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Theory of the "universal" degradation of T, in high-temperature superconductors
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The superconducting T, decreases similarly with disorder ( as measured by resistivity p) for all

systems with high T, . We propose that this is a localization effect. For strong disorder, electron
diffusion is slow and strongly scale dependent. This increases the effective Coulomb repulsion.
Model calculations with realistic parameters describe well the experimental T,-vs-p curves. Explana-
tions are suggested for the relatively large critical conductance found.

It is well known that high-transition-temperature super-
conductors are unusually sensitive to disorder. ' For exam-
ple, the transition temperature T, of Nb3Ge, an 215 struc-
ture material, drops from 22 to about 5 K as its resistivity

p increases from 40 to 130 pA cm. It has been increasing-
ly realized that resistivity is the single "universal" measure
of damage or disorder relevant for T, . Irrespective of how
disorder is caused, e.g. , by particle bombardment or alloy-
ing, there is one T, -vs-p curve. Studies on 215's such as
V3Si, Nb3Sn, and Nb3Ge as well as on the high-T, cluster
compounds LuRh4B4 and ErRh4B4 show similar depen-
dence of T, on p except for scale changes.

The conventional view of this striking effect is that the
high T, is due to a sharp peak in the density of states
X(e) near the Fermi energy eF. This is progressively
smeared with increasing disorder, thus reducing N (eF )

and thence T, . This kind of one-electron description is
unrealistic, since electron-phonon coupling effects are
strong in these systems, as is clear from giant thermal
resistivity, large phonon anharmonicity, and small Debye-
Waller factor, etc. The peak in the single-particle density
of states is reduced in height as well as being rounded due
to these electron-lattice coupling effects. Further, since
the Cooper pair attraction is over the Debye energy range,
i.e., over

~

e—eF
~

&ficoD, this averaging also reduces the
effect of a peak in the density of states. Another argu-
ment against a one-body explanation is the fact that most
of the T, decrease occurs for p&40 pQcm where the
mean free path is at a most few lattice spacings. It is not
clear that more disorder will further smear the one-
electron density of states. More directly, tunneling experi-
ments on Nb3A1 (Ref. 3) show that the density of states
remains nearly constant up to p —110 pQcm while T,
falls by a factor of 4. Also, not all high-T, materials have
a large electronic specific heat coefficient y.

We propose here that Anderson localization in extreme-
ly disordered systems provides a natural explanation for a
universal degradation of T, . Based on the scaling theory
results of Abrahams et al. , we show that the Coulomb
pseudopotential p*, i.e., the effective Coulomb repulsion

between Cooper pair electrons, increases with disorder.
The screened interaction p is of short range in space and is
nearly instantaneous on a time scale of order co~

' where
co& is the plasma frequency. For strong disorder, electron
density fluctuations diffuse very slowly; over a consider-
able length scale the diffusion constant D(I.) decreases
with increasing scale size I. as L ' (Ref. 4). Thus density
fluctuations interact more strongly, and with characteris-
tic retardation so that p(~) increases with decreasing fre-
quency ~. We calculate this as well as the consequent in-
crease in p* below. The retardation effect is important
since a mere increase in the instantaneous p changes

p ~ =p /[1+p 1n(eF /boa )]

only slightly. When the disorder is nearly critical (i.e., the
Fermi energy is close to the mobility edge), the macro-
scopic resistivity p is (much) larger than the microscopic
short-length scale resistivity, which is close to the critical
value p, . In this regime, we show that the change in p* is
essentially a function of p/p, . We argue that of the quan-
tities which determine T„p is most sensitive to strong
disorder so that in this regime (kFl-1, where kF is the
Fermi wave vector and l the mean free path), T, is a
"universal" decreasing function of p/p, . A frequency-
dependent enhancement of the Coulomb vertex for
kFI »1 where electron diffusion is fast and classical, i.e.,
scale independent, was first pointed out by Altshuler and
Aronov. The regime considered here is qualitatively dif-
ferent.

