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Mechanism for the valence-band photoemission in Ni: Inclusion
of interatomic interactions
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In relation to the valence-band photoemission in Ni, the importance of interatomic interac-
tions is proposed, on the basis of examinations of the correlation effect in the T-matrix approxi-
mation. Calculated results show that, in the presence of the interatomic interaction, both the
bandwidth and the satellite binding energy become smaller than those in the Hubbard model.
This property in the interatomic interaction enables us to explain consistently the experimental
result.

Recent experiments of the valence-band photo-
emission in Ni have shown that a satellite peak exists
about 6 eV below the Fermi level' for which the
bandwidth is about 30'lo narrower than that in band
calculations. ' This fact indicates an importance of
correlation effects between electrons. Several
theoretical investigations3 ' have been devoted to the
correlation effect on electronic structure of Ni, within
the framework of the Hubbard model in the T-
matrix approximation. As has been pointed out by
Penn and Liebsch, however, these treatments can-
not explain consistently both the degree of band nar-
rowing and the satellite binding energy. Namely, the
value of the Coulomb integral Udetermined so as to
give the 6-eV satellite peak leads to only half the
band narrowing obtained with the photoemission
data. Thus a problem provided by the valence-band
photoemission in Ni is to find a mechanism by which
both the band narrowing and the satellite binding en-
ergy can be consistently explained. Liebsch has tried
to remove the above inconsistency by taking account
of electron-hole interactions, and suggested that this

mechanism leads possibly to an explanation for the
above consistency problem. On this point, a recent
work by Igarashi also shows a trend similar to the
above.

On the other hand, there should be the effect of
interatomic interactions which, in the Hubbard
model, is not taken into account, and we propose the
importance of this mechanism in photoemission. We
have recently found a significant contribution of in-
teratomic interactions, by the analysis of momen-
tum-dependent susceptibility of Ni, which leads to
comparable magnitudes of intra-atomic and intera-
tomic integrals. In this Brief Report, we take into
account only the following matrix elements of the
electron interaction v with respect to the real Wan-
nier function in /th band, wt( r —K), around an
atomic site R:

U = (/R;/', R~ v( /, R;/', R)

Ui/zi = (/ R;/', R+ pili/ R;/', R+ p)

(la)

(lb)

which are assumed to be independent of I and l', with

fo f%

(/ R;/', R'~u~/ R;/', R') = d r &d r 2wi( r ~
—R) w, ,( r 2

—R') v( r ~
—r 2) wt( r ~

—R) w, ,( r 2
—R')

Here U and U~ are the intra-atomic and interatomic
integrals, respectively, and p is a position vector
tending to one of z~ nearest neighbors. By noticing
the existence of the interatomic interaction, we can
understand the above consistency problem in photo-
emission as follows: First, the bandwidth becomes
narrower because the available space of holes moving

around in a crystal is more restricted by the intera-
tomic interaction. Namely, when two holes come to
neighboring sites the energy of the electronic system
is increased by U~/z~, and, to a state with two holes
at the same site, in which the energy is increased by
U, correspond z~ states with a hole at each of two
neighboring sites. Thus, to the band narrowing, the
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interatomic interaction makes a contribution compar-
able to the intra-atomic one, since U and U~ are com-
parable to each other. Second, as for the position of
the satellite peak, it is not changed so much by the in-
teratomic interaction, because the satellite arises from
a bound state with two holes at the same atomic site.
These two characters tend to improve the consistency
problem. The purpose of this report is to derive a
new character of the interatomic interaction for the
consistency problem, by using a simplified model
with the fivefold degenerate bands.

If we express the Bloch state
~ I, k) in Ith band

with momentum k in terms of the Wannier function,
the matrix element of the electron interaction is writ-
ten in the present model as

X(i, q+k;I', q —k~v~l, q+k';I', q —k')

= U+ U, a, (k —k'), (3)

written, within the low-density —limit approximation,
up to the first order with respect to n, as

M(k;cu) = I, k;I', 0 T(cu+e(0)) I, k;I', 0 n

1

—I, k;I, 0 T(o) +e(0)) I, 0;I, k

—= T,(k;o))n —T,„(k;o)) " (s)

T(ki, k)—= I, k;I', 0 T(cu+e(0)) I,——ki', I',—+ki

where T, (k;co) and T,„(k;co) correspond to the
Coulomb and exchange processes, respectively.

The two types of T matrices in Eq. (5) can both be
obtained from the solution for

a)(k) = ge'' ' ~
Z]

P

Here %is the number of atoms in a crystal. We con-
sider a low-density case with n holes per atom around
the R points in the simple cubic structure, taking one
of the R points as the origin of k and changing the
sign of energy. We now calculate in the T-matrix
approximation the self-energy part M(k;co) of a
hole. For a paramagnetic state, the expression can be

by the use of

k
T, (k;o)) = T ——,k

T,„(k;o))= T —,k

The equation for T( k ~, k ) is written as

(7a)

(7b)

T(ki, k) = V(ki, k) —U X T(k', k)B(k', k)—

in which

kV(k(, k) = U+ U)a) k)+—

' & T(k', k)B(k', k)
Z] ~/

P k

(8)

and B(k', k) is a two-particle Green s function that is written, in the present low-density —limit approximation, as

B(k', k) = —[~[(k/2) + k'] +a[(k/2) —k'] —e(0) —o) —i7I] (10)

For simplicity, we consider k lying in a direction
[l,l, l], and put k = k(1, 1, 1). In this case,
B( k ', k ) in Eq. (8) is invariant for the transforma-
tion k ' —k ' and for any interchange between k„',
k»', and It,', as seen from Eq. (10). Based on this
symmetry property, we divide V( k ~, k ) in Eq. (8)
into symmetric and antisymmetric parts, which are
given by

