obtain

Gf(t)= f dx f~(x)f (x)tx [1+t«(x)) +f~(x))( ' [x +r f (x)] (41)

where f~ ir~(x}, «(x), t, and r are defined by Eqs. (24)—{27)
and (35). In the weak coupling approximation f =fr 1——
and {ifr = 1) we obtain the well-known expression (I~eR)0
={a/2)e~(0) (see Ref. 29). According to Eq. (40), the ra-
tio rt=I~R/(IstR )0 is described by the relation [cf. Eqs.
(33) and (34)]

g =6~(t) IG~(0),

where G/ is defined by Eq. (41).
The frequency-dependent order parameter h~(~„) is the

solution of the Eliashberg equation (16) [co„=(2n +1)AT;
6„(c0„) satisfies an analogous equation]. In the low-
temperature region, in accordance with the Poisson equa-
tion, co„becomes a continuous variable but the functions
5 [&](co) have to be evaluated on the basis of the method
of the thermodynamic Green's function. As is known, the
problem of evaluation of the usual Green's function is

connected with the analytical continuation of the thermo-
dynamic Green's function (see, e.g.„Ref. 19). The func-
tion h(~) can be calculated on the basis of the theory of
strong coupling developed by Scalapino et a/. ' For our
purpose it is cqnvenient to use the method of the theory of
strong coupling which has been developed by Geilkman,
Masharov, and the present author. This method is based
on the theory of the thermodynamic Green's function and
allows one to evaluate directly the functions of interest
h~(co„) and b,r{to„).

The main feature of the theory of strong coupling is
that physical quantities are not described, as in the weak
coupling approximation, by universal functions but de-
pend on the phonon spectrum of the superconductor. The
corresponding corrections usually are of the order
—T, /0, where 0 is the characteristic phonon frequency

2 2

(see below).
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According to the theory the function h(co) is

described by the expression

V(co)=NO ' fdQg(Q)D(Q, co)[l+eco /(co'+M')],
l.25

where

V(co)=b(co) jh(0), Xo ——fdQg(Q), g(Q)=a {Q)F(Q)

[see Eq. {5)],e=1.4p, 5=1.5,

D=Q2/(Q +co ), p=k/(1+k), A. =fdQg(Q)Q

The function g(Q) is known from tunneling measurements
(see Ref. 31). The energy gap e ~r~(0) can be obtained
from the relation

Tc Q
e(0)= 1.76T, 1+5.3 ln

Tc

where Q=Q, (Q, corresponds to the transverse branch) is
the frequency of the lowest peak (the presence of the
highest peak near Q~ results in a correction of the order
—T, /Qs which is usually small). Equation (43) is in good
agreement with experimental data (see Refs. 33 and 34).

One can prove (see Ref. 26} that the function f (x,e )

[see Eq. (24)] for superconductors such as Pb (T, /Qt, is

negligibly small and p~ &gp, ) can be written with high ac-
curacy in the form

l.O
IX

0.75

0,5
2 3 4

FIG. 3. Thickness dependence of I~A for (1) Pb-Xp-I-Pb,
A,p ——0, (2) Pb-Zn-I-Pb, (3) S -Xp-I-S (weak coupling). The
difference between (1) and (3) is caused by strong coupling in Pb;
the difference between (1) and (2) is due to the coupling A, p in Zn.

D. Thickness dependence in the region of T—T,

Consider the Josephson junction S~-Np-I-X&-S, where

Xp and N& are normal films and A,p
——A,

&
——0, and S~ is a

superconductor. If T~T„ the order parameters

hp, h&~0 and one can neglect their values in the denomi-
nator of Eq. (3). Then we obtain

f (x,e~)=A /(x +A ), (44)
I~eR =rrT+hp(co„)br(co„) jco'„. (46)

where A =Q/e; e~ is defined by Eq. (43). For example,
for Pb, Q=4.5 meV, e(0)=2.1T„and A=3.45. Nb is
characterized (see Ref. 35) by the presence of two closely
situated peaks. In this case one can use the general expres-
sion (42) which also can be rewritten as a sum of two parts
corresponding to different peaks [see Ref. 25, Eq. (6.24}].
Equation (44) also can be taken as good approximation
with the value of the frequency Q intermediate between
Q, and QA. Orlando et al. used measurements of the
heat capacity in order to find the value of the frequency
Q. Their method is based on the relation obtained by Par-
chomenko and the present author

(C,'—C,")/yT, =1.4 1+1.8 ln +0.5
C

(45)

Based on this method, the authors found the value
Q=11.4 meV for Nb3Sn and Q=24 meV for V3Si. This
method is very efficient in the absence of tunneling data.

