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A self-consistent calculation of the quasiparticle inverse lifetime in two-dimensional disordered metals is

presented in this paper. We confirm the T ln(T2/T) temperature dependence found by Abrahams, Ander-

son, Lee, and Ramakrishnan but find a different prefactor and temperature T2. In particular, the quasipar-
ticle lifetime is not the same as the weak localization cutoff recently calculated by I.ukuyama and Abra-
hams although it is quite simply related to it.

where v is the lifetime of a Bloch state determined by static
impurity scattering and T"' is the inelastic lifetime of the
particle-particle diffusion propagator which, according to an
argument due to Thouless, is the same as the quasiparticle
lifetime. Abrahams, Anderson, Lee, and Ramakrishnan'
(AALR) have recently calculated this quantity perturbative-
ly to first order in the screened Coulomb interaction and
found
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with ksT~ = (kF/)'e, where k~ is the Fermi wave vector, /

the impurity mean free path, and e = D~', where D is the
diffusion constant kF/j2m and x the inverse screening
length 2me .

Fukuyama and Abrahams did a direct perturbative calcu-
altion of ~[" in a similar approximation and found exactly
the same result:
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However, the calculation of AALR gives an imaginary
part of the self-energy which diverges on the energy shell.
This divergence is cut off by a procedure which leads to Eq.
(l) but does not appear to be sufficiently justified.

In this paper it is shown that, with a self-consistent renor-
malization of the electron propagator in the self-energy, this
divergence does not occur. One finds that the quasiparticle
lifetime is not strictly identical to ~" and is given by
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with T~=4(k~/)'e
The close relationship between v- " and ~'" will become

clear if we reformulate the calculation of AALR in momen-
turn space. They define an average self-energy for exact
impurity eigenstates of fixed energy by

Xg(e ) =— gX (e,)h(~ —E)1

a

The scaling theory of localization" predicts that, for weak
disorder in two dimensions, the usual Boltzmann metallic
conductivity, ne'r/m, should have a logarithmic correction
given by (units with t= 1)
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where o. denotes an exact impurity eigenstate with unper-
turbed energy cu (all electronic energies are measured with
respect to the chemical potential p, ) and X (e ) is the self-

n

energy of such a state, due to interactions. The brackets
denote average over impurity configurations, A is the
volume of the sample, np the one-spin density of states per
unit volume, and e a Fermion-Matsubara frequency

n

e = (2n'+ l) rrks T. Noting that

&(~.—E) = [ Go". (E) —G. (E) ]
1
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where Go~'R' (E) is the advanced (retarded) unperturbed
Green's function for the impurity eigenstates, it becomes
clear that one can obtain the real and imaginary parts of the
self-energy by suitable analytic continuations of the function

a(e ., e.) = —QX.(e .) Gp (e„)1

The imaginary part of the self-energy is

r, ( ) = — „g[r..( ) —yg( )]1 1

4' np

x [Go (E') —Go (E)],.„

1 Re[a- (co,E) —a. (~,E)]
277 np

with the usual definition of retarded and advanced func-
tions. The quasiparticle inverse lifetime (neglecting quasi-
particle renormalization factors) is

-~„=r, (E) = — Re[~'"(E,E) — '"(E,E) l (g)
ig 21K no

[in the calculation presented in this paper I E(ro) does not
diverge at co=E]

The advantage of this formulation is that a.(e, e„)is the

average of the trace over all states of the product of the ma-
trices X and Gp (it is assumed that the diagonal part of X in
the n basis dominates the off-diagonal terms') and thus is
independent of representation. In momentum space

' ~n) = g +(P P;~ )Go(P P'~n))

We consider for X(p, p';e ) an approximation given by the

diagram of Fig. 1, which is similar to the one used by
AALR except that the intermediate electron propagator is
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FIG. 1. Self-energy diagram explicitly to first order in the aver-

aged screened Coulomb interaction and with a renormalized elec-
tron propagator.

