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Noise-activated escape of a particle out of a metastable well was treated by Kramers, who derived
results covering the three cases of heavy damping, moderate damping, and extreme underdamping.
In the case of extreme underdamping, the escape occurs through diffusive motion along the energy
coordinate. We extend Kramers's treatment of this extremely underdamped case to cover a wider
range of damping constants, taking into account that at energies just above the barrier peak and
within the initial well, the distribution is controlled both by uphill diffusion in energy, and by the
flow out of the well. This new result is compared with computer simulations of escape events for the
case of Josephson junctions under constant current bias. In addition to a conventional simulation
which initially puts the particles at the bottom of the well, a method is developed which requires
simulation only in an energy range close to the peak of the barrier.

I. INTRODUCTION

me+y8=—

where V= Vo(1 —cos8) —FO. In Eq. (1.1), the thermal
equilibrium noise g obeys (g) =0 and

(g(t)g(t') ) =2ykT5(t t') . — (1.2)
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FIG. 1. Potential V = Vo(1 —cos0) —F8 in Eq. (1.1) for

F=
2 Vo. In the strongly underdamped case, emphasized in this
1

paper, there is a diffusive flux along the action or energy coordi-
nate j&. For energies above the barrier peak energy Eb, we have,
in addition to this vertical current, a horizontal current j,„, giv-
ing the flux out of the well.

Noise-activated escape from a metastable state was
treated in a historic pioneering paper by Kramers. ' Since
that time Kramers's work has been elaborated in many
ways, and we can cite only a few items from a long list of
such elaborations. Our paper treats the situation depicted
in Fig. 1, showing a particle in a sinusoidal potential
Vo(1 —cos8) supplemented by a driving potential —FO.
The particle obeys an equation of motion,

Our tilted sinusoidal potential is similar to that of a classi-
cal particle in a periodic solid, subject to an external elec-
tric field. In that case we can have an equilibrium distri-
bution, if we add walls at each end of the specimen. This
results in a polarized nonuniform particle distribution
favoring the low-energy end of the specimen, and results
in an absence of steady-state transport. Alternatively, we
can study a periodic distribution function which does
represent transport, as is typically done in conductivity
calculations. It is this latter periodic distribution function
which is the subject of our discussion. The resulting equa-
tions also characterize a Josephson-junction circuit under
constant current bias. A particle trapped in a local
minimum of the tilted sinusoid will, eventually, under the
influence of fluctuations, escape to the right. If the damp-
ing is appreciable the escape will be to the next potential
minimum. If the damping is low, however, then the parti-
cle which gains enough energy to pass one barrier will not
lose 2m.F in energy, via damping, while passing over to the
next barrier, and thus will continue to move to the right,
with high probability. Let us briefly discuss the equation
of motion, Eq. (1.1), in the absence of noise. For 6 (1.19,
where G =y/(mVO)' is a dimensionless damping con-
stant, there will be a range of F (or a range of currents for
the Josephson junction) in which we have bistability. In
this range the particle can satisfy the noiseless equations
of motion either by sitting quietly at the bottom of a well,
or else it can be in a steady state in which 0 advances as a
periodic function of time (see Fig. 2). The range of bista-
bility is shown in Fig. 3, adapted from Fig. 7 of Ref. 4.
These two regimes of local stability will be separated by a
separatrix.

In the region of bistability just discussed, fluctuations
will induce transitions from the locked state (particle at
the bottom of a well; superconducting state) to the running
state (0&0; voltage state) and visa versa. The probability
for fluctuation-activated escape from the running state,
back into the locked state, was evaluated recently and will
not be our concern in this paper. In the bistable regime
the relative occupation probability of the two kinds of
competing states of local stability will be determined, in
the stochastic steady state, by a balance in the escape rates.
That question has been considered in detail, in a sequence
of papers by Risken and Vollmer, of which we cite only a
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recent one. Numerical simulations describing the repeat-
ed transitions back and forth between local stability and
the moving steady state have also been given. ' As in any
such situation, ' as the parameters are changed and a
stable state approaches marginality, i.e., the limit of its
range of local stability, it is certain to become the less like-

ly state, because it will require very little noise for escape
from such a marginal state.

