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Rotons and the density matrix of liquid He
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A density matrix for hquid He is constructed starting from the elementary-excitation picture.
Rotons are described by the Feynman-Cohen wave function. This generalizes Penrose's form for the
density matrix that is based on the Feynman form for the wave function. Backflow introduces expli-
cit temperature-dependent three- and four-body correlations in the density matrix in the coordinate
representation. We have computed the effect of the backflow terms, with the omission of the four-
body one, on the structure factor S(k, 1 ) on the basis of the random-phase approximation and of the
convolution approximation for the triplet structure factor. We find improved agreement with exper-
iment on the temperature dependence of S(k, T).

The ground-state properties of strongly interacting Bose
fluids, in particular liquid Hc, arc now fairly well under-
stood by working directly with the ground-state wave
function: The Jastrow variational method' and the
Green-function Monte Carlo method represent the basic
approaches in the field. At finite temperature many prop-
erties of the system can be obtained without working at
such a detailed level and only the structure of the excited
states are needed. Recall the famous I.andau theory of su-
perfluid helium. For other quantities, however, this is
not enough and this is the case, for instance, of the
momentum distribution and of the radial distribution
function needed to compute the structure factor S(q}.
The full density matrix in the coordinate representation is
required in such cases.

Penrose obtained long ago the density matrix for an
ideal gas of phonons propagating in a Bose fluid. The
wave function of such phonons was assumed to have the
Feynman form

where %o is the ground-state wave function and So(k} is
the related structure factor. p- is the k component of the

k
microscopic density,

p-„=+exp(ik rj) .
j

Penrose's density matrix is appropriate at low tempera-
ture where only long-wavelength phonons are thermally
excited, say T below 0.5 K in He. At higher temperature
short-wavelength excitations, the so-called rotons, become
important. In order to treat this case Penrose's density
matrix has been empirically generalized by Feenberg by
extending the sum over the states also to the roton region,
still assuming the Feynman form (1) for the excited-state
wave function. However, it is well known that the excita-
tion energy given by (1),

e(k) =A k~/2mSO(k),

those present in %o whereas it is known that rotons have
specific interparticle correlations, the so-called backAow
effect. The standard form that takes into account this
backflow is the Feynman-Cohen (FC) form,

1 ik ~ r.g e ' 1+i g g-(r I rI )—
(%Ms )'~

f~j

(2)

(3)g-„(r)=3k k r/r

where MI, is the normalization constant and Ak is the
constant that minimizes the expectation value of the ener-
gy.

In this paper we show that Penrose's density matrix can
be generalized by considering an ideal gas of excitations
described by a Feynman-Cohen wave function. This den-
sity matrix turns out to have explicit temperature-
dependent three- and four-body correlations, in addition to
the two-body ones present in Penrose's density matrix.

%c consider a Bose fluid of N particles at. rest' Thc
density matrix in the coordinate representation reads as
follows:

(8'/cr/R)

g exp[ —PE({ nI ))W(„(R}')%(„}(R),
(a~I

where R=—(r~, . . ., rN), Z=gexpf PE({n-„I}]is th—e

partition function, and n-=0, 1,. . ., is the occupation7'

number of the excitation of wave vector k. Within the
picture of independent elementary excitations of spectrum
ek the energy E( {n- J } of a state of multiple excitation is

k

given by

E({n-„{) =ED++ n-„eg,

is in strong disagreement with experiments in the roton re- where Eo is the ground-state energy, and the wave func-
gion. In fact II- neglects any correlation in addition to tion reads

k
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e(„)(R)=[m({n„ i)] '"

X g [F„(R)lvN] "%I,(R) .

~({n„j)=I!g (IF„ I'/N) "), .

p =+exp(ik ri) .
J

In the FC approximation (3) (p- is given byk, q

=(4mi/V)k qfq (g)

For our purpose A~ must be considered as a known func-
tion of k as determined by a separate variational computa-
tion of the excitation spectrum. IAq I

has a maximum
for k in the roton region and vanishes for I(,

.~0. *

The construction of the density matrix involves two
basic steps. In the first we compute the normalization
constant M{n-] and in the second we perform the sum-

k

mation over the states in (4). M( {n -„ I ) can be considered

as the average of

g( IF-„ I
/N) "

with respect to
I %0

I
so we write

M({n-i) is the normalization constant and F-(R)
k k

represents the function in large parentheses in (2). It is
convenient to rewrite F-„(R) in terms of the density

Fourier components:

F-(R)=p-+&Ak g (p- p- pk, q

Since F- is a quadratic form in p, M( {n-] ) can be
k q k

written as the average of a polynomial of p . Such aver'-

ages have an important factorization property. Let us
consider an average of the density variables,

I„(k„.. ., k„)= gp„
i=1

with g,. k;=0. The average is taken with respect to an
arbitrary normahzed weight function P(r ~, . . ., r~) that is
assumed to have the following cluster property: The m-
particle reduced-distribution function g' '(r~, . . ., r~) be-
comes g (r), . . ., r~ () when r~ ls faf away from the
remaining m —1 coordinates. Under' these conditions,
Wu has proved that for a translationaBy invariant system
the contribution to I„ofhigher order in N is the sum of
all the possible factorizations of the type

I

ff I (k.... . .,k.
a=1

with the largest value of /. Here g m =n and each I
must conserve the momentum

g k~ =0.

