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We have developed a modification of Anderson’s chemical pseudopotential (CP) which appears to

be more useful in tight-binding analyses of energy bands.

We have also shown that the Anderson

CP implies symmetry constraints on the orbitals which, if ignored, can lead to serious errors, espe-

cially in low-symmetry systems.

I. INTRODUCTION

Since its introduction by Anderson' in 1969, the chemi-
cal pseudog)otentlal (CP) has been used both in explicit cal-
culations®? and as a means of justifying* simpler (e.g.,
tight-binding®®) procedures for describing energy bands.
In the course of a tight-binding analysis of the valence
bands of a low-symmetry solid’ (SiO,, in several struc-
tures), we discovered apparent inconsistencies in applying
CP concepts. We have resolved these by recognizing the
existence of symmetry constraints which a given CP im-
poses upon the orbitals associated with that pseudopoten-
tial. We have also developed a modification of Anderson’s
pseudopotential! which appears to be more useful as a
starting point for tight-binding analyses in that the con-
straints are less severe.

II. THEORY

The CP method is an outgrowth of the study of the
Hartree-Fock equations in terms of localized orbitals. It
was shown by Adams® and by Gilbert® that the Hartree-
Fock equations may be expressed in the general form

(F+PDP) | 4;) =€, | 4;) . (1
Here, the Fock operator F may be written as

F=T+V, (2)

where T and V are one-electron kinetic and potential ener-
gy operators, respectively (the latter including Coulomb
and exchange terms), D is an arbitrary one-electron opera-
tor, and | 4;) is the ith orbital localized on (or at least as-
sociated with) site 4. The | 4;) are linear combinations of
occupied Hartree-Fock orbitals; that is, they are defined
over the Hartree-Fock manifold.” The density operator P
is given by

P=3 3 |B)Szc (Cil, (3)
B,j Ck
where S ! is the inverse overlap matrix defined by
s-is=1, )
and
SA‘_,B],E(A,» |B;) . (5)

P has projection properties, e.g.,
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P|A;)=|4;) . (6)

The arbitrariness of the operator D has lead various au-
thors to make different choices in an attempt to localize
wave functions or to otherwise simplify the one-electron
equations. A common choice, for example, is D = —U,,
where U, is the part of the potential energy V associated
with the sites other than A4; that is, it is an “environment”
potential. In terms of U,, F may be written as

F=T+VA+UA, (7)

where V, is the potential energy associated with site A4;
thus

U=V —-Vy= 3 Vi. 8)
B (#£4)

The Hartree-Fock equations then become, in their modi-
fied form,

[T+V,+(Uy—PU4P)] | 4;) =€y | 4;) , )

and indeed some of the environment potential U, is sub-
tracted off, presumably making |A4;) somewhat atomic-

111(Ie('unzw pointed out that D could be chosen as
D=-P,UP,, (10)
where
PAsglAkMAkl : (1
Because PP, =P, P =P,, this becomes (12)
[T+VA+(UA_PAUAPA)]|Ai)=€A,~|Ai) (13a)
or
T+Vi+ 3 (VE—P,ViPy) || A;) =€, | 4;) .
B4
(13b)
Anderson' showed that the basic equation [Eq. (1)]
could be written in non-Hermitian form, since
P|4;))=14;):
(F+PD)|A4;)=¢€4,|4;) . (14)

Anderson then formed a pseudopotential (still exact!®)
which arises by choosing
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D=— 3 PpVj. (15)  potential; we choose
B (#4)
D=— ) P:U, (19a)
This yields % crd
T+Vy+Usj— 3 PpVi||4i)=€4|4;), (16) =—[2Pc] S vi (19b)
B (£4) c B (£4)
or, since =— 3 PVi— 3 3 PcV%, (19¢)
U= 3 Vi, 17) B (£4) B (£4) C(+B)
B (4} which yields
T+V,+ (VE—PpV3) || Ai)=€4 | 4;) .
4 BéA) =PaVa)| o) =cq |4 T+Vit+ 3 |VE—ZPcVi|||4:)=e4|4;) .
B (#4) c
(18)
We have chosen to use still another form of the pseudo- (20)

Each of Egs. (9), (13), (18), and (20) is an exact Hartree-Fock equation in the sense that the | 4;) span the Hartree-
Fock manifold and can be used with F to obtain Hartree-Fock results. The reason for developing alternate equations is to
obtain approximate solutions; which version is best to use depends upon circumstances.