Substituting (44) into Eqs. (40) and {41)one can evaluate
the maximum current IM. Based on Eqs. (40) and (41), we
have calculated the thickness dependence IM for the sys-
tem Pb-Cu-I-Pb (see Fig. 3). For comparison we also
show the thickness dependence of IMR obtained in the
weak coupling approximation [see Eqs. {33)and (34) and
Fig. 2(a)]. One can see that the correction caused by
strong electron-phonon interaction also depends on the
thickness Lp (if Lp

——0, this correction is -20% in accor-
dance with Ref. 17).

The quantities hp and 6& can be evaluated according to
Eqs. (11}—(13). In the weak coupling approximation (the
generalization for strong coupling is straightforward and
will be given elsewhere), we obtain (in our case 5 =As ——e;
e is the energy gap in the superconducting films)

I~eR =2I'I"e m'T g co„(I +co„) (I"+co„) ', (47)

where I = I and I"—:I ~ [see Eq. (7)], and they corre-

spond to the systems S -Xp and S~-X&, respectively.
Summing over ~„,we arrive, after cumbersome calcula-

tions, at the following result:

(48)

where

1 1

(49)

Here %(x) is the digamma function and t, t' are defined
according to (27) [cf. Eqs. (38) and (39)]. In the special
case of t =t' we obtam
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1=P(t, t)=1—(8tlir ) 0 —+——0( —,')
(Ist~ }o 2 2t,

I I I
f

I
f

I

Io ———

1

2 2t

lf we put Lr 0(t——hen t'=0) in Eq. (48), we obtain an ex-
pression describing the thickness dependence of I for the
S -Sp-I-S& system:

IM (R)

(4rI1 }o
=b(t, 0

or
r

IMR
ip( ) (51) FIG. 4. Temperature dependence of I~ (S -Xs-I Sjunct-ion)

(I~+ )o 2 2t for (1) at=0.3, (2) at=1, (3) at=5; the curve AB corresponds to
S-I-S contact (Ref. 29).

It is worth noting that according to Eq. (51),
6(Istic)t o-/Inl, as for the low-temperature region [see
Eq. (36)]. If t~ ca, one can obtain, after simple calcula-

tions,

[cf. Eq. (37)].
Equations (48)—(52) are valid if T-T, . As is known,

the de Gennes —Werthamer (GW) theory (see, e.g., Ref. 37)
also describes this region. It is worth noting that the G%
theory is valid in the "dirty" limit, whereas our method,
based on the McMillan tunneling model, describes the case
of a clean P film.

IV. TEMPERATURE DEPENDENCE OF I~

The general expression (29), which has been obtained on
the basis of the theory of the thermodynamic Green's
function, is valid for any temperature. Based on this
equation, one can evaluate the temperature dependence

I(T) for fixed thickness I.p. For the system S -Xp-I-S&
(the contact S -Sp will be considered in Sec. V), we obtain

2S T
I~(0) a g v(x„) I v(x)dx-. (53)

respondingly, the Fermi velocity VF [see Eq. (14)].
If one or both of the films a and y are superconductors

with strong coupling, one should take into account the
corresponding correction. Based on Eqs. (44) and (53), we
have calculated the dependence I~(T) for the Pb-Cu-
PbQ-Pb junction (see Figs. 5 and 6). One can see that the
dependence described by Eqs. (53) and (54} is in good
agreement with experimental data obtained by Greenspoon
and Smith' for the junction with a thin Cu film (Fig. 6) in
the low-temperature region.

The condition Lp &~gtt (see Sec. IV) can be satisfied in
the low-temperature region only, because a decrease in
temperature results in an increase of gati. Hence the good
agreement of the theory with experimental data (see Fig.
6} can also be considered as evidence of the increase of

hatt

with decreasing T. 9

V. JUNCTION CONTAINING SN-Sp PROXIMITY
SYSTEM

In this section we consider the properties of the Joseph-
son junction S -SI3-I-S&, where the proximity system S~-
Sp contains two superconductors. Then one should use

v(x )=f+ [x [1+at(x +f )'~2)2+f j

~ ( 2+ „if 2
)
—i /2 (54)

where x„,f, fr, a, and r are defined by Eqs. (24), (26),
and (35); S=e„(T)/er(0).