We briefly mention the weak-disorder (kFl &~1) regime.
It is known experimentally and theoretically that weak
disorder has little effect on T, . Gorkov has shown that
the pair density of states is unchanged to order (kFl)
As for the electron-phonon interaction A, , it is a general
consequence of perfect screening and of the fact that ran-
dom scatterers move with the lattice that the
electron —long-wavelength-phonon vertex is unchanged by
disorder. ' In contrast, the Coulomb vertex is character-
istically enhanced by disorder. The effect of this dif-
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K'(co) =p 1+ f dt
N(et ) ~ Q(t)

(2)

where the first term on the right is the free-particle contri-
bution. We now show that Q(t) (the probability of find-
ing that an electron has not diffused away in a time t) in-
creases in a characteristic way with resistivity, due to lo-
calization effects.

In the scaling theory of localization, the dependence of
conductance g on scale size L is described by a universal
function P(g) =ding/dlnL. For large g, P(g) can be cal-
culated perturbatively and the leading term is
I3(g) =1—g, /g for three dimensions, where g, =e /A'w~

for a free-electron gas. It has been shown that there are
no new terms to order 1/g . ' Numerical simulation'
also gives a slope of 1.2+0.3 for P(g) near its zero at
g, =e /2A~ . We therefore assume this form for fl(g) to
be reasonably accurate near g, also. (One has then
o.{L)=c +g, /L, where

cr=o(~)=p '=oo[1—3(kFI) ]

as estimated by perturbation theory, and it goes to zero for
critical disorder (kFI =v 3 perturbatively where I is the
microscopic mean free path) so that p~ oo there. Up to a
length scale L, =g, /o. =g,p, the conductivity and the dif-
fusion coefficient vary roughly as 1/L. If the disorder is
sufficiently strong so that L, ~&I, this region is sizable,

fusion and localization on T, has been considered pertur-
batively in this regime by Maekawa and Fukuyama" in
two dimensions. The effect in three dimensions has not
yet been calculated, but is expected to be of order (kFI)

We now calculate the effective Coulomb interaction in
the strong-disorder regime. The Coulomb interaction ker-
nel E'(q, ~) at wave vector q and frequency m is given by

K'{q,cu) = V„,(q, co)I' (q, ~),
where V„,{q,~) is the dynamically screened Coulomb po-
tential, and I'(q, cu) is the probability of a density fluctua-
tion n propagating with frequency co, i.e., it is the Fourier
transform of the density-density correlation function. Re-
lation (1) is most simply obtained in an exact eigenstate
representation, ' and the factor I'(q, m) describes the dif-
fusional correlation between electron density fluctuations
interacting through the Coulomb potential. V„,{r,t) is
short range in space and nearly instantaneous, i.e.,
V„,(q, )X( )=~ th t th 1 1 Co lo

g K'(cl, co)N (eF ) =K'(co)

I dt(n(0, t)n(0, 0))e' '.
n'X(~, )

Now quite generally, the density correlation function has a
free-particle form for t & ~ (collision time) and a diffusive
form for t ~ ~, so that

(n(r, t)n (0,0) ) =[n /Q(t)]exp( r /4Dt—)

for t ~~. Here the diffusion constant D is, in general, a
function of r and Q(t) is determined by normalization of
probability, i.e., by the condition

J (n(r, t)n(0, 0))dr=n

The kernel is therefore

and approximately, D (L)=Do(l/L) for I & L & L, and
D (L ) = Do ( I /L, ) for L & L„wher e Do vF——I /3 is the mi-
croscopic diffusion constant. This crude approximation
brings out the differences in the normalization constant in
the two regimes. One has Q(t) =(16~/3)DO t

~

I for the
nonclassical diffusion regime w & t & (L, /I) a=a~, and
Q(t)=(4vrDO

~

t
~
I/L, ) for longer times t &(L, /I) r,

where the diffusion is classical. In the nonclassical re-
gime, Q(t) ' decreases only linearly with time because of
the critical slowing down of electron diffusion compared
to the normal t decrease. This increases the Coulomb
repulsion, i.e., from Eq. (2) the kernel

K'(co) =le[1+(9~/4)(kFI) ln(cor)]

for o ' &~~& 1, joining smoothly to obvious frequency-
independent values for co~ ~ 1 and m~ & a

In order to calculate the change in T„ the linearized
gap equation must be solved including in addition to the
kernel E'(~) the effect of strong disorder on the phonon-
induced attraction A, , and on the pair propagator. The
electron-phonon vertex relevant for the former involves
low frequencies co &coD or long time scales. In this range
the diffusion is expected to be classical if coD &(o.&)
When diffusion is classical, the electron-phonon vertex is
not enhanced for phonon wave vectors q & l ' due to the
complete screening requirement mentioned earlier. Since
in the present case ql & 1 covers a considerable range in q
space, we assume that there is no increase in the electron-
phonon vertex. We also ignore model-dependent correc-
tions to the BCS attraction from the region ql ~ 1.