We concentrate here on the two CP versions, Egs. (18) and (20). Our version [Eq. (20)] contains a term on the left-
hand side of the equation which is absent in Anderson’s CP [Eq. (18)],

- 3 3 PcVil4) 21a)
B (£4) C (#£B)

=— 3 I Jlc)C|Vil4) 21b)
B (5£4) C (£B) k

=— 3 3 |14 | Va|4)+ 3 | CuI{Ch| Vi |A;) (21c)
B (#4) k C (#A4,B)

~— 3 3|44 Vi A4, (22)
B (£4) k :

I
neglecting the last part which contains only three-centered  then the eigenvalues E, and the coefficients C 4;,a are solu-

integrals. ) . tions of a secular equation
Since our version subtracts more from the environment
potential than Anderson’s,' we expect the self-consistent > (D4, —Ead485j)Cs;,a=0, (24)
A

solutions of Eq. (20) to be more localized and thus more
atomiclike than the corresponding solutions of Eq. (18).  where the diagonal elements of the matrix D are given by
This point has yet to be investigated in detail. Both ver-

sions, it should be noted again, are non-Hermitian.!! The Dy, 4,=€4, , (25)
?}ﬁ:'g;rxiﬁ:: biir:xefitisgtfxsigi;y%illlcsvz‘: 2110 12n ot treat in and the off-diagonal elements are given by

Dy 4,=(B;| V5 |4;), B4 (26)

III. APPLICATIONS DAj,Ai =0, ji . 27)

CP’s have been applied to a variety of problems. For
example, Bullett>® has shown how Anderson’s' version
[Eq. (18)] may be applied to an extended system (molecule
g;nj:::;); OI: t;hee Ie;ge)nfunctlons are written as linear com- (a m-electron system such as benzene), in which case Eq.

e (27) would be irrelevant, and j would be equal to i/ in Eq.

[Ya) = |A,.)CAP,1 , (23)  (26).
A The same procedure applied to our CP [Eq. (20)] yields

This is, in fact, a slight extension of the original Anderson
work as applied by Bullett>> for the many-orbital-per-
atom case. Anderson considered only one orbital per atom

DAI’AizeAi+<Ai l UA |Ai>=eA,~+<Ai 2 Vé Al> ’ (28)
C (#£4)
Dg 4,=<B;| U, |Ai>=<Bj > Ve Ai>=<Bj | V4 |4;), B#A (29)
C (54)

(in a two-center approximation) and
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3 ve

DAj,A,.=<Aj | Uy |Ai>:<Aj
C (%)

Ai>: .]751 .

(30)

The apparent differences in the matrix elements be-
tween our approach and Anderson’s' would seem to belie
our assertion that both approaches, along with others, are
in principle exact (in the Hartree-Fock sense) and there-
fore equivalent. To solve this problem one must note that,
in general, the orbitals | 4;) and the energy parameters €4,
will not be the same in different pseudopotential schemes.
Rather, they are solutions of the particular pseudopoten-

|

(A; | T+Vy|A)+ 3 (4, |(VE—PyVE) | 4;) =€,48;; .

B (#£4)
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tial equations in which they appear.

While this point is rather obvious,® these constraints on
the |4;) and €4, are easily overlooked in semiquantitative
applications of the CP method, and they can indeed have
important consequences. In such applications the CP con-
cept might be used to justify the use of atomic orbitals to
evaluate the matrix elements of the overlap-free secular
equation (24) without actually solving the CP equation.
Then, our CP is better suited for this purpose, in that the
resulting constraints are less severe, as shown in the fol-
lowing discussion.

