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s-d-band conductivity in liquid La
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The electrical conductivity of liquid La is computed numerically from a linear combination of
atomic orbitals description of a cluster of 364 atoms. Contrary to an earlier suggestion that the
conduction should be mainly due to s states, we find that the d states are dominant. Although
the diffusivity of s states is about 2.5 times greater than that of d states, the density of d states is
so much greater than the density of s states that the conduction is mainly by d states.

The 6s and 5d valence bands of La are of nearly
the same width and occupy nearly the same energy
range. In order to calculate the electrical conductivity
of liquid La, it has been assumed by some that only
the s states are significant as current carriers, yielding
0.5 or fewer conduction electrons per atom,! whereas
others have assumed that s and d states are equally
effective as current carriers, yielding three conduction
electrons per atom.?

Recently a linear combination of atomic orbitals
(LCAO) calculation of the valence bands in liquid La
was performed? for the purpose of elucidating the
roles of the s and d states in electrical conduction.
Using the recursion method,* one can calculate the
projected density of states onto any chosen vector
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Here G (E) = (E — H)7!, and the eigenvalues and
eigenvectors of H are E, and ¥,. The projected den-
sity of states onto a Bloch-type vector of the form
PEES Y @
J
gives information about the propagating character of
the states. In (2) the function ¢~ is an atomic or-
bital of symmetry L = (/,m) centered on atom j at
the position ﬁj. When applied to a crystal, this
method yields a projected state density with peaks
corresponding to the energy bands E = E (k) of sym-
metry L. When applied to a liquid or amorphous
metal, it yields a projected state density that may or
may not have well-defined peaks.

For liquid La it was found (Ref. 3, Figs. 6 and 7)
that the projected density for s states (/=0) has a
well-defined peak at an energy that varies systemati-
cally with k. However, the projected density of d
states (/ =2) is very broad, has very little depen-
dence on k, and differs little from the bulk density of
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d states. The existence of a vestigial dispersion rela-
tion for s states and the absence of one for d states
suggested that the s states are propagating but the d
states are not. That conclusion was, of course, only
tentative, as was duly stressed in Ref. 3, and should
be followed by a full calculation of the conductivity
of liquid La, which we report in this paper.

We use the method of Stein and Krey,’ which is
essentially a generalization of the recursion method
to evaluate Kubo’s formula for the conductivity. The
result, in a notation differing slightly from theirs, is
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Here n (Ef)/Q is the total density of states per unit
energy per unit volume at the Fermi energy. The
vector
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is, apart from a trivial factor, equal to the velocity
operator acting on an eigenvector of H at energy

E = Er. The notation of square brackets with sub-
scripts ‘‘av’’ means an average over all states ¥, at
the Fermi energy. Thus if one can obtain (approxi-
mate) eigenvectors ¥; then the conductivity can be
calculated by using the recursion method to obtain
the projected density of states onto the vector x;. We
did not follow the method of Ref. 5 to obtain approx-
imate eigenvectors. Instead we chose a random vec-
tor and repeatedly applied a filtering operator,
(H—a)(b—H), with a and b chosen to lie equidis-
tant below and above Er and to enclose the spectrum
of H between them. This has the effect of damping
out all components of the initial vector with energies
E #= Er, and so yields an approximate eigenvector.

It seems intuitively plausible that a calculation on a
finite cluster will be representative of the bulk con-
ductivity provided the cluster is sufficiently large
compared with the mean free path. Indeed, we find
that the length of the cluster in the direction of con-
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duction is the most important dimension, and com-
puting time can be saved by using a long, thin clus-
ter. Our results reported here were obtained for a
cluster of 364 atoms whose length is eight times its
transverse dimensions. Further details of our calcu-
lations, including a study of the dependence of the
results on the size and shape of the cluster, and
results for other metals, will be published elsewhere.
We note, in passing, that our method automatically
includes all s-d scattering and vertex corrections.

The electrical conductivity is related to an energy-
dependent diffusivity® D (E),
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therefore, in evaluating (3) we are really calculating
the diffusivity at the Fermi energy. In Table I we list
the density of states per atom, the diffusivity (in
atomic units: # = 2m = Bohr radius=1), and the
conductivity. The first row is for our realistic model
of hybridized s-d bands. The calculated resistivity is
151 uQ cm, compared with the measured value’ of
135 uQ cm. As far as we know, this is the first time
that the method of Ref. 5 has been applied to a real-
istic model of a conductor and quantitatively com-
pared with experiment.

In order to estimate the relative importance of s
and d states in the conduction process, we also per-
formed the calculation for unhybridized s and d
bands. We find that the tentative suggestion, based
on the results of Ref. 3, that the s states should be
dominant, is not correct. Indeed, the diffusivity of s
states is greater than the diffusivity of d states, but
the much greater density of d states causes them to
dominate the conductivity. The effective mean free
path for unhybridized s states is so long that our clus-
ter is not quite long enough to yield a precise result
for that case. Therefore no significance should be at-
tached to the small difference between the conduc-
tivity for the hybridized bands and the sum of the
conductivities for the unhybridized bands.

There have been a few previous calculations of d-
band conductivity in liquid metals. Using the so-

TABLE 1. Density of states, diffusivity, and conductivity
with and without hybridization.

n(Eg) D (Ep) o
[(Ryatom)~1] (a.u.) [(eam)1]
s-d 13.3 2.83 6.64 x 10°
s 1.4 6.3 1.6 x10°
d 10.8 2.45 4.67 % 10°

called s-d model, in which plane-wave s states hybri-
dize with localized d states, ten Bosch and Ben-
nemann?® found that the 4 contribution to the conduc-
tivity could become as large as the s contribution, but
the d contribution was never dominant. However,
the significance of their results is cast into doubt be-
cause of several oversimplifications in their model.
They did not take into account the degeneracy of the
d state nor the angular dependence of the transfer
matrix element and, furthermore, their model is
biased in favor of s-state domination of the conduc-
tivity. Weir and Morgan® studied the diffusion of
electrons as a function of time in computer models of
liquids having s or d states (but not both together).
In spite of the omission of s states and hybridization,
they found that a pure d-state model could account
for a large fraction of the conductivity of liquid Ni.

What then is the correct number of conduction
electrons per atom to use in the Boltzmann equation?
If the states at the Fermi energy are dominated by a
characteristic wave vector ko, then the s, should be
chosen so that kr= (37%n,)*=ko. However, Fig. 7
of Ref. 3 shows that there is no such characteristic
wave vector for the d states, which dominate the con-
ductivity of liquid La. We suggest that this means
that electrical conduction takes place via a kind of
diffusion process for which the usual Boltzmann-
equation treatment is unjustifiable.
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