Our concern is with the simplest of these questions, the
escape rate from a potential minimum. We will also focus
on the underdamped case illustrated schematically in Fig.
1. Particles reaching the energy Eb can escape to the
right; they are prevented by the potential from going to
the left. Thus the net upward Aux in energy is also the
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FIG. 3. Range of bistability in the tilted sinusoidal potential.
6 =y/(m Vo) ~ is a dimensionless damping constant. This
curve is parameter independent.
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FIG. 2. Stable states of a particle moving in the potential of
Fig. 1. The field range I', &F & Vo allows both a locked state
with zero average velocity and a running state vnth nonzero

average velocity.

flux out of the well, to the right. In the extremdy under-

damped case, the escape is likely to be to the running state

in which 0&0.
Kramers's original work' discussed escape from a single

initial well. In that case we have a relaxation process rath-
er than steady-state transport. The relaxation process is,
however, trivially related to a steady-state process, " if we
add a source to the initial well replenishing the particles as
they disappear, and if we similarly add a sink on the other
side of the barrier. In all of these problems, for Eb gpkT,
equilibration within the lower and heavily populated por-
tion of the well is rapid compared to equilibration involv-

ing crossing of the peak. Therefore, the exact way the
particles are introduced into the initial well does not
matter. In our periodic case the particles escaping to the
right out of a well, as in Fig. 1, will have come from a
well to the left of the one under consideration. In the
heavily damped case it will be from the adjacent left well.
In a lightly damped case it can be from a far away well,
via the running state of Fig. 2. In either case the source
introduced to study the departure to the right will cancel
the sink introduced for the study of arrival from the left,
and we need not have any concern whether these fictitious
sources and sinks introduce any approximations.

Our work results in a modest refinement of Kramers's
original work and of its subsequent application to Joseph-
son junctions by Lee. ' Our motivation for this modest
extension is twofold. First of all it seems that Kramers's
original discussion, for the case of extremely light damp-
ing, is still not fu11y appreciated. While, on the one hand,
it has been elaborated and applied, " ' some of the most
important and sophisticated treatments of noise-activated
escape from the metastable state' ' do not reflect
Kramers's understanding of the very lightly damped case.
Biswas and Jha, ' in the last paragraph of their paper,
correctly allude to the point in question, but apparently
without awareness of the extent to which Kramers had al-
ready given an answer. A paper by Matkowsky et al. '

sets out to clarify Kramers's work, but for the non-
mathematical reader Kramers's original discussion may be
more accessible.

The second part of our motivation relates to the fact
that Josephson-junction circuits with extremely low damp-
ing are of interest and have been studied. ' ' Further-
more, thermal escape from metastable states in Josephson
junctions has also been measured' ' and is of interest in
connection with reliability questions in Josephson-junction
logic. '

Kramers discusses three separate approximations, de-

pending on the degree of damping. The one that is most
widely understood and appreciated applies to the heavily
damped case, in which the particle exhibits highly dif-
fusive behavior and the particle momentum relaxes to its
thermal equilibrium distribution over a distance that is
short compared with the scale of the potential variations.
Specific application of this approximation to Josephson
junctions with a small shunting capacitance was provided
by Ambegaokar and Halperin. An earlier discussion by
Stratonovich of externally synchronized electronic oscil-
lators had treated the same set of equations and came to
equivalent results. The Appendix to a recent paper
stresses the fact that a number of situations discussed in
the modern literature require only very trivial extensions
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of Kramers's original discussion.
Kramers has a second result, his Eq. (25), which reduces

to the above case, for heavy damping, but clearly extends
to lower values of damping which we will call moderate
damping. This result is

—E,zsr
8

2m'
(1.5)

This is the heavy damping limit discussed above. In the
limit of small damping Eq. (1.3) is approximated by the
result of the transition-state (ts) theory,

(1.3)

expressed as a probability of escape, per unit time, for par-
ticles in the initial well. Here

aig ——a)p(1 F /Vo)—'

is the frequency associated with particle motion in the bot-
tom of the initial well. co~ =( Vo/m)'~ is the (plasma) fre-
quency at F=0. ~b is the analogous imaginary frequency
associated with the unstable potential curvature at the bar-
rier. (For the tilted sinusoid the absolute values of ~z and
cob are equal. ) iI =yim is the momentum relaxation rate.
The barrier height, as viewed from the bottom of the im-
tial metastable valley, is given by

E& ——2VO[(1 F /VO)—'~ (F/Vo)a—rccos(F!Vo)] .