If we assume the | 4;)’s to be atomic orbitals, and mul-
tiply Eq. (18) by {(4; |, we have for the Anderson case

(31

Since (4; | T+V, | A;) :eﬁis,.j, where egi is the orbital energy for the free atom, this becomes

e+ X {4 |V |4y — D45 | BB | Vi | 4:) | =€ 8y, (32a)
B (5#4) k
or
e+ 3 (4| VE|4;)— 3 (A4 | BB | Vi | 4;) =¢€y4 (32b)
B (£4) Bk
(B#A)
and
S (4;| Vi |4y~ 3 (A;|ByY(By | V4| A;)=0, j#i (Anderson) . (320)
B (+4) Bk
(B£A)
The same procedure applied to Eq. (20) yields for our case
€8+ X (451 Vi) — 3 (4; | COCC | Vi | 4;) | =€a8y (33)
B (+4) Ck
or
b+ X |— X (4| CC | VE4:) |=endy (34)
B (#£4) Ck
(C5A4)
or, in the two-center approximation,
€185+ X | X4 [B)(Bi | Vi |4;) |=€48; (ours). (35a)
B (+4) k
I
That is, two different CP’s. These equations define the eigenvalues
0 4 _ of the CP equations. If we assume the atomic orbitals to
€i — 5‘ (4; | Be)(Bi | Vi | 4i) =€y, (350 e fairly localized, so that the wave-function overlaps are
(Botd) small, we have for Eq. (35b) 6gize,4i, neglecting the
and second-order terms. In the case of Eq. (32b), in addition
to the second-order terms, eﬁ’,i and €4, differ by a crystal-
S (4;| B )(By| V3 |A4;)=0, j#i (ours). field term
Bk
(Bd) S (4| Vil4),
B (+4)
(35¢)

Thus when atomic orbitals are used for the |4;)’s, the
resulting constraints are (35b) and (35¢) with our CP,
while with Anderson’s CP Egs. (32b) and (32c) should be
satisfied. We consider first Eqs. (35b) and (32b) for the

which may not be small even when wave-function overlaps
are small. Secondly, the constraint equation (35¢c) in our
case is not, in general, as severe as Eq. (32¢) is for
Anderson’s case, due to the presence of the off-diagonal
crystal-field term
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> (4] Vi A;), j#i
B (+#4)
in Eq. (32c). These crystal-field terms will generally be
large compared to the wave-function-overlap terms.

Thus we see that the atomic orbitals |4; ), as solutions,
are more compatible with our CP than with Anderson’s,
and there will be cases for which such |4;) will not be
appropriate to use with the Anderson-Bullett scheme [Egs.
(25)—(27)]. In cases of high symmetry, both CP’s will
yield similar results with atomic | 4;)’s. In such cases the
crystal-field terms in Eq. (32¢) will vanish, and Egs. (32¢)
and (35c) will become identical; the crystal-field terms in
Eq. (32b) for an atomically degenerate state will be in-
dependent of i, so that the eigenvalues €4, in Egs. (32b)
and (35b) will differ only by a constant. Then both
schemes [Eqgs. (25)—(27) and Egs. (28)—(30)] will give the
same result, except for a rigid shift in the energy scale.