The pair propagator is affected by disorder, especially in
the presence of Coulomb and electron-phonon interac-
tions. For example, the single-particle density of states
has a dip' due to Coulomb interaction which becomes
more pronounced near critical disorder. ' There is also a
reduction due to the Hartree diagram involving electron-
phonon coupling. ' Some of these effects have been con-
sidered perturbatively" in two dimensions; their effect is
to reduce T, as a function of resistivity. There is no reli-
able way, however, of calculating the pair propagator or
the density of states near critical disorder. We assume
that they do not change much, on the basis of experimen-
tal results which indicate only small changes in the densi-
ty of states for large disorder.

The main effect of proximity to localization is thus an
increase in the Coulomb pseudopotential p*. This in-
crease can be calculated by solving the linearized gap
equation in the standard two square-well approximation,
i.e., b, (co) =b, , for

~

co
~

&coD and h(co) =62 for
7 )CO) AID.

P*=P'/[1+ IL'»(er/con) —(O' —P)»(V'oeFr)],

where

p'=p[1+(9m/4k+I )lna]

=(g,p/~)'=(p/p, )' .

To calculate T„we use McMillan's formula,
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which may be equivalent.
First, the conductivity cr(q, co) as (q, co)~0 is unrenor-

malized by many-body effects, to lowest order in scatter-
ing at least. It contains only the Fermi-surface area and
mean free path, which are geometrical and hence not
dynamic effects. However, the conductivity for co&coD
surely is affected by phonon emission and is considerably
reduced. Thus it is likely that in the early stages of scal-
ing corresponding to the region affecting p, g is consider-

where p, ~ as a function of the resistivity is given in Eq. (3)
and A, is the electron-phonon coupling. Because of the ap-
proximations made, p ~ has its classical value

po=pil 1+I ln(eFi~D)i
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FIG. 1. Resistivity vs transition temperature of Nb3Ge, V3Si,
and LuRh484. The experimental points are taken from Rowell
and Dynes, Ref. 1. The solid lines are theoretical fits with (a)

p, =7, 10, and 31 pA cm for Nb3Ge, V3Si, and LuRh484, respec-
tively, with ln(eF/cuD)=6, and (b) p, =13, 18, and 57 pQcm for
Nb3Ge, V3Si, and LuRh484, respectively, with ln( eF/coD ) =5.
For both (a) and (b) we have used A, =1.9, 1.2, and 1.0, and
mD ——302, 330, and 300 K for Nb3Ge, V3Si, and LuRh484,
respectively. Note that the theoretical curves are not valid at
small p.
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up to p=p, beyond which localization effects increase it.
Actually, p * increases continuously from po as p in-
creases.

We compare our results with experiment assuming that
the systems considered are in the strong-disorder regime
where the anomalous diffusion effects will be important.
We assumed that A, and p do not change with disorder.
The values of A. and ~D are taken from experiment where
possible. Otherwise, numbers consistent with T, and with
normal-state properties are used. We take kFl=1, p=0.3
for all the three systems, Nb3Ge, V3Si, and LuRh484, con-
sidered. Figure 1(a) shows the experimental T, vs p--
curves (Ref. 1, Rowell and Dynes) and the results of Eq.
(3). The constants used are shown. The only free parame-
ter is p„which is in the range 7—31 pA cm, and is adjust-
ed to give the best fit for large p. We do not expect a good
fit for small p-p, because of the approximations used.
We see that the data are well described over a factor-of-5
range in T, . Equally good fits are obtained with p, in the
range 13—57 pQcm, and with ln(eF/coD)=5 [Fig. 1(b)].
The values of p, obtained correspond to a critical conduc-
tance g, =(l/p, )-10 0, '. This is much higher than
the free-electron-gas estimate g, =(25000 Q) '. We dis-
cuss this question below in the general context of the
properties of the 215's and suggest three specific reasons
for this effect.