(1.4)

(From here on we take the origin of the energy scale so
that the potential minimum under consideration is at
E=O.} We assume throughout the paper that kT«Es.
For large g, Eq. (1.3}is approximated by

volved in crossing the barrier, and not the possibility that
the population throughout this elevated energy range is
depleted by the escape process taking place.

Kramers has a third set of approximations for the ex-
tremely underdamped case, which we shall subsequently
discuss in more detail as a basis for our own refinement.
It is clear that in the case of conservative motion,
y=q=0, a particle will remain at its initial energy per-
rnanently. Thus the particles which initially had enough
energy to escape from the metastable well would do so,
but would not be replaced by particles from lower-energy
ranges„and there would be no escape at all from the initial
valley except for a short initial transient. The rate at
which particles can change energy depends on the damp-
ing and noise; both are proportional to y. Thus, for very
low damping, the energy changes occur very slowly, and
the supply of particles up out of the bottom of the well
cannot keep pace with the rate of escape for particles that
have gained enough energy to cross the barrier. This leads
to a depleted population in the energy range just above the
barrier, and causes Eq. (1.3) to be incorrect. Kramers's
third approximation treated this regime in which the par-
ticles diffuse upward along the energy or action coordinate
and, not surprisingly, he found an escape rate praportional
to g. This will be reviewed in detail in the next section.
Kramers, thus, was aware that the bottleneck in escape
from the initial well could be either the crassing time re-
quired for the barrier, as described by Eq. (1.3), or else
could be the time required for thermal escape out of the
bottom of the well. Kramers concluded, correctly, that
the smaller af the rates, predicted by the two respective as-
sumptions, ~ould be the applicable escape rate. Our re-
finement is simply an attempt to treat the transition be-
tween the two cases more carefully, and to predict the
departure from the simple proportionality between the es-
cape rate and g, found for the highly underdamped case.

II. KRAMERS'S LOW-DAMPING LIMIT

—Eb/kT

2m'

Equation (1.3) is also derived by Chandrasekhar. " In his

Eq. (509) he claims this result is valid for all degrees of
underdamping. We shall subsequently point out that that
is incorrect. Note that Eq (1.3} inv.okes the detailed shape
of the initial potential valley only through its curvature at
the initial minimum, and through the curvature at the bar-
rier. The frequency at the initial minimum is inevitably
involved. It is a measure of the phase space available
there, and thus of the density which has to be depleted by
the Aux escaping across the barrier. The further details of
the shape of the potential in the metastable valley do not
enter Eq. (1.3), or its derivation. Indeed the derivations of
this equation assume that particles crossing the barrier,
followed back in time, or 8, well into the initial valley,
have come from a region of 8 which has a population
which is in thermal equilibrium with the well bottom.
Thus the derivations assume that the particle distribution,
in most of the initial valley and within the energy ranges
near the barrier peak, is undepleted from the value which
represents thermal equilibrium with the valley minimum.
The derivations only take into account the difhculty in-

1(E)=fp dg=m f818, (2.1)

which, within the well, will be a monotonic and continu-
ous function of the energy. Ifp(E} is the phase-space den-

sity at energy E, then pdI gives the net population, or in-
tegrated distribution function, within the corresponding
annular area in the phase plane. Kramers finds a Aux, up
along the I coordinate, given by

jr —— gI(p+kTBp/BE) .— (2.2)

The first term in Eq. (2.2) is the relaxation due to damp-
ing, and describes a downward drift in energy toward the
local minimum. The second term is a result of the fluc-
tuations, and describes thc diffusive process which permits
particles to get away from the well minimum. In the ab-
sence of a current, jz ——0, and the resulting p describes

In the case of very low q the particle is exposed to very
little damping and very little noise and, as a result, follows
the unperturbed conservative equations of motion for a
long time. Thus we can classify particles, within the ini-
tial we11, by their energy. The phase-space density will be
alrnast constant along the dynamical path corresponding
to a given energy. Alternatively we can classify paths by
the action
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thermal equilibrium

pcq(E) =pX {2.3)

The normalization constant po is determined by the condi-
tion

the top of the barrier and, after an excursion into the
metastable valley, returns again to the top of the barrier.
The numerical evaluation of Ib as a function of the driv-

ing force E is shown in Fig. 4 adapted from Fig. 4 of Ref.
4. If I: approaches Vo, which is a case of particular in-

terest, the action can be given analytically. We find

where N is the total number of particles in the valley, and
this yields po ——~zN/2mkT.

