
PHYSICAL REVIEW B VOLUME 28, NUMBER 2 15 JULY 1983

Fractional quantization of Hall conductance
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It is sho~n how the correlation energy of a system of two-dimensional electrons in a strong magnetic

field may be enhanced if the electrons are in a regular array of the Landau orbitals. This gives an energy

gap if the proportion v of occupied orbitals is a simple fraction without giving rise to charge-density waves

which may pin the system. The gap is determined self-consistently. Such a state can give rise to the pla-

teaus in the Hall conductance observed at fractional multiples of e /h.

I. INTRODUCTION

Tsui and co-workers" have recently discovered that the
Hall conductance of a two-dimensional system can be quan-
tized at the fractional value e'/3h and the longitudinal resis-
tance has a minimum at the corresponding value of the
Landau-level filling factor v equal to —,. Anomalous

behavior consistent with this observation has also been re-
ported by Ebert et aI. Laughlin's arguments for integer
quantization of the Hall conductance seem to rule out any
fractional values for noninteracting electrons, so it is gen-
erally supposed that this new effect is caused by the conden-
sation of the system into a macroscopic collective ground
state as a result of electron-electron interactions.

There are both experimental and theoretical results that
restrict possible explanations. The obser ved linearity of
current-voltage relations over a very wide range suggests the
absence of pinning of the ground state, ' while a charge-
density wave (CDW) should be pinned and yields a thresh-
old voltage for electrical conduction. Hartree-Fock calcula-
tions of a CDW' ' yield a condensation energy of the order
of e'/el per particle, where I is the magnetic length
(f/e8 ) 'I', and this seems to be too high for the experimen-
tal results. Also, the Hartree-Fock energy is a smooth func-
tion of v, and so there is no commensurability energy
favoring simple rational values of v.

In this paper we present results for a different theory
based on a many-body calculation of the correlation energy
when the degeneracy of a Landau level is broken by
Coulomb interactions between the electrons. This is in a
sense a generalization of Laughlin's discussion of the prob-
lem of three electrons in a strong magnetic field to the
many-electron problem. If the electrons in a partially filled
Landau level can be arranged in a regular manner in the
space of Landau orbitals, then the correlation energy is
enhanced, because fewer transitions to intermediate states
are forbidden than would be if the electrons were randomly
arranged. This regular arrangement leads to an energy split-
ting between occupied and empty orbitals which is calculated
in Sec. II. In Sec. III it is shown how the theory leads to

l

sharp V-shaped minima of the thermodynamic potential at
rational values of v. This state, with a superlat tice in
Landau-orbital space, gives no density variation in config-
uration space, so it is free to slide on a slightly disordered
substrate, !t should therefore lead to a Hall conductance
ve'/h for stable values of v. We have not yet determined
which values of v lead to states which are stable enough to
give plateaus in the Hall conductance.

II. ENERGY GAP

We consider a standard two-dimensional electron gas
model, with interacting electrons moving in a uniform posi-
tive background to form an electrically neutral system. In
real inversion layer systems the positive background is pro-
vided by the depletion region on the gate and its density can
vary; this is important for the observation of quantized Hall
conductance, but we ignore the details. We also assume
that the magnetic field is so strong that the Coulomb in-
teraction does not significantly mix different Landau levels;
this condition e /el « tcu, is again unrealistic for real sys-
tems. For simplicity we assume that all electrons are in the
lowest spin polarized Landau level, so v ( 1, but there is no
difficulty in generalizing the discussion to higher levels for
v)1.

We take the system to have area L and to be periodic in
the y direction, so that the Landau wave functions may be
written in the form

g, ( r ) = m ' '(IL )

x exp[ —27risy/L ——,(x/I —2msl/L ) ]

where s is an integer between 0 and L'/2 l. 7rThe Coulomb
interaction between the electrons in the lowest Landau level
can be written in the form

He 2 + ~~~I ~3 S2 ~3)aS( as2as4 $35$ [+$2,$3+$4

where a, a, are creation and annihilation operators, and

e dq I 4' (s f $3) 27rIqlV(sl s3, s2 s3) =
L [ z 2( )2 2'tI2 p ——q'+, + ($2 $3)EL —- [q +47T ($]—s3) L ] 2, L2

In addition to the Coulomb energy there is a constant en-
ergy per electron, and an interaction with the positive back-
ground which cancels the divergent first-order direct
Coulomb interaction between the electrons. The system is

equivalent to a one-dimensional quantum lattice gas with
average occupancy u. The interaction enables pairs of parti-
cles to make transitions over a distance of the order of L/I
provided the center of mass is unchanged. Because of the
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particle-hole symmetry the behavior for v & 2
can be de-

1
duced from the behavior for v ( —,.