It has been evident for many years that high-T, super-
conductivity is almost the least unusual property of the
315 compounds and some other high-T, materials. Many
of them show one or more of several other, possibly relat-
ed, anomalies of electronic properties, which we list.

(i} Very large phonon (T-dependent) resistivity, such
that the electronic mean free path at room temperature
seems to be much shorter than ez/coD times the lattice
spacing, i.e., to violate Migdal's theorem.

(ii) Saturation of the T-dependent resistivity as T is
raised at a value near the p, proposed here.

(iii) Strong nonadditivity of phonon and impurity resis-
tivity, i.e., strong violation of Matthiessen s rule, so that
(again near the p, proposed} the p(T) curve is almost flat.
(ii) and (iii) have been proposed already as localization
phenomena by Jonson and Girvin' and Imry. '

(iv) Very large anharmonicity of lattice vibrations, as
well as indications of anomalous zero-point excursion of
atomic position.

{v) The well-known displacive lattice transitions.
(vi) Highly T-dependent Pauli susceptibility and pecu-

liar specific-heat y 's.
{i), (v), and (vi) are indications of anomalously strong

many-body effects due to electron-phonon coupling, ef-
fects whose characteristic energies are far greater than
T,—more similar to coD and e~.

It is therefore clear that conventional weak coupling
BCS theory, or even the usual strong coupling theory, is
inadequate to deal with these materials. We feel that,
therefore, there is a priori reason to believe that g, can also
be strongly modified. The direction of the effect can be
understood to be correct using two qualitative arguments,
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ably smaller, and in the neighborhood of coD it undergoes
an upward renormalization due to the removal of inelastic
phonon effects. Thus the o. we see is larger than that in-
volved in the scaling regime. In other words, estimates of
the critical conductance extracted from comparisons with
macroscopic values of the conductivity will be larger than
the estimate obtained from the scaling regime.

Second, we have investigated the effect of a large
phonon-induced attractive local interaction' on the scal-
ing function 13(g) due to Hartree-type diagrams of the sort
described by Altshuler et ah. for Coulomb interactions.
We find a new contribution to P(g) from phonons of the
for rIl Amph /g, i.e., a considerable strengthening of locali-
zation and hence an increase of g, . In general, it is found
that materials with a larger A,ph have a larger g, . Howev-
er, our perturbation calculation is, of course, not really
valid at mph 1.

The compounds considered here consist of nb orbitally
degenerate tight-binding states broadened into a band by
overlap. In the limit that these n, b bands are degenerate
near the Fermi energy, and the local disorder does not
connect states in different bands, the critical conductance
increases nb-fold (for the systems discussed nb ——3 or 5).
If the off-diagonal two-center integrals are small, the cor-
responding band-mixing length scales are large, so that in
both the perfect and disordered system, there is a regime
of length scale yvhere the bands are effectively degenerate,

the disorder is diagonal, and g, large by a factor nb. At
larger length scales the band mixing will be considerable,
reducing g, to its one-band value; p does not increase, and
T, also does not decrease. This corresponds to the ob-
served saturation in p and T, . All these arguments sug-
gest that g, is not a universal quantity, and although we
have not shown quantitatively, it is quite plausible and ex-
pected from the above considerations that several effects
may contribute, all towards the right direction, to a large
renormalization of the free-electron estimate of g, .

Finally, we note that Rosenbaum and Thomas' find
that the critical region in o for impurity bands seems to be
anomalously large experimentally. They also find that the
critical resistivity p, is about an order of magnitude less
than the Mott resistivity pM. We conclude that localiza-
tion does provide, within the framework of the theory of
Abrahams et al. a universal factor responsible for the de-
gradation of T„which must be present in all materials
(provided they are sufficiently disordered) over and above
any contributions resulting from their specific peculiari-
ties. ' We suggest several reasons for g, being renormal-
ized.
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