To find an escape rate it is easiest to deal with a
steady-state problem in which particles are continually fed
into the bottom of the well, replacing those which escape
st the top. The distribution function

(2.5)

then deviates from equilibrium by a correction factor P.
By analogy to the heavily damped case we can expect
that the maintenance of the flux only requires appreciable
deviations from equilibrium in those ranges of E where p,q

is relatively small. This will correspond to a P which is al-

most constant, except within a few kT of the barrier peak.
For energies near the bottom of the well P= 1, so that
both p~(E) and p(E) obey the normalization condition Eq.
(2.4). Furthermore, the relative distribution function,
within the well, for the steady-state case will not differ
seriously from that for the time-dependent case, in which
the well population is depleted with time.

Substitution of Eq. (2.5) in Eq. (2.2) yields

where Io 16(m——VO}'~ is the action at F=O. For subse-

quent reference we note that if I3(Eb} is taken as nonvan-

ishing; then, instead of Eq. (2.8), we find
—E~/kT

Ji = ll P«. s—))r}»poe (2.10)

From Eq. (2.8) and the normalization relation between

po and X we find an escape rate

r =jI/X =(gIb/kT)(a)q /2m)e {2.11)

Note the proportionality to q. For sufficiently large q, of
course, Eq. (2.11) ceases to be applicable, and we must in-
voke Eq. {1.3) instead.

Our subsequent analytical discussion will continue to
assume that injection does not occur at the very bottom of
the well and that, therefore, the divergencies mentioned
above are avoided. The Appendix discusses the modified
results obtained for the escape rate if we insist that the in-
jected particles really come from the well bottom. It will
be shown, in the Appendix, that this correction is unim-
portant if Eb p&kT.

jI= —gIkTp, q(E) (2.6) III. REFINED TREATMENT FOR VERY WEAK
DAMPING

In the steady state jq is independent of E. Integration
from E =E& =-kT to E =Eb yields We now continue to assume that the motion takes place

along the energy coordinate, within the initial well, as
described by Eq. (2.2), but will improve on Kramers's as-
sumption that p(Eb) =0. For E &Eb we mill still allow a
flux due to damping and fluctuations, as described by Eq.
(2.2). Additionally, however, for E p Eb, we will allow an

—Eg /kT
JI ='9IbPY

p(Ei ) P(Eb )—
jI——qkT (2.7)

I (1/l)(1/po)e

I.et us first assume, as Kramers did, that the distribution
function drops to zero at Ei„ thus setting P(Ei,)=0 The.
lower limit of the integral in Eq. (2.7) must be taken with
care. Since I-E in the quadratic potential at the bottom
of the well, the integral will diverge if we take E =0 as a
lower hmit. From Eq. (2.6), it follows that for E «kT,
the derivative BP/BE-1/E. Thus the correction factor P,
in the numerator of Eq. (2.7), grows like log(E/kT) at
small energies. These two compensating divergencies in
the fraction on the right-hand side (rhs) in Eq. (2.7) arise
if we inject the current at the very bottom of the valley,
where the phase space available for transport toward
higher energies vanishes. If we avoid injection at the very
bottom, then the Boltzmann factor becomes the dominant
source of energy variation in the integrand, and the exact
energy at which we inject is unimportant, as long as it is
several kT below the barrier peak. With an equilibrium
distribution in the bottom of the well, and if Pp~ is still
normahzed as in Eq. (2.4}, then P(Ei}=1. The fact that
the integral in Eq. (2.7) is controlled by its upper integra-
tion limit yields

Here Ib ——I(Eb) is the action of the path at the barrier
peak. A particle on this path starts with zero velocity st

FIG. 4. Action as a function Of I' /Vo. At I' =0 the action is

Io ——16(m Vo)' . This curve is parameter independent.
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p(ob)v dp =pdE =aP(E)p,q(E)dE . (3.1)

In the steady state this outflow must be compensated by a
divergence in the vertical flow, with the vertical flow
given by Eq. (2.6). Thus

djs

dE
= aPpeq ~—

and after utilizing Eq. (2.6)

r)1kT — r)IkTp, q
—
z

———asap, q
.