We consider first the case v= 1/p, where p is an integer.
We take as a broken-symmetry unperturbed ground state
the configuration in which the occupied electron states (hole
sites) are equally spaced with an interval p. This commens-
urate state has uniform density and is free to slide. We take
the hole sites to be multiples of p. We assume that the en-
ergies of the hole sites eq and of the particle sites e~ are dif-
ferent, and we use perturbation theory to make a self-
consistent calculation of them.

First-order perturbation theory gives a Hartree-Pock ener-

8+su-Z m. j'~ &, ~. i'll
Zt mr

~ g, fAt-)T1

gy
FIG. 1. Most divergent diagram.

EHF ———p '(7r/2) ' 'e'/El (4)

which is the same for particles and holes. In second order
there is, formally, an energy difference, but the second-
order term diverges for the Coulomb interaction, so we use
one of the standard techniques of many-body theory and
sum the infinite series of most divergent diagrams in each
order. A typical diagram of this sort is shown in Fig. 1.
Here the unperturbed fermion propagator has the form

1
where e, =~q and 5, = ——25 for s a multiple of p, and

1
8, = Ev and 8, = —25, otherwise. With substitution of Eqs. (3)
and (5) into the expression for the self-energy contribution
of this graph, and integration over the internal variables PJ.
and z, summation over the m, and n gives the contribution
of the diagram with E rings asiGp(s, cu) =i (cu —g + jQ ) (5)

s( p ~ ())
'

)' dpp+p[ ——(K+1)p I

(EI, —Ev+ ig) 2 —(E) —z)' P
)

g f d )
2m z —e, „+i5, „pip (6)

This contains a divergent integral, but the infinite sum over all values of K gives the finite result

l

Eqs. (8) and (11) would be replaced byThis gives the result

Eh = Eo+ EIIF «'/EI) (1 —lip )fI(7IP )

En = Eo+ EHF+ (8 lelp )f I (7lp )

—(8 /EI) (1 —2/p) f2(71p )

E
——EEo+ EH F (e'/E I ) (—1 —1/p )f I + (8'/8lp )f2

(8)
EI)=EO+EHF —(e /Elp)f)+(e /El)(1 1/p)f2

q=f1-f2 .

(12)

where the argument of f I and f2 is 71p(l —1/p). Since
f I

~ f2, this equation has only the solution 7I =0 and there
is no gap. As a further example of the importance of the
commensurate arrangement we also give in Table I the gap
obtained by occupying the levels s = 4n and 4n + 1 in a
half-filled band; this is denoted by v = —.Equation (11) is

replaced by

where

71 = (En )E))l/E8

defines the energy gap, and

2

( x +2pxe P ) + x+2e P

7I = fI(27I) ——,[f2(47r ) —f I—(47I) ]

so the gap is reduced by more than a factor of 2.

(10) (13)2
e ~dpf2(x)=

0' px+2e-&"

Equations (8) and (9) show that the energy gap is deter-
mined by

TABLE I. Energy gaps.
n =f I (np ) —(1 —2/p )f 2( np)'

Because of the symmetry between holes and particles, Eq.
(11) is also true for v=—1 —1/p filling. Numerical results
obtained from these equations, and from the corresponding
equations for v = 1 —1/p, are shown in Table 1.