renormalized by the interactions. The wavy line represents
an averaged screened Coulomb interaction which in the
low-q, low-~i, diffusive regime has the form

( )
22re I (2)(l + Dq

V, (q, p)() =
(l (2+)D Kq

(10)

Dp( q, II, + p)() = 1
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Here, however, the upper Green's function is renormal-
ized with respect to interactions and D must be determined
self-consistently. Note that D is not the particle-hole dif-
fusion propagator of the interacting system. %'e will find
that the pole of D is cut off by an inverse inelastic lifetime
whereas the particle-hole diffusion progagator of the in-
teracting system still has a pole. The calculation of D is

very similar to the calculation of the particle-particle dif-
fusion propagator of Fukuyama and Abrahams. ' It obeys
the equation represented diagramatically in Fig. 3. The

I

where co~ is a Matsubara frequency cuI =2/7rkBT. %e shall
only consider terms which are large for small q for these
are seen to dominate I/rp'. The function (r(e, , e„)is then

given by the diagrams of Fig. 2. The diagram 2(a) gives the
clean limit contribution (kF/ ~). To first order in I/kFl
and in the approximation of AALR the block
D =D(q, II„+(p() in Fig. 2(b) ( f4~—= e, —e„)is just the

particle-hole diffusion propagator for the noninteracting sys-
tem with the usual pole for e„{e,+co&) & 0,

FIG. 2. Contributions to the function cJ(E r, 6„)whose analytic
n

'

continuations give the real and imaginary parts of the averaged
self-energy: (a) k&1 ~, pure case contribution; (b) leading 1/kFl
contribution. D is a renormalized particle-hole propagator.

block T contains the interactions, with the external Green's
functions and the integration over their momenta included
in its definition. As T only contains interaction lines in the
upper Green's function there is no frequency transferred
between the upper and lower Green's function, and Fig. 3 is
represented by an algebraic equation with the solution
(e,e„&0),

D(q, n, ) = 1

22r npr'(
I n, l + Dq'+ I/ro)

where

1 1 T(e „e„)
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In Eq. (13) we can take the limit q 0, 0), 0 since we
are interested in the leading term in q and Il„in Eq. (12).
%e shall eventually do the analytic continuations i ~

n

E +iO+, ie„E+iO+,and it will turn out that the
dominant term of I/rD is real. So we write

1 1
~

T( —iE+0, —iE —0 )
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Before actually calculating I/ro we will compute the dia-
gram of Fig. 2(b), the leading I/kFI correction to the
single-particle inverse lifetime. As usual, we keep only the
terms for which the diffusive singularity of Eq. (12) occurs;
we must have (e +(p()e„&0. Hence

( „„)—= ( )0. „(0)=—(2 )'J g V, (0, () ( D, I0+() (14a)

(r (e,, e„)=—( (e, & 0, e„&0) = —(22rnpr), — g V, (q, (p()D(q, 0„+p)t)d'q 1
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The frequency sums can be performed by the usual method of contour integration. Doing the analytic continuations
i e E+i0+, i e„E—i0+ in Eq. (14a) and is, E —i0+, i e„E—i0+ in Eq. (14b) one obtains

d2 +OO
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d2 + OO—i22rn() r' q— d» / (»+E) V, (q, x)D (q,x)'

(27r) 2
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d + OO
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&

dx J (»+E) V, (q, x)D (q,x)'
(2 )' (15b)
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FIG. 3. Equation for the propagator D in terms of Do, the
particle-hole diffusion propagator in absence of interactions and T,
the interaction vertex.

P~n

(a3

where N(x) and f(x) are the boson and Fermion thermal
occupation factors.

