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Enhancement of the dielectric constant near a percolation threshold
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When one of the components of a mixture of two materials is a conductor, geometrical effects can
lead to a dielectric constant for the mixture which is much greater than that of either constituent.
Here we illustrate a simple example of this effect in a two-dimensional network consisting of ran-
domly placed conductors and capacitors. The dielectric enhancement is obtained as a function of
frequency and the concentration of conductors. The calculational technique used is the position-
space renormalization group in which smaller units are combined iteratively to form larger units.

I. INTRODUCTION

The low-frequency dielectric constant e' of brine-
saturated porous media can be large due to geometrical as
well as electrochemical effects. ' One possible explana-
tion of this phenomenon is to make an analogy with the
well-known dielectric enhancement which occurs in inho-
mogeneous mixtures of metals and insulators when the
conducting metallic phase is close to percolation thresh-
old. Notable progress has been made for such systems
in developing scaling theories to predict the behavior of
the conductivity o and the dielectric constant e' as func-
tions of the volume fraction P of the conducting material
and the frequency co. Results of interest here predict that
the low-frequency conductivity vanishes at the percolation
threshold tb, according to a power law of the form

where e' is the dielectric constant of the matrix. The
above results (1.1) and (1.2) hold for low frequencies
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where eo is the permittivity of the vacuum.
For co»
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In the scaling laws (1.1), (1.2), and (1.4), the exponents t
and s are the usual conductivity and superconductivity ex-
ponents. These exponents are universal for random sys-
tems, i.e., they do not depend on details of the geometry
such as grain shape or coordination number, but only on
the space dimension of the system. (Note, however, that
correlations in the geometry will, in general, change the
exponents. ) Best values at present are s =t —1.3 in two di-
mensions and s -0.7 and t -1.8 in three dimensions.

Although these general results are well known, it would

where o. is the conductivity of the conducting phase,
which is the water in the case of brine-saturated porous
media. The real part of the dielectric constant is predicted
to diverge as P approaches (from below or above) P,

(1.2)

seem of interest to illustrate this phenomenon within a
particular calculational scheme. The position-space
renormalization-group (PSRG) method has been found
useful in computing approximate values for critical ex-
ponents of the above kind for magnetic systems, resistor
networks, etc., ' but has not so far been used to calcu-
late electrical properties of continuous media. It is known
that PSRG treats statistical fluctuations more carefully
than the effective-medium theories that we have developed
previously, ' and thus should give reasonable results both
inside and outside the critical region P —P, co -0
described above. In preparation for an extension of PSRCx
to the continuum situation, we apply this method to the
simplest network model which has some relevance to
dielectric enhancement in porous media, i.e., a capacitor-
resistor network, with the capacitors representing the insu-
lating rock grains and the resistors the conducting water.
Such a network model may be used, in principle, to simu-
late the continuum by taking ever smaller sizes of ele-
ments. But what is more important is that the network
model shares many essential geometrical features with the
continuum, such as tortuosity and interruption of a long
conductive path by a thin nonconducting zone.

In Sec. II we describe the two-dimensional network
model and the position-space renormalization-group ap-
proximation. We consider the simplest possible rescaling,
i.e., the collapsing of a 2)&2 cell. The renormalized con-
ductivities are approximated by a bimodal distribution in
which all elements are classified as capacitive or conduc-
tive. Both the linearized and the full nonlinear recursion
relations are considered. The former give the exponents of
the scaling laws near the critical point. The latter provide
a useful computational scheme away from the critical
point where simple scaling laws are no longer valid. In
Sec. III we compare our results with another approximate
method —effective-medium theory. Finally in Sec. IV, we
summarize our results and discuss their possible applica-
tion to the case of fluid-saturated porous media.

II. THE POSITION-SPACE RENORMALIZATION-
GROUP APPROXIMATION

The model that we wish to consider is a regular, two-
dimensional, square network consisting of two kinds of
randomly placed conductances, g& and g2, as shown in
Fig. 1. The element g&

——o. is purely resistive and occurs
with probability p. The second element is purely capaci-
tive, g2 ——icoc, and occurs with probability q =1—p. The
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FICx. 1. Resistor-capacitor network. Each bond is occupied
randomly by a conductor g&

——o. with probability p, or a capaci-
tor g2 ——i cue with probability 1 —p.

problem is to compute the complex conductance of a very
large sample of this network.