In the weak coupling approximation one should put
f =fr= 1. Then the function I~(T) parametrically de-
pends on t, that is [see Eq. (27)], on the thickness Ltt. The
behavior of I~(T) for different values of t (r =1) is shown
in Fig. 4. One can see that deviation from the well-known
Ambegaokar-Baratoff formula [this formula can be ob-
tained from (53) if we put t =0] increases with increasing
t. This increase in t can be achieved [see Eq. (27)] by in-
creasing the thickness Lp or by decreasing the value of So.
The small value of So can be connected with smallness of
the probabihty of penetration 5. Moreover, if the P film is
a degenerate semiconductor (or a semimetal), So can be de-
creased by decreasing the electron concentration and, cor-

D

0.5

f

0 025 0.5 075 I.Q 0 025 0.5 075 1.0
Ti Tc T!T

FIG. 5. Effect of strong coupling and the inequality A,p&0 on
the dependence I~( T): (a) Temperature dependence of
I~eR/e (0) for (1) Pb-Al-PbO-Pb, (2) Pb-Cu-PbO-Pb, at=0.6
(e.g., Lp ——100 A, So ——1.1; apb ——0.67). One can see the differ-
ence between S -Sp-I-S and S -Sp-I-S junctions. (b) Tem-
perature dependence II(/I( T}/I~(0) for Pb-Al-PbO-Pb (at=0.6).
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To

FIG. 6. Dependence I~(T) for Pb-Cu-PbO-Pb junction, solid
line is the theoretical curve; o, experimental data (Ref. 1)
(L,,„=10' A, S,=0.12.)

5&0 (if r&0) even if T & T,p, and the corresponding con-
tribution to Isi has to be taken into account (see Fig. 5).
This result has a clear physical meaning. The elcetron-
phonon interaction pp is not equal to zero. If T y T,p, the
superconducting state of the isolated P film is destroyed
by thermal motion. In our case the superconducting state
is caused by the proximity effect and the electron-phonon
interaction pp also contributes to this state. The parame-
ter 5 describes this contribution. Thus Eqs. (23), (29), and
(30) allow us to evaluate the current I for S~-S~-I-S&
systems. The temperature dependence of I~ for the Pb-
Al-I-Pb system is shown in Fig. 5.

VI. CONCI. USION AND SUMMARY

Eqs. (23) and (29) [if T «e„one can use Eqs. (23) and
(30)]. We consider the case p}I«po (correspondingly,
T,p&& T«,' T,~ [p] are the critical temperatures of isolated
flhIls). Wc assllllic tllat p flllll ls a sllpcrcolldllctof with
weak coupling [see the discussion following Eq. (16)].

In the first place we consider Eq. {23),which allows one
to evaluate the parameter 5. The value of 5 depends on
temperature, on the value of f and, hence, on the thickness
of the P film and on the function gp(Q) [see Eq. (10))
describing the electron-phonon interaction in the P film.
It is worth noting that, generally speaking, the function
g~(Q) also depends on the thickness L~. For Al films, for
example, it has been observed that this function changes
noticeably as the thickness of the film decreases and this
results in an increase of T, (see, e.g., Ref. 40). Measure-
ments of T, allow one to determine the dependences of
gp(Q) and pp on the thickness Lp.

Equation (23) is nonlinear. If J ~~0 [r~O, see Eq.
(27)] we obtain the expression describing the usual S IS»--
Josephson junction. Let us consider the opposite case
2 —+ oo [C.g. , thC COCfflCICIlt I»~0, SCC Eq. (28)]. ThCI1

I ~0, S(r0„)~0, and g(r0„)~1 [see Eqs. (12) and (13)].
Then we obtain [see Eq. (21)]

+ (~2+p2)1/2

that is, we obtain the equation describing the energy gap
of isolated P film. We put I= 1, as in the BCS approxi-
mation (see Scr.. II). Hence if t~ oo, the quantity
5~ege, and 5~0 if T~T, . If t ~ oo, Eq. (29}becomes

5f»
IMeR =(e»/eo)2I»T g„&0(x„+5) [x„+(e»/e ) f»]

Based on Eq. (24) and using the relation 5, „=age, we
obtain

c}IE»(r0„)I~et 2I»T g 2 2 I»2 2 2 I»2 1 (57)
~„)O (OI. +&p) [Oio+ ~»(o }]

and hence we obtain the expression [cf. Eq. (31)] describ-
ing the S~-I-S~ contact (we have not made any assump-
tion about the electron-phonon strength in the y film).

