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fine-structure study
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The structural parameters of the graphitic carbon overlayer on a Ni(111) substrate has been
determined by using surface extended-energy-loss fine-structure spectroscopy. We find that gra-

phitic carbon is very similar to a graphite single-crystal plane, but slightly expanded (—2%),
0

with C-C~ and C-C2 distances of 1.45+0.03 and 2.50+0.03 A respectively. The graphite over-
0

layer floats at 2.80+0.08 A above the Ni(111) face. The C-Ni interaction is strong enough to
force the overlayer in registry with the substrate. However, we find that the Ni-Ni distance
remains identical, showing that the substrate is not affected by the growth of the graphitic over-
layer.

Nickel is an efficient methanation catalyst and it is
well known that during CO hydrogenation its surface
is covered by carbon deposits. ' When the reaction
is run too hot, "coking" occurs and the catalytic ac-
tivity is greatly reduced. Single-crystal studies have
shown that the Auger spectra of the carbon overlayer
formed in these conditions are very similar to those
recorded on graphite. These carbon species were
therefore termed "graphitic" carbon.

Quite recently, using photoemission spectroscopy,
we have shown' that the electronic structure of the
graphitic carbon overlayer is very similar to the elec-
tronic structure of a graphite single crystal. Ultra-
violet photoemission spectroscopy spectra, in fact,
resembled those recorded on graphite except for a
small, almost rigid, shift of the structures.

Despite the obvious importance from both a funda-
mental and an applicative point of view, detailed
structural studies of carbon overlayers of catalytic
relevance are still scarce.

We present here a complete geometrical structure
determination of the graphitic carbon overlayer on
Ni(111) by using surface extended-energy-loss fine-
structure (SEELFS) spectroscopy. ' This tech-
nique, which has been developed recently in our la-

boratory, '" promises to be extremely valuable for
structural studies of clean surfaces and overlayers. It
is a comparatively simple technique (it only needs the
basic apparatus used for Auger spectroscopy). The
experimental data manipulation is also simple [using
the same formalism and computational techniques of
extended x-ray absorption fine structure (EXAFS)
(Refs. 15 and 16) and surface EXAFS (SEXAFS)
(Refs. 17 and 18)].

The overall sensitivity of SEELFS compares very
favorably with SEXAFS (Refs. 19 and 20) and very
good signal-to-noise ratios are usually obtained even
with limited data collection periods ( —15 min. ).

The technique seems especially suitable for study-
ing overlayers of the light elements of technological
importance (C,O, N) which are very difficult to han-
dle with SEXAFS.

It also appears to be much more appealing than ex-
tended appearance-potential fine structure (EAPFS)
(Refs. 21 and 22) (which also uses an electron beam
excitation probe) because of the comparatively
straightforward simplicity of analysis.

In the following we show that SEELFS allows a
complete determination of the geometrical parame-
ters of the graphitic overlayer including the carbon-
nickel distance.

Indeed the SEELFS technique is so sensiti-ve that it
can give information also on the variations of
geometry of the metal substrate upon absorption of
an adsorbate. ' In the present case we will show that
the formation of the graphitic overlayer does not dis-
turb at all the Ni substrate.

The Ni(111) sample, oriented within 1' and cut to
a size of 6 x 6 x 1.S mm, was polished in order to
obtain a stress-free mirror-finished surface. The
cleaning procedure was performed in situ by heating
the Ni substrate at 900'C in 10 '-Torr oxygen pres-
sure and by argon ion sputtering cycles. Residual
contaminants (mainly sulfur) were kept below 1%
of a monolayer. The experimental vacuum chamber,
operating at 10 ' -Torr range, contained facilities for
low-energy electron diffraction (LEED) and Auger
spectroscopy. Energy-loss spectra in reflection mode
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