Our strategy is to start with a position-space renormali-
zation group in which bigger cells are collapsed into
smaller cells as shown in the diagram of Fig. 2. This
model is known to produce a reasonably good solution of
the bond-percolation problem on the square lattice. Even
this relatively simple scheme, however, cannot be carried
out in detail for our problem, and we shall have to resort
to a crude truncation approximation. The difficulty is
that distributing gi and gq on the bonds of the diagram in
all possible arrangements with appropriate statistical
weights produces a complicated new distribution of com-
plex conductances after one renormalization transforma-
tion. In principle, this transformation should be iterated
indefinitely many times in order to perform a correct
renormalization-group calculation. It is possible that the
full functional formulation of this problem can be solved
exactly, but we do not propose to attempt such a treat-
ment here. Rather, we shall simply approximate the new
distribution by one in which all the weight is again con-
centrated at two new complex values of the conductances,
g~ and gq, with probabilities p' and q'=1 —p', respective-
ly, as shown in Fig. 2. For convenience, we shall continue
to refer to g~ as the conductor and g2 as the capacitor,
even when both conductances have become complex. In
our renormalization prescription, we treat the conductivity
in the vertical and horizontal directions independently;
since these directions are equivalent we may consider just
the vertical case. If we apply "bus bars" to the top and
bottom of the diagram (see Fig. 2), the effective conduc-

FIG. 2. Two examples of a renormalization transformation in
the bimodal approximation. Each cell is collapsed into conduc-
tive or capacitative elements in the vertical and horizontal direc-
tions.

tance is determined by just five circuit elements in a
Wheatstone-bridge arrangement, so there are 2 = 32 possi-
ble configurations. %e divide these configurations into
two groups: "conducting" diagrams in which the com-
ponent g ~

forms a conducting path, and "insulating"
where it does not. The renormalized occupation probabili-
ty p is the sum of the probabilities of the conducting dia-
grams, and the renormalized value g'& is the weighted ar-
ithmetic mean of the corresponding conductances in the
vertical direction. Similarly, the new value of g2 is the
weighted mean of the insulating diagrams. This special
grouping makes good sense when, for example,

I g2 I
«

I g, I, so that the conductances of the various
configurations are distributed almost bimodally with ei-
ther large values near g'& or small values near g2. For this
reason the validity of our results is limited to the frequen-
cy regime m & o./c; in principle the region co & o/c may be
probed by interchanging the roles of g& and g2, but we
shall not do this here.

Using the above presciption, we obtain a renormaliza-
tion transformation of the form

p'=fop» p'g'i =gifiip o'1, q'gz =g2f2ip, ~»
12.1)

where a=g2 /g&, and

f1P»1 = p'+ 5P'q+ 8P'q'+ 2P'q'

f 1p,a i =p'+p'q+4p'q +Sa 3 2 ]+a 3 2 ].+Sa+2a 3 2 1 +3a
+&p q +41 q +&p qS+3a 2 2+ Sa+a 3+a +2@ q 2

(2.2)

(2.3)

f.V»~ 1 =q'+pq'+4pq' 5+3a 2 3 2+27 q +47 q
2+ Sa+a

3+Sa &+a 1+Sa+2a +&p q
3 3+a 3 2 2

1+3a 1+a
I

+2@ q

(2-4)
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FIG. 4. Variation of c,fq with p for various co, showing the critical behavior and crossover. The quantity plotted is the normalized
capacitance c,ff /c. For m & 10 the results break down because ~c /o. & 1.

where s=( lna2) /(lnr)=1. 34, and t is the same as in
{2.10). (Actually in two dimensions there is a dual sym-
metry which implies that s and t are rigorously equal. ' '
Our truncation scheme violates this symmetry' and hence
gives unequal, though comparable, values for these ex-
ponents. Hopefully this discrepancy would be reduced by
considering larger cells. ) Equation (2.12) shows that the
range of oa values for which (2.10) is valid vanishes as p
approaches p, .

Within the range of validity described by (2.12), we can
use the approximate procedure summarized in {2.11) to
compute an effective capacitance c,ff. To do this, we im-
prove (2.10) by keeping the second term in (2.7),

n —1

g,ff-o. g [a(+b(a(m)]

(2.13)

This implies that

{2.14)

where the exponent s was defined in (2.12). This is result
(1.2) of the Introduction. Note that c,ff diverges as p ap-
proaches p, at zero frequency ~, but that, at any nonzero
frequency, the formula loses its validity as p~p, because
of the restriction (2.12).