Bp., Bp B'p
BE BE 'BE'

Dividing Eq. (3.3) by p,q, and using

p '(Bp, /BE) = —1/kT,

(3.2)

(3.3)

outflow from each energy range equaling the product of
density and velocity at the location of the barrier (see Fig.
1). The phase-space density along a path of fixed energy
will now be clearly nonuniform. The flux at the barrier
peak, coming from the right into the well under considera-
tion, will be zero. The fluctuations, offset by damping,
will cause particles from lower-energy ranges to diffuse
into the range in question, and thus the phase-space densi-

ty builds up along the orbit in question reaching a max-
imum at the exit at 8=8b, for particles moving to the
right. Thus P, defined as p/p~, is no longer constant
along a path of constant energy. Equation (2.6) still ap-
plies, however, with an effective P(E) which must now
describe the phase-space average occupation along a path
of fixed energy, i.e., along a path which enters into the
well and leaves it again. The density builds up along this

path; thus the phase-space density at the exit port will be
somewhat larger than that indicated by the phase-space
average along the path. Let this additional correction fac-
tor be denoted by a&1, but of order unity. The rate at
which particles leave at the barrier peak, 8=8b, in the en-

ergy range dE will be

j r = [1 P(Eb )](7)Ib /kT)(rv„—N/2n )e (3.8)

equilibrium. s, as given by Eq. (3.7), is a function only of
akT/gIb. The factor a is of order unity. gIb is the ener-

gy loss, due to damping, in one cycle of the motion, e.g.,
from departure at the barrier peak until the subsequent re-
turn. Thus kT/gIb is smaller or larger than unity,
depending on whether the particle loses more or less than
kT in the round trip through the metastable well. For se-
verely underdamped systems, kT/gIb »1 and
s — (a—kT/r)Ib)'/ . Thus p-p, qe* /" and decreases
much faster with increasing energy than p~, thereby in-
validating the reasoning leading to Eq. (1.3).

There is an alternative way of viewing this severely un-

derdamped case closely related to the discussions in Refs.
1 and 11. As we have pointed out, Eq. (1.3) essentially
gives the rate at which particles move across the barrier,
taking as the source a thermal equilibrium population in
the metastable well. In thermal equilibrium, however, if
kT»gIb, then particles entering the metastable well
from the right, with a kinetic energy of the order of kT at
the barrier peak, are likely to bounce out of the well again.
Thus a high proportion of the thermal equilibrium flux
out of the metastable well consists of particles which en-

tered the well, and were reflected, rather than particles
boiling up out of the well. Only a small proportion of the
emerging flux consists of the latter. If, therefore, the par-
ticles entering the metastable valley from the right are ab-

sent, then the escaping particle flux must be much smaller
than that given by Eq. (1.3). In the alternative limit,

gIb »kT, the correction factor t.
' becomes unimpor-

tant.
To complete our calculation we must now match the

probability density specified by Eq. (3.7), for E & Eb, to a
solution of Eqs. (2.6) and (2.7) for E &Eh. We require
continuity of P, and of BP/BE, or alternatively of P and of
j&, at E =Eb. Equation (2.10) can be rewritten, with the
use of po ——co~A/2~kT, as

we find

rrIkT r)I —a@=—O .
B'P BP
BE' BE

(3.4)

For E &Eb we assume

P(E) =P(Eb)exp[s(E Eb)/kT], —

We will be concerned with a relatively narrow energy
range above E =Eb. In that range we will assume that I
can be taken as sensibly constant, and equal to that at
E =Eb Then Eq (3.4. ) be.comes a linear homogeneous
differential equation with constant coefficients, with solu-
tions of the form P=e' /" . Inserting this into Eq. (3.4)
yields