V (k(, k) = [ V(k(, k) + V( —k), k)]/2

Here

a~(k~) = (cosk~„a +cosk~»a +cosk~, a)/3

c~(k~) = (sink~„a +sink~»a +sink~, a)/3

(12a)

(12b)

with the lattice constant a. If we denote by T' +—~(k~)
the solution to Eq. (8) with V~ —~(k~, k) in place of
V(k~, k), we have

T(k, , k) = T' '(k, ) + T'-'(k, ),
ka= U+ Uicos ai(ki)
2

V~ ~(ki, k) = [ V(ki, k) —V( —ki, k)]/2

kaU]sin c& ( k & )
2

(1la)

(1 lb)

and then we can easily obtain the solution as follows.
As seen from the equation for T~+~(k~), this Tma-
trix has the same symmetry as B( k ~, k ) with respect
to k], leading to

T'+'(k() = UX(k;o)) + U)a((k)) Y(k;cu)
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Here
t

X( k; t0) = 1 + Ut 8~ ( k; c0) —8 t ( k; t0) cos (15a)

ka kaY( k;tp) = cos + U Bp( k;tp) cos —Bt( k;cp) ( k;c0) (15b)

D(k;tp) = [1 + UBp(k;tp) ] [1+Ut82(k;c0) ] —UUtB) (k;t0) (15c)

with where

8,(k;tp) = QB(k', k) [a (k')]' .
~ /
k

As for T' '(kt), it is seen that Tt l(k') changes its
sign for the transformation k' —k', and is invari-
ant for any interchange between k„', k~', and k,'. By
the use of this symmetry property, we have

with

Z(k;tp) =1/[1+ UtC2(k;co) ]

C2 ( k; t0) = x8 ( k ', k ) [ e t ( k ') ]

(18)

Tt '(kt) = U)ct(kt)sin Z(k;t0) (17)
By combining Eqs. (7), (13), (14), and (17), we ob-
tain

T, ( k;t0) = UX(k;cp) + Ut cos Y(k;tp) +sin2 Z(k;c0)ka —. + . 2ka
Tex k 's o) 2

'
2

(20)

From Eqs. (5) and (20), the spectral function

2 (k;c0) = —Im [2/[tp+ig —e(k) —M(k;tp) ] } (21)

is numerically calculated by taking e( k )
= —at(k) W/2, which is the s-band energy spec-
trum, with a width 8', in the tight-binding approxi-
mation. The quasiparticle energy tp=E(k) is ob-
tained from the maximum of A (k;t0) with respect to
cu for a given k. The degree of band narrowing,
b, W/ W, is defined by

6 W/ W= 1 —[E(k ) —E(0) ]/ W

with k = (m/a) (1, 1, 1). The satellite binding ener-
gy Eb is defined by the position of satellite peak with
the maximal density of states, which is measured
from the Fermi level. The results are shown in Fig.
1. We can see from the figure the following facts.
The contribution of interatomic interaction to the
band narrowing 6 W/ Wis of the same order as or
even larger than that in the Hubbard model. Next,
the satellite binding energy Eb becomes smaller than
that in the Hubbard model. This result comes from a
larger shift of the Fermi level than in the Hubbard
model, although the position of the satellite peak
remains almost unchanged from that in the Hubbard
model. As to the satellite intensity, we define the oc-
cupation number per atom by

nt, = (1/mN) dtp /At, (k;t0)
k

where At, (k;cp) represents the contribution of the

0.

IW/W

0 0.

FIG. 1. Effects of interatomic interaction on the band
narrowing 5 W/ Wand the satellite binding energy Eb. The
values of parameters are chosen as n =0.6 and U/ W =0.4.
The results for Ut/U =0 in the figure represent those in the
Hubbard model.
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satellite peak to A (k;ro). Then, in the case in which
U/ W=0.4, we have the result: nb =0.10, 0.13, 0.18
for Ut/U =0, 0.5, 1.0, respectively. In addition to
the above satellite, there exists another maximum of
A (k;co), peculiar to the interatomic interaction. It
comes from a bound state with two holes located at
neighboring sites. However, its binding energy mea-
sured from the band bottom is only about Ut/zt, and
so the intensity curve due to this bound state mixes
with the main curve, without being observed as a sa-
tellite. From the above facts, it is concluded that the
interatomic interaction improves the consistency
problem of the band narrowing and satellite binding
energy, which the T-matrix approximation calculation
in the Hubbard model ' cannot fulfill.

In this Brief Report, we took into account only the
nearest-neighbor interaction in interatomic interac-
tions and, in the present Wannier function scheme,
there should be a more or less contribution from the
more distant interactionss with U„(t ~2), although
the magnitude of U„/z„may be smaller in compar-

ison with Ut/zt because of screenings due to s and d
electrons. From the physical meaning for the role of
the nearest-neighbor interaction in the consistency
problem, the effect of the more distant interactions
on the present problem is the same as in the
nearest-neighbor interaction. Hence, if we make the
calculation for the nearest-neighbor interaction, by
taking account of the realistic situation of Ni, then
we can obtain information about the strengths of
intra-atomic and interatomic interactions by the use
of the observed values of Eb and 6 8'/ W. We con-
fined ourselves to the calculation up to the first order
with respect to hole density, and, up to this order,
there is no contribution from the electron-hole in-
teraction. In a calculation beyond the first order, we
must examine a contribution from the electron-hole
interaction, on the basis of the existence of the
interatomic interaction. However, from that
mechanism on roles of the interatomic interaction,
which has been discussed in this paper, the con-
clusion of its importance should remain unchanged.
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