The identical analysis can be repeated in the insulating
region p ~p, . Now the probability flows to p =0, so that
g ff must be computed from the iterated value of g2. The
effective capacitance diverges as Ap~0 in the same way
as forp )p, :

(2.15)

while for the conductivity we obtain the new result

CO C —( f +2$ ) (2.16)

no COC
geff-a I 0

(2.17)

Since the full nonlinear map would generate an imaginary
part of similar magnitude, we see that the effective capaci-
tance is given by

—&/(s + t)
1 cocc,ff =—Imge ff C

0

This is result (1.4) of the Introduction. Our approximate
computation gives s/(s+t) =0.53; the exact result in two
dimensions would yield —, for this exponent, since s and t
are equal.

Perhaps the greatest advantage of this scheme is that it

The region of validity of (2.15) and (2.16) is the same as
for (2.10) and (2.14) except that Ap in (2.12) becomes

~
hp

~

. It is interesting to note that using either (2.10) and
(2.14) or (2.15) and (2.16) that the cutoff frequency co, in
(2.12) may be interpreted as that frequency for which the
effective resistance-capacitance constant c,ff/cr, ff is of or-
der 1 /co.

It remains to be seen how our renormalization-group
procedure can be used to calculate the complex conduc-
tance in the frequency region above co„ that is, where
1&roc/o »

~
bp

~

'+'. Within the linearized approxima-
tion, the two conductances never become equal because g1
remains real while g2 remains imaginary, but we may esti-
mate the number of iterations for the full nonlinear map
to reach a = 1 by computing the number of iterations n'
for which the absolute value of a(n') becomes of order
unity. From (2.9) we see that this gives n *
——1n(coc/0. ) /1nA, so that

. t/(t+s)
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FIG. 5. Variation of c,ff with co for various p, similar to Fig. 4.

can be used to compute numerical approximations to the
complex conductance at values of p and ~ which are finite
distances away from the critical point, p=p, = —,', ~=0.
In principle, this means that the technique might be used
in a practical way for more realistically complicated
models. To perform such calculations, we start with a
given occupation probability p and initial physical values
of g&

——o. and g2 ——icoc, and directly iterate the nonlinear
recursion relations (2.1). All initial states with nonvanish-
ing co eventually flow to +=1 in the nonlinear theory, so
there is no difficult:y in identifying g,ff as the unique limit
of the iteration process, even when the bimodal distribu-
tion persists out to p =0 or p = 1.

Some actual results are shown in Figs. 4 and 5 for the
case o.= 1 A ' and c = 1 pF. The effective conductance
and capacitance are defined as o.,ff= Re(g, ff ) and
C ff = IIII(g ff)/CLl. SlnCC We ale P111118111$COIICCITled With
the dielectric enhancement, we will present results only for
c ff. In Fig. 4 this quantity is shown as a function of p for
various values of co, while in Fig. 5, it is shown as a func-
tion of co for various values of p. The enhancement of c,ff
near p=p, and co=0 appears clearly, as does the @-
dependent crossover between high- and low-frequency re-
gimes.

III. COMPARISON WITH OTHER MODELS

1 —a 2g,ff ——

isaac

1+2p +O(p ),1+a (3.3a)

so that at low frequency

c,ff ——c(1+Ap ), (3.3b)

CO C
o off =PP

o

with A, =2 and p =4. Similarly as p —+1

(3.3c)

+O(q2)
1+o,

(3.4a)

and (2.14)—(2.16) with the exponents taking the values
s = t = 1. In Fig. 6 the effective capacitance
c ff —Im(g, ff ) /co is plotted as a function of frequency co.

The results are qualitatively similar to the results for
PSRG in Fig. 5. The CPA does unusually well in this
problem; in general, one would expect PSRG to treat the
critical region better than CPA. This would become more
apparent in three dimensions, where CPA still gives
s =t =1 compared to the correct values s -0.7 and t —1.8.
In the dilute limits @~0 or 1, however, it is known that
CPA is exact. In the limit p —+0 we find from (3.1)

It is interesting to compare these results with those
which would be obtained in an effective-medium treat-
ment. In the coherent-potential approximation (CPA) the
complex conductance is given by'

and at low frequency

ceff =pgc
o.,ff——o.( 1 —A,q ),

{3.4b)

(3.4c)

g,ff=cr[x+(x +a)I~ ], (3.1)
again with A, =2 and p=4. In our PSRG formulation the
corresponding result as p ~0 is

with

x =(p ——, )(1—o. ) . (3.2)

1 —a
geff =l67c 1+SP 3+5a

+o(p'), (3.5)

In the present case of a two-dimensional square network,
the effective-medium formula gives the correct percolation
threshold p, = —,, and also reproduces the results

so that the low-frequency capacitance and conductivity
are as in (3.3) but with k= —, and p= —,'. Similarly as
@~1,PSRG gives
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FIG. 6. Effective-medium prediction for variation of c,ff with co for various p.