)& exp[s (E Eb )/kT E/kT—]—(3.9)

for E & Eb. Equating the two rhs expressions in Eqs. (3.8)
and (3.9), at E =Eb, gives 1 —p= —sp or

so that p(E) is continuous at E =Eb. Using—Eb /kT
p=P(E)poe ', we find from Eq. (2.6) a current

jr = sP(Eb )(r)Ib /k T—)(coq N/2ir)

(gIb /kT)s —(gIb /kT)s —a =0, (3.5)
p(Eb) =1/(1 —s) . (3.10)

or
' 1/2

1 4akTs= —1+ 1+
2 gIb

(3.6)

1/2

s= —— 1+1 4akT
2 gIb

(3.7)

and e' accentuates the dropoff with energy present in

The solution in Eq. (3.6) with the + sign gives a positive
s and a density increasing exponentially with energy. It is
clearly not relevant. Thus

Substituting this in Eq. (3.8) yields

[1+(4akT/r)lb)]' —1 'QIb cg„Eb/kT
r =j&/X= 8

[1+(4akT/r)Ib)]'/i+1 kT 2n.
(3.11)

As g tends to zero this result reduces to Eq. (2.11). As g
tends to infinity Eq. (3.11) yields r =ar„, where r„ is
given by Eq. (1.6).

In Fig. 5 we have plotted the various theoretical results.
Escape rates are measured in units of the transition-state
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I.O "

0.8 "

( [g(r)/ Vo][g(r')/Vo] ) = (2yk T/Vocop )5(r r—') .

(4.2)

Here G =yap�/Vp ——y/(m Vp)
' is the dimensionless

damping constant. Integrating Eq. (4.1) over a small time
interval hr yields

0.6"

0.4 "

„+, ——2~„—G(~„—~„])«
+ (F/Vo —sin8„+$„/Vo)(b r)' .

g„ is a new stochastic process defined by

(4.3)

0.2 " (4.4)

0.0
0.0 0.( 0.2 0.3

and it has the property

(g„g /Vo) =2(GkT/Vphr)5„ (4.5)

FIG. 5. Escape rate, in units of the transition-state theory re-
sult, as a function of the dimensionless damping constant G for
F/Vo ——0.985 and Eb/kT=3. 938. The solid lines are Kramers's
moderate-damping result (KM), Kramers's low-damping result
(KL), and our new refined low-damping result, Eq. (3.11), for
a=1. These theoretical results are compared with the results of
a conventional computer simulation of escape events (+ ) and
also with the results of a faster method (+) simulating the
motion of the particle only near the energy of the barrier peak.
The faster method is valid only for low damping.

IV. COMPUTATIONAL RESULTS

With the use of a dimensionless time ~=capt, where

cop ( Vp /m ) is the plasma frequency at F=0, the
Langevin equation (1.1) reduces to

d 8 +G (4.1)
dr dr

= —sing+ +F
Vp Vp

and

theory result, Eq. (1.6), and are shown as a function of the
dimensionless damping constant 6 =@/(mVp)' . The
curve labeled KM is Kramers's moderate-damping result,
Eq. (1.3), divided by r„The cur. ve labeled KL is
Kramers's low-damping result, Eq. (2.11), in units of r„
The third curve shown is our result, Eq. (3.11), for a=1.
Actually, of course, we would have expected a & 1, as al-
ready discussed. Our best fit, however, was obtained for
a=1. Thus a was used as an adjustable parameter,
though not a parameter with a great range of variability.
The curves shown in Fig. 5 are for a field F/Vp ——0.985
and Vp /k T= 1135.9 corresponding to a ratio Eb /k T
=3.938. These values describe a Josephson-junction cir-
cuit with a critical current of 0.2 mA, a bias current of
0.197 mA, and a capacitance of 1 pF at a temperature of
4.2 K. A shunt resistance of 100 0 corresponds to a di-
mensionless damping constant G=0.01283. For such a
junction our result, Eq. (3.11), predicts a lower escape rate
than the results of Kramers, and we expect that over this
range of damping constants our result is a better approxi-
mation of the escape rate. To check this prediction, we
have performed computer simulations which we will dis-
cuss in the next section.