For instance,

t' r

1
&p-p- p- - - p -p- p -p- p - & =2&p- p- p- - - p - &&p- p - & '+O

k2 k3 kI k2 —k3 k4 —k4 k4 —k4 k) k2 k3- ki- k2 —k3 k4 —k4

Using this theorem for the average (9) it is simple algebra
to obtain, for instance,

&
I F-„ I

'
I F-„ I

'& =(I+&-„,-„)& IF-„ I

'&
& I F-„ I

'&

1+0—1

can be written in term of the generalized one,

M-(x) = — ln9'( k,x ),
dx

as M-=M-(0). Taking the derivative of M-(x) with
k k k

respect to x and using (11),we find

Similar factorizations can be deduced for higher-order
averages by the method used by Jackson and Feenberg' in
the case of the Feynman wave function. In that case in
fact, the factorization (11) holds true when I'-„ is substi-

tuted by p- so that we can now replace p- with F- in
k k k

Jackson-Feenberg computation. For instance, by intro-
ducing the generating function,

9 (k,x)= Jdri ' dl~
I

Po(ri, ~, r~)
i

Xexp( —x iF-„ i fN),

the normalization constant,

m„=& IF„ I'N&, ,

dx
~-(x)= —~'-(x) .

This integrates to

M-„(x)=M-„f(1+x'-„)

and from (14) we obtain

S(k,x)=(1+x~-„)

Expanding this relation and (12) in power series of x and
equating the coefficients of x", one finds that

&( IF-„ I
/N)"&0 ——n!Mk .

This result can be extended to the case of excitations of
different wave vectors'0 and we get



ROTONS AND THE DENSITY MATRIX OF LIQUID ~He

~([n„])=(g(~F„~'/N) "},

=gn !M-
k k

k

Comparison of this expression with that obtained with the
Feynman wave function indicates a formal identity be-
tween the two cases, with p-„/[NSO(k)]' being replaced

by F-/(NM-)'~ in the present case. So{k) is the
k k

ground-state structure factor and the normalization con-
stant M- of a single excitation reads

k

M-„=So(k)+kAkI9(k)+ k ~AkI )0(k),

where I9 and I1o are three- and four-particle integrals
entering the FC theory.

This formal identity allows us to perform the sum over
the states in (3) with the same technique used by Penrose
or by Peenberg, and the density matrix reads

(R
~

~R}=Q„-'e',(R')q, (R) g (R'~(k, —k) [R},
k

k y0

[x'+x"—(x +x")exp( —Pek )]exp( —
Pek )(R'

~
(k, —k)

~

R }=[1—exp( —2Pek)]exp
1 —exp( 2Pel—, )

where Q~ is the normalization constant and

x =F-„(R)F -„(R)/N~1

x'=F {R)F -{R')/XM

x"=F-„(R')F -„(R')/N. :K-„.

Taking into account the form [Eqs. (7) and (8)] for F- one can easily write (R'
~

o
~

R } in terms of the particle coordi-

nates and one finds two-, three-, and four-body terms. In particular the diagonal term reads

(R
~

o ~R }=Qg '
~

Po(R)
~

exp ——gur(
~
r; —rj ~

)—g uT'(r;, rj, ri) — g ur '(r;, r, r~, r, )
2 l,J i,j,l i,j,l, s

l+j I +j QE iXJAEAs

where the temperature-dependent correlation terms can be
written in the form

uT(r) =ho(r)+ —h'i(r)+ —h,"(r),2

r r

ur (r~, r2, r3)=h'&(r&2) 3 +2h2'(r~&) 3, , (21)
r12r13

12 13 21 24r r r .r
uT ( r1, r2, r3, r4) =h 2 (r12)

r12r13 r21r24

where h' and h" denote, respectively, the first and the
second spatial derivative of h~ and we have introduced the
auxiliary functions,

~k —21k
h (r)= —g exp(ik r) (a. =0,1,2)- ~k Xk+&

k

yk =exp( —
Pek )

that relates the correlations to the parameters Ak and MJ,
of the Feynman-Cohen wave function. ek is the energy
computed with the FC theory.

This completes the formal derivation of the density ma-
trix. From the development of the FC theory it results
that the main contribution of the backflow is due to terms
linear in Ak, so that it, is reasonable to neglect h2(r). In
this case only two- and three-body terms enter (R

~
o

~

R }.

The energy spectrum ek in the Boltzmann factor (2g)
should be the one computed with the FC theory, but one
could also use the empirical spectrum. The elementary ex-
cltatlon picture we have assumed does not take into ac-
count the interaction between the excitations that leads to
a temperature-dependent spectrum eE,{T). A mean-field
argument suggests thai the effect of such interactions can
be roughly taken into account by using in (24) this empiri-
cal spectrum Fk(T).