Equations (23), (29), and {30) can be solved for any t,
that is, for different thicknesses Lp. For example, the
curve 1 in Fig. 5(a) and the curve in Fig. 5(b) correspond
to 1=0.9. %e would like to emphasize that the parameter

Based on the thermodynamic Green's-function method,
we have carried out an analysis of the properties of the
Josephson junction with a proximity system. The junction
can contain one (So Mp I S-») o-r -two (S -Mp-I-Ms-S»}
proximity systems. Moveover, the film Mp [~] can
represent a normal metal or a superconductor (e.g., S-
Sp-I-S& system; T,p ~ T,~). The probelm is to evaluate the
thickness and temperature dependences of the maximum
Josephson current I~ in the presence of a proximity sys-
tem.

The main results can be summarized as follows.
(1) The value of I~ decreases with increasing thickness

Lp. The sharpness of this decrease depends strongly on
the ratio r =T~/T, and increases as r increases (see Fig.
2).

(2) Junctions containing two proximity systems (S-
M~-I-M~-S&) have also been considered. The function
I~(Lp) depends on the properties of the added proximity
system M~-Sz. The sharpest dependence appears to be in
the case when both proximity systems are identical, or
more exactly, if r =r' [see Fig. 2(b)].

(3) The asymPtotic behavior of Isr(Lp) dePends on the
structure of the system [see Sec. IIIA, Eqs. (36) and (37),
and Sec. III 8] and on the temperature [cf. Eqs. (36), (37),
and {52)].

(4) The temperature dependence I~(T} differs notice-
ably from the usual dependence, and this deviation in-
creases with increasing Lp (see Fig. 4). The obtained
dependence is in good agreement with experimental data
(see Fig. 6).

(5) The effect of strong electron-phonon coupling on the
properties of the junction has been investigated. Increase
of coupling results in a decrease of the function
IR/e~(0) and the correction caused by strong coupling
also depends on the thickness Lp.

(6) The behavior of the junction containing a proximity
system with two superconductors [e.g., S S~ I S, ---
T, g T, ; T, is the critical temperature of the isolated a
(P) film] turns out to be very interesting. Equations (23),
(29), and (30) describe this system. The presence of the at-
tractive electron-phonon coupling results in an increase in
IM(LrI) [see Fig. 5(a)]. The inequality A~O affects the
value of I~(L~) even if T & T~.
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can neglect the quantity tap(x) in the integrand of the first
term in the right-hand side of Eq. (A6) and write

x [1+ttcp(x)] + 1=x (1+tx)
APPENDIX

Let us note the two following points.
(1) The integral (34) can be written as a sum

Ji ——Ji+J)+Jj' . (A1)

in the integrand in the second term. After a long but sim-

ple calculation, we find that the main term in the limit
t~O is J&-t lnt.

(2) The integral (34) in the limit t ~ ap can be written in
the form

Here Ji f-(()(x)dx, (A7)

$(x)=[t x2trp(x)+ I] 'r
tcp '(x)

J', = —2t f u 1 (x)dx, J,"= t —u2(x)dx, (A2) where

u i (x)=x /R u2(x) =x gp(x)/R (A3)

II = (x [I+tKp(x)] +1]Kp(x)

X(np(x)+ [x'[ I+«p(x)]'+I}'

pep(x) =(x +1)'

J, —=Gt(0)=sr/2, Ji Gi——(t)

(A4)

(A5)

[see Eq. (34)], and we consider the S Nts I S-syste-m-.

In order to find the behavior of J& in the limit of t~O„
we divide each of the integrals (A2) into two parts, e.g.,

J', =2t f ut(x)dx+2t f u, (x)dx, (A6)
p

where 3 has been chosen so that 1«A « t '. Then we J-t 'lnt . (A8)

[Kp(x) is defined by Eq. (A5)] or

Jl =t dz[z2(I +2 /t2)+I] r (I+z /t2)
p

This integral can be divided into two terms, Ji and J2.
The first term contains integration from zero to 8, and the
second from 8 to infinity, where 1«8« t. One can
neglect the term Z /t in the first integrand; the second
term is equal to

I,-(t-') f dzz '(1+z /t')
B

After simple calculations we obtain in the limit t~ ~
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