1 —a (2)
5+3a (3.6)

ln(400/3 )s=t=
8 ln(13/8)

(3.7)

In the dilute limits the results are also more symmetrical;
the low-frequency results corresponding to (3.3) and (3.4)
are obtained in both cases by replacing k and p by 41n( —,')
and», respectively. Here again the slopes deviate from
the exact results because of the bimodal approximation.

IV. DISCUSSION

In this paper we have investigated a purely geometrical
mechanism for low-frequency enhancement of the dielec-
tric constant in systems containing mixtures of conductors
and dielectrics. As a concrete example, we have con-

so that the low-frequency results are as in (3.4) but with
andp 25'

8 64

We see that PSRG correctly predicts the linear depen-
dence on the concentration in the dilute limits, but that
the slopes are not exact. This discrepancy is due to our
truncation procedure. As shown by Bernasconi, " if one
keeps the full distribution of conductances and corre-
sponding probabilities at each step, and identifies g,ff as
the weighted average, then for a 2&(2 cell the iterated re-
sult converges to the exact result (3.3) or (3.4) in the dilute
limits. While this method can be implemented as a com-
putational scheme outside the dilute regimes, it becomes
extremely cumbersome owing to the large number of con-
ductances generated after a few iterations.

Bernascon" also suggests a different truncation scheme
in which the transformed conductances g'& and g2 are
identified as the geometric means of the conducting and
nonconducting diagrams, rather than the arithmetic means
used in this paper. This truncation has the advantage that
it respects the dual symmetry of the square lattice. '

Thus in the critical region the exponents s and t are au-
tomatically equal, and in fact take the common value

sidered a two-dimensional capacitor-resistor network, in
which conductance and capacitance of the network play
the role of conductivity and dielectric constant of the
medium. With the use of the position-space
renormalization-group method, the capacitance was ob-
tained as a function of frequency and concentration of
conductors.

It should be noted that the dielectric constant discussed
in this work, as well as in the previous work cited in the
Introduction, is that at zero wave number k, i.e., the quan-
tity e(co) = limk oe(k, co). It has also been assumed
throughout that the frequency is sufficiently low for a
quasistatic treatment to be correct. In comparison with
real experiments it is important to check that this condi-
tion is being met.

The motivation for this work was the phenomenon of
dielectric enhancement in porous rocks containing salty,
i.e., conducting, water. Although a low-frequency dielec-
tric enhancement is indeed observed in such rocks, the re-
sults described in this paper strictly refer only to a random
system. Such a system always exhibits a non zero percola-
tion threshold P, below which the dc conductivity van-
ishes. In reality, however, the empirical law known as
Archie's Law

(4.1)

indicates that ft, =0, i.e., the water in the pore space
remains conducting down to arbitrarily low concentra-
tions. If we assume that the pore space is completely
filled with water, this means geometrically that the pore
space remains connected even in samples with very low
porosity. The extension of PSRG to such correlated
geometries is an interesting and important problem.

One of the key properties of the dielectric enhancement
for random systems is the universal behavior in the critical
region. Presumably, the analog for rocks of the limit
P~P, is the low porosity limit. Although a correspond-
ing universality would explain the wide applicability of
Archie's law with m -2, it remains to be proved that such
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universality exists with respect to variations such as grain
shape and packing geometry. Indeed in one class of
model, the iterated effective-medium approximation, '

there is only weak dielectric enhancement and the ex-
ponent m depends on grain shape. In the language of this
paper, s is zero and t is nonuniversal; for the case of a
two-dimensional square network, one finds t =2 and s =0.
Although the iterated effective-medium approximation is
carefully constructed to give a zero percolation threshold,
the exponents are controlled by the dilute rock limit, and

it is not clear that the results are valid in the low porosity
regime where the rock grains are touching. It would be
extremely useful for geophysical prospecting if there did
exist universal laws governing dielectric enhancement for
the case of fluid-saturated porous media.
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