To check the accuracy of the difference equation (4.3), we
have also used an integration scheme, developed by Morf
and Stoll, which is accurate to higher powers of b ~ than
Eq. (4.3). The two methods gave identical results for in-
tegration steps hv. (0.03. We have approximated the
noise g„with pseudorandom numbers q„distributed uni-
formly in the interval ( —0.5,0.5). Since (q„q ) = —,', 5„
we have used a random force g„=eq„ in Eq. (4.3) with
e=(24GkT/Vp57 )'

In a conventional simulation of escape events we start
with the particle at the bottom of the well and follow the
particle until it escapes over the barrier, measuring the
time it takes the particle to escape and to travel some dis-
tance away from the barrier peak in the direction of in-
creasing 0. The results of the conventional calculation are
shown in Fig. 5 (data points indicated by + ). Each data
point represents an average of 500 escape events. The ran-
dom generator was started at the same point (seed) for
each data point. For G=0.20528, six data points have
been calculated, each with a different seed. We found an
average escape rate of r/r„=0. 74 and a variance of 0.05.
In most of the literature escape rates are plotted on a loga-
rithmic scale; in that case, the alternative prefactors dis-
cussed in our paper would be barely distinguishable.

In principle we should compare these numerical results
with analytical results taking into account that the parti-
cles are injected at the very bottom of the valley. Howev-
er, as shown in the Appendix, as well as in a simulation
where we injected particles at energies above the bottom of
the well, the escape rate is not sensitive to the precise in-
jection mechanism. In this particular alternative simula-
tion we invoke an equilibrium distribution peq for energies
below the energy of the injected particles. At the injection
energy the distribution function is continuous, but dp/dE
is discontinuous by an amount corresponding to the inject-
ed current. Within the accuracy of our calculation the es-

cape rate remains the same, until the injection energy
comes within kT of the barrier energy. The alternative
simulation just discussed, corresponding to an actual phys-
ical injection process at an energy above the well bottom,
is distinct from a method, to be discussed subsequently,
for handling the numerical simulation for escape out of
the well.

In the conventional simulation the particle spends most
of the time near the bottom of the well. Most of the corn-
puting power is used to simulate the behavior of the parti-
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E /kT
P(& ) =1—(j/rlI po)e (4.7)

0.005—

cle in a region of the phase space which can easily be
treated analytically by solving the Langevin equation (1.1)
or the associated Fokker-Planck equation. It is, therefore,
desirable to have a method which uses the computer only
to simulate the behavior of the particle in an energy range
close to the barrier peak energy. For Hamiltonian sys-
tems, such computational methods have been introduced
by Bennett. We will now present an adaption of
Bennett's ideas to our dissipative problem.

To keep the particle away from the bottom of the well,
we introduce a reflecting bottom at an energy E (see Fig.
6). We inject the particles at this energy with a rate j.
Each time the energy of the particle falls below E, the
particle is restarted at this energy. The motion of the par-
ticle is simulated until it eventually escapes over the bar-
rier. We register the total dwell time ~~ of the particle in
a small energy range (E+,E ) with a width
hE =E+ —E «kT. The dwell time in turn yields the
number of particles in this energy range

j r~ ——f pdI=p(E )rU=P(E )p~(E )dd, (4.6)

where we have used Eq. (2.5) and AI=I+ —I with
I+ ——I(E+). We now match the density p(E ) in the in-
terval to Kramers's solution Eq. (2.7) for energies E &E
In this calculation, where E is only a demarcation be-
tween simulation and analytic treatment, rather than a
physically significant energy, we require continuity for p
and for dp/dE at E . The injection of particles at the en-

ergy E is an artifice for calculational purposes only and
not a real source of particles. The injection current simply
provides for the continuity of current. Without injection,
and with a reflecting barrier, we would otherwise have a
vanishing upward flux, just above the reflecting barrier.
From Eq. (2.7) with E as the upper integration limit, we
find

Using Eq. (4.7) to eliminate P in Eq. (4.6) and solving forj
yields a rate

Ib,I A E—/kT

N keg 2m
(4.8)