A simple example of a low-symmetry system in which
the differences in the CP’s are important is the following:
We consider a hypothetical linear water molecule in which
only oxygen p orbitals |4;) are used. Since there are no
orbitals for which Bs£4, the Anderson! constraints [Egs.
(32b) and (32¢)] become

egi"' 2 <A‘ | Vg IAi>=€A,~ (36a)
B (#A4)
and
S (4;|V5|A4;)=0, j*i. (36b)

B (%4)

Equation (36b) is satisfied only if the orbitals |A4;) have
the proper symmetry; this will occur in the present case if
one p orbital is quantized along the H—O—H direction,
but for arbitrary orientation of the quantization coordi-
nates, this equation will not be satisfied. In Eq. (36a), €4,

and €}, will differ by

S (4| V5| 4;)
B (#A4)

(which is never zero) and since, in general, it depends on i,
this difference is more than just a rigid shift of the energy
for various i’s. It will be a rigid shift if the H—O—H
direction makes equal angles with the x and y, and z axes
of the quantization coordinate, but in that case Eq. (36b) is
not satisfied. Our CP applied to this example, on the oth-
er hand, gives eﬂi =€4, and the constraint equation (35¢) is
automatically satisfied for arbitrary quantization coordi-
nate orientations.

If the water molecule is not linear, the two OH bonds at
an arbitrary angle, there is not even a preferred symmetry
axis of quantization for oxygen p orbitals to make the di-
agonal crystal-field term independent of i, or to satisfy Eq.
(36b). In such a case the orbitals |A4;) will have to be
considerably different from atomiclike to satisfy the above
constraints.

Thus in the semiquantitative application of the CP ap-
proach, it is essential that the constraint equations be sa-
tisfied, or that the violations are not severe. (Of course, if
the CP equations are solved self-consistently in a detailed
calculation, there will be no constraint conditions, and the
different CP’s will yield equivalent results.)
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The above example is realistic for many solid-state ap-
plications. In most forms of SiO, the oxygen is twofold
coordinated, and in all cases its environment is of low
symmetry. Many fluorides have similar symmetries, as do
many other oxides. One anticipates that in such systems
the constraint equations for Anderson’s pseudopotential
will remain unsatisfied for any particular quantization of
the anion p orbitals. For idealized B-cristobalite'® for ex-
ample, Eq. (36b) is satisfied only if the orbitals are quan-
tized parallel and perpendicular to the O-Si axis. With
our CP, on the other hand, arbitrary quantization is al-
lowed. In the case of rutile-type SiO, (stishovite), where
oxygen is threefold coordinated, Eq. (36b) cannot be satis-
fied for oxygen p orbitals, whereas with our CP, such a
severe constraint does not appear for atomic orbitals.

These points are relevant to tight-binding and Huickel-
type procedures. In both cases it is convenient to take the
overlap matrix as unity, and the CP theory may be used*
to justify this, since the overlap matrix does not appear in
the CP matrix elements.

The potential pitfall is now apparent. In general, in
these procedures one uses the atomic orbitals and quan-
tizes them in the most convenient way, i.e., px,py,p, with
respect to fixed axes. But, if this is done, then one must
include crystal-field matrix elements, as in Egs. (28) and
(30). If Anderson’s CP is used,! in which these terms are
omitted, the results may be in serious error. This has oc-
curred in several cases, including the following.

Hiickel theory, in general, does not include off-diagonal
crystal-field terms

S (4, | V5|4, i)
B (+4)

Hiickel calculations'* of the SiO, valence bands give re-
sults in very poor agreement with other calculations which
are thought to be approximately correct.!®

Tight-binding calculations of rutile-type ionic crystals
have recently appeared.'® In these calculations, only anion
orbitals have been included and crystal-field terms have
been neglected. These calculations appear to give unreli-
able results as compared with both experiment and
theory.!” The calculations’” which stimulated the present
investigation involve the valence bands of rutile com-
pounds (in particular, the stishovite form of SiO,) where
we used only anion wave functions but included crystal-
field terms. These results agree well with those of Ref. 17.

IV. CONCLUSIONS

The symmetry constraints imposed on the orbitals by
the CP equations must be recognized when the CP method
is used to justify a tight-binding fit of valence bands in
nonmetals. These constraints require, in general, that both
crystal-field and overlap terms be included. When this is
done, good energy bands can be obtained in low-symmetry
systems even though only anion orbitals are used.
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