Using Eq. (12) in Eqs. (15a) and (15b) and the corre-
sponding expressions in Eq. (8) one gets

=je Jf 2 J dr N((x)+J'(x+E) )
TE
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(16) (t:3
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Apart from the appearance of /Ir Din the last factor this
equation is equivalent to Eq. (3.5) of AALR [in their paper
Eq. (3.5) has a wrong sign]. With the change of variable
U =—Dq2 the q integral can be done exactly and for
E && k~T, i.e. , on the Fermi level,

7qP

e2)r t d x R 1

7rt' o sinhpx ( I/rD) —ix —x'/e
(
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&& ln (17)

AT T2
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(19)

This integral is divergent when I/ro 0, and for r&T » I
it becomes

e K kaT In(roekaT) = In(rp6kjjT) . (18)
kgT

qp 2kFI

It will soon be proven that I/ro is given by the right-hand
side of Eq. (3) so that, to leading order in temperature,

FIG. 4. (a) —(d) Leading 1/I.F/corrections to the interaction ver-
tex T. Dashed lines represent the particle-hole diffusion propagator
Do.

At low temperatures this term dominates the clean limit
contribution, Fig. 2(a), which varies as T .

Let us turn now to the calculation of I/ro. As was said,
it is quite similar to the calculation of I/r"' of Fukuyama
and Abrahams. 3 The leading I/kiicontributions to I/ro are
given by the diagrams of Fig. 4. The dashed lines stand for
the ordinary particle-hole diffusion propagator Do( q, o)()
[Eq. (11)], but in diagram 4(d) we used the renormalized
propagator D(q, II„+(0()[Eq. (12)] because in our approx-
imation for the self-energy the intermediate electronic pro-
pagator is renormalized. Strictly speaking, the dashed lines
should be replaced by D as well. However, we shall see that
the contributions 4(a) —4(c), as opposed to 4(d), are not
singular when I/rz 0. Again keeping only the terms
where the diffusive poles occur one has, for e, )0, e„&0,

n
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The first term is the sum of 4(a) —4(c)—note that the leading terms cancel —and the second arises from 4(d). We per-
formed the frequency sums and made the appropriate analytic continuations,

7D
= inor' q J) dx[f(x —F)Do(qx) f(x+E)D(q, x)] V~(q,—x)

(2rr) '
+ OC)

+2noT
2

x[(iN( )x+/ (x+8)] Im V,"(q,x)D (q, 'x)
2jr)'

=2nor', dx . Im V,"(q,x)D (q, x)
(27r) 2 sinhPx
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where, in the last line we kept only the most singular term and took the limit E 0. With the use of Eqs. (10) and (12)
this can be transformed into

1
2 2 d'q

d x DK R 1
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e X
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e
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For the case e (0, e„)0 we would get the same result
n

( —ix changes into ix in the last factor).
The right-hand side of Eq. (22) is the same as in Eq. (16)

for E =0, which is not surprising since the dominant contri-
bution to 1/ro is entirely due to the diagram of Fig. 4(d)
which is identical to that of Fig. 2(b). It follows, then, that

kgT ln(r g'ka Te)
2kI-. /

(23)

and to leading order in T,

kgT Tg
ln

2kF( T
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ln the calculation of 1/r ""' Fukuyama and Abrahams'
have to sum an extra set of diagrams similar to those of Fig.
4 but with self-energy insertions in the lower Green's func-
tion. Their equation for 1/r" is identical to Eq. (22) but
with an extra factor of 2 in the right-hand side, which ac-
counts for the difTerence between 1/r "' in Eq. (2) and 1/r '
in Eq. (3).

In conclusion, the quasiparticle lifetime is not strictly
identical to the localization cutoff although the relationship
between the two for the case of Coulomb interactions is
very simple. However, Fukuyama and Abrahams point out
that for interactions which are singular at col=0, other dia-
grarns, with interaction lines going between upper and lower
Green's function, will contribute to 1/r"'. lt is clear from
this calculation that they will not contribute to the quasipar-
ticle lifetime. In such cases this simple relationship between
1/7'" and 1/r'~ may not apply.
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