APPENDIX: PARTICLE INJECTION
FROM WELL MINIMUM

If injection occurs at the very bottom of the well where
the available phase space for transport disappears, then P
must diverge as E~O, as already pointed out after Eq.
(2.7). Thus there is an extra bump in the population near
the bottom of the well. The relationship between jr and p
at higher energies, as discussed in Sec. III, will be unaf-
fected. The proper value of N, however, used in Eq.
(3.11), expressing the total well population which is being
depleted by jr, will increase. We show here that for
Eb »kT, this is not a significant increase, despite the
divergence in the phase-space density. Equation (2.6)
yields

with p(E ) =1/(1+MlrlI r~) If .our energy interval is
not too close to the barrier peak p(E )=-1. Equation
(4.8) relates the dwell time ~~ to the escape rate. The time

E& /kT
for simulation of an escape event is proportional to e '
for the conventional method and proportional to
exp[(Eb E—)/kT] for the second method. Thus the
second method is considerably faster. The disadvantage of
this second method is that there are two additional param-
eters, E and ~, against which one has to test numerical
stability. The results of this second calculation are also
shown in Fig. 5 (data points shown as e). Again all data
shown has been obtained for the same seed. To estimate
the accuracy for our alternative method we have calculat-
ed data points for six different random-number generation
seeds at G=0.051 31. We obtained an average escape rate
r/r„=0. 68 with a variance of 0.06. With increasing G
the variance increases rapidly. It is seen that, for small
damping constants G, we obtain excellent agreement both
with the conventional method and with our new result,
Eq. (3.11).

0.004 ap jI
BE gIkTp

(A1)

0.003- For a harmonic oscillator, and therefore near the bottom
of our well, I =2m.E/coq. Thus Eq. (Al) becomes

0.002-) Bp Jl~w

2n rlkTp+e Ezkr '—(A2)

0.001 .

0.000 .

l.2 l.4 l.8 2.0
8

FIG. 6. Same potential as in Fig. 1 but for F=0.985VO. To
speed up the calculation, we have introduced a reflecting bottom
at the energy E, and we calculate the average dwell time of
particles in the small energy range (E+,E ). 5P= (jr'„/2mrlkTpo)ln(E—/kT} . (A3)

The rhs denominator of (A2) depends on E through the
term Ee " . This has a maximum at E=kT, and
above that it is dominated by the variation of the exponen-
tial, and below that by the linear factor resulting from the
phase-space density. As a crude approximation we replace
e by unity, for E & kT. For E & kT the diminishing
phase-space density is unimportant, and P= 1 to a very
good approximation, until E becomes large enough to ap-
proach the barrier peak. Integrating this modified form of
Eq. (A2}, and requiring p to be unity at E =kT (to deter-
mine the constant of integration) gives P= 1+5P, where
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5P is the source of the extra population, i.e., the source of
the change 5% in X, that we have to take into account in
the modified form of Eq. (3.11}.Therefore, the increase in
population is

5N= I 5Pp~dI . (A4)

Again, for our rough estimate, we take p&
——po in Eq.

(A4). Thus

0 JI /ro

No+5N jglro+jt/ri 1+(roly)

Figure 5 shows that ro varies linearly with g, for small g,
and ro reaches a maximum for larger g. Thus ro/g is
largest at small g, and this is where the reduction factor of
Eq. (A6) becomes most significant. From Eq. (2.11) we
find

re lri= (to A Is/2trk T}e (A7)

2~gkT o kT co~

where we have used I =2mE/mz, valid for a harmonic os-
cillator. Integration of Eq. (A5} gives 5N =jt/ri. Let the
original value of X, which did not allow for the low-

epergy divergence, be denoted by Xo, and the correspond-
ing escape rate in Eq. (3.11) by ro. The low-energy diver-
gence, therefore, diminishes the result given in Eq. (3.11)
by a factor

ro/rl= (Es /k T)e (A8)

For E~ y&kT we therefore find ro/g ~g 1, and the correc-
tion factor of Eq. (A6) remains close to unity.

The linearity between I and F. which holds for a harmonic
oscillator, does not apply at the barrier, but as an order-
of-magnitude estimate we can still take I~ ——2mEI, /co&.
Thus (A7) becomes
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