It must be emphasized that the energy gap results from
the commensurate occupation of the states. If the states
were randomly occupied, or even if there were discommen-
surations with a mean spacing small compared with L/I,

2
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1
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4
1

5

0.225 0.4557 0.1927 0.3174 0.229 0.1688

Holes are s =4n and 4n + l.
b

&p 6p Energy unit is e Idl 2Tr n /~.

dz dp 2(e], —ep)
eP, 8 p ) n I z Es — n+ Igs n (EE —E + Ig) —(E) —z)2+ 2(E —EE —I5)(82/E(p )P Ie n /2
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III. THERMODYNAMIC POTENTIAL

For plateaus in the Hall conductance to be observed when
the magnetic field is varied in a system with a uniform sub-
strate potential, it is necessary that electrons should be able
to flow into the inversion layer from some external reser-
voirs. This has been discussed for GaAs-Ga~ „Al„As
heterjunctions by Baraff and Tsui. ' We therefore need to
find the minimum of a thermodynamic potential

actly e'/3h, and if other fractional values appear at even
lower temperatures and electric field strengths.

In our theory, holes and particles are symmetric. There-
fore, v =1 —1/p filling can be achieved from v= 1/p by re-
placing holes by particles and vice versa; Eq. (11) is also
true for v =1 —1/p; but the magnetic length I in Eq. (9) at
v=1 —1/p is [(p —1)/2mnpj' instead of 1/J2vrnp at
v = 1/p. Thus, with the same density of electrons, we have

n (~,a ) = min [ U, (&,W, ) —p, &, 1

e

g 1 —1/p g 1/p

tt~= (1/Jp —1)hatt~ (19)

where Uo is the ground-state energy and JM, is the chemical
potential of the electrons determined by these reservoirs.

At fractional filling v = 1/p and 1 —1/p, because

{&s)

the thermodynamic potential 0 has a sharp V-shaped
minimum, because

O(N, —5N, ) —D(N, )=5N, (p, —e„) &0

0 (N, + 5N, ) —Sl (N, ) = 5N, (e~ —p, ) ) 0

As the field is varied the number of electrons will adjust
to minimize the thermodynamic potential, which includes
the energy necessary to move an electron from the substrate
to the inversion layer. Thus, v will remain at fractional
values for a range of magnetic field and give rise to charac-
teristic plateaus of the quantized Hall conductance. ' In such
a state the whole electron system can slide freely in
response to an applied electric field, so the Hall conductance
has the fractional value ve /h.

IV. DISCUSSION

We have shown how the formation of a superlattice in the
space of Landau oribtals can stabilize sins pie fractional
values of the occupation v of a Landau level without caus-
ing charge-density waves, and so lead to plateaus in the Hall
conductance at fractional values ve'/h. The method which
we used to calculate the energy, although well established
for the high-density electron gas, is without a good justifica-
tion in this problem since there is no small parameter to
describe the breaking of the degeneracy of a Landau level.
Nevertheless, we believe that perturbation theory gives at
least a plausible description of the preference for occupation
of a simple rational fraction of the orbitals available in a
Landau level. It will of course be interesting to see if accu-
rate experiments confirm that the observed plateau is at ex-

Until a more detailed theory is developed we cannot make
strong statements about the temperature dependence of our
model, but the analogy with superconductivity theory might
suggest that the energy gap q should determine the critical
temperature at which the commensurate state becomes
favorable. At a field of 15 T, with a dielectric constant of
13.1, the energy gap given by Eq. (11) for v = —has a value

1

of about 35k~, and so the analogy with superconductivity
theory suggests a transition temperature of about 8 K,
which is a factor of about 5 above the temperature at which
the plateau can be observed. '

This theory, like any other theory with a broken sym-
metry, has modifications of the ground state that may
change the energy by little or nothing. There may, for ex-
ample, be Goldstone bosons. " One modification that 1s

possible is to use, instead of the representation (1), a set of
basis states such as

X, , = M 't g exp(2vris't/I ) @

and picking out 1/p of these states in a regular manner to
form an unperturbed ground state. In this representation
each Feynman diagram gives exactly the same contribution
to the particle or hole energy that is given in the representa-
tion (1), since each diagram contributes a function of 1/p,
which is representation independent, multiplied by an in-
tegral that involves only the value of q and the unperturbed
propagator for the full Landau level.

We have received a copy of Laughlin's unpublished
work. ' It is also possible in our theory to use symmetric
gauge and angular momentum representation which Laugh-
lin used. The advantage of our theory is a guarantee of the
particle-hole sym me try.
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