%'e conclude that the Penrose density matrix can be
generalized by taking into account backflow terms in the
wave function of a single excitation. If a form of the wave
function different from the FC one were to be used for the
excited states this would not alter the basic structure of o.

but only the expression [Eqs. (20)—(22)] of the correlation
terms. This new density matrix differs from the Penrose
form mainly for the correlations at intermediate distances
since Ak is large only for k in the roton region. For this
reason the computation of the temperature dependence of
the structure factor S(k, T) appears very interesting. On
the basis of the Penrose density matrix the anomalous T
dependence of S(k, T) has been interpreted" as an effect
of the thermal population of roton states. This should be
confirmed by a computation based on the new density ma-
trix that starts from a much better wave function for ro-
tons.

The main result of the computation of Gaglione et al.
is that this thermal effect makes the main peak of S(k, T)
higher and sharper as the temperature increases, at least as
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long as rotons remain well-defined elementary excitations
of the system. Good agreement with experiment has been
obtained" on the amplitude of the effect and on the shar-
pening of the peak. The only significant discrepancy lies
is a small shift in the position of the effect: Experiments
show that the position of the main maximum of S(k, T)
does not change with T whereas the computation gives a
small shift with T due to the fact that the difference
S(k, T) So—(k) is maximum at k=1.94 A ', the wave
vector of the roton minimum, and not at k=2.04 A
the position of the main peak of So(k). Since the density
matrix we have deduced is based on a better approxima-
tion of the roton states, one should verify if this discrepan-
cy is lifted by our density matrix without affecting, at the
same time, the points of agreement already present. This
computation is very difficult, however, because the prob-
lem of computing the structure factor in the presence of
three- and four-body correlations is still a practically un-
solved statistical-mechanical problem. The use of a simu-
lation method like Monte Carlo with three-body correla-
tions of the form (21) is possible' but it is still a major
numerical undertaking. Some approximate schemes have
been proposed but, unfortunately, there is no comparison
with simulation results that benchmarks the approxima-

I

tions. One approximation' is based on the replacement of
the three-body term by an effective two-body one but this
is specific for a low-density system. Another approach'
is based on the random-phase approximation (RPA) and
the convolution approximation for the triplet structure
factor. At the level of two-body correlations it is known"
that the RPA is very poor; it overestimates S(k, T)—So(k)
by a factor of 3 and it does not give any sharpening of the
peak. However, it gives correctly the position of the max-
imum of S{k,T)—So(k). On this basis we do not expect
that RPA will give reliable results for the effect of the
three-body term. However, this approximation might be
appropriate to answer the question if the backflow term
lifts the discrepancy between experiment and the Penrose
density matrix result concerning the position of the max-
imurn of S(k, T).

Application of the theory of Ref. 14 to the density ma-
trix (19) is straightforward if we neglect uz ' and if we as-
sume that t(|0 is of the Jastrow form,

g f(r; r, ) . —

The structure factor reads

S2(k, T)
S(k, T)=S2(k, T)exp F(k, T)

2

F(k, T)= Jd q[S2( ~
k+q ~, T)S2(q, T) 1]4m q q — v&. ,

(2m) /q+ki
2' ~k

1+ra ~a '

where y~ and M~ are given by (24) and {17). Sz(k, T) is
the structure factor due to only two-body correlations, i.e.,
(19) with uz

' ——ur ' ——0. For consistency we compute the
effect of the temperature-dependent two-body term ur(r)
in RPA so that

Sz(k, T)=So(k)/[1+pSO(k)ur(k)], {28}

where uz(k) is the Fourier transform of ur(r), Eq. (20),
that can be written in the form

—1 —1ur(k)= —p 'M —So(k)F(k),
k 1+y~

r(k) =~ 'Jd'q q-'q+"'
v, . (30)

I
q+11'

We have computed numerically the integrals (26) and
(30) using for So(k) the experimental data' at 1 K, the ro-
ton parabola'

eg ——6+4 (k —ko) /2p

with 6=8.67 K, ko ——1.936 A, and p=0. 15mB, for the
excitation spectrum and Padmore and Chester's results
for the backflow parameters Aq, I9(k), and I~o(k). We
find that the backflow does not modify greatly

S(k, T)—So(k); it enhances the value of the maximum and

displaces slightly its position, in better agreement with ex-
periment. For instance at T=1.8 K the maximum of
S(k, T}—So(k) is found at k=2.0 A ' against the value
k=1.94 A ' when A~ ——0. %'e have already mentioned
that RPA is completely inadequate to give the shape and
amplitude of S(k, T)—So(k) so that we do not report such
results.

%'e conclude that within RPA the presence of the back-
flow term more than halves the difference in the position
of the maximum of S(k, T)—So(k) between experiment
and theory without backflow. It is gratifying to find such
an improvement but, as we already noticed, RPA for
three-body correlations has not really been tested yet and
we must await a computation based on simulation
methods in order to assess if the new density matrix fully
explains the observed temperature dependence of S{k,T}
of superfluid He.
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