
PHYSICAL REVIE%' 8 VOLUME 28, NUMBER 2 15 JULY 1983

Phase diagram of the partly filled honeycomb lattice in AgCrs2-like solid ionic conductors
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The phase diagram of the two-dimensional system of conduction ions in layered solid electrolyte
materials based on AgCrS2 was determined experimentally and found to be strongly asymmetric
with respect to the half-filled lattice. Lattice-gas theory with pairwise interactions predicts a sym-
metric phase diagram. As an example, the phase diagram for the honeycomb lattice is calculated us-

ing the cluster-variation method with a hexagon as a basic cluster and first- and second-neighbor in-

teractions. The pronounced deviation from simple lattice-gas theory is attributed to the liquidlike
character of the conduction-ion subsystem. In a lattice-gas type of calculation, the relaxation effects
typical for solid electrolytes may be taken care of by introducing many-body interactions. This is il-

lustrated by a cluster-variation calculation with a star as a basic cluster. The shape of the experi-
mental phase diagram can be formally reproduced if large clusters of vacant sites are excluded, sug-

gesting that the relaxation effects of the framework of nonconducting ions are dominating the
many-body interactions.

I. INTRODUCTION

In solid electrolytes the conduction-ion subsystem is in a
highly disordered state, having lattice-gas as well as
liquidlike aspects. ' On account of the framework of im-
mobile ions, a periodic background potential and therefore
a well-defined sublattice exists. In lattice-gas theory, the
ions are distributed over the lattice points, defined as the
minima of the background potential, the local order of the
ions being determined by their interactions. However, the
assumption of a discrete lattice implies that the potential
wells are deep, whereas, in fact, in solid electrolytes the
potential barriers between neighboring sites are low to as-
sure a high mobility of the conduction ions. A conse-
quence of the flatness of the potential is that ionic relaxa-
tions play a very important role and give the conduction-
ion subsystem a liquidlike character.

In Ref. 1 a generalized lattice-gas description of a solid
electrolyte is proposed in which these relaxation effects are
included. This theory has been used to calculate the static
and dynamical properties of a partly occupied equidistant
one-dimensional lattice, as it is found in one-dimensional
conductors of the Hollandite type. For a given form of
the periodic background and interaction potential, the dis-
placed positions of the ions in all possible configurations
on a linear equidistant lattice of finite length were calcu-
lated as well as all individual configurational energies. As
compared to a discrete lattice-gas model, the most impor-
tant consequences of the inclusion of displacement disor-
der were the following: an appreciable reduction of the
energy of the most probable configurations, a reduction of
the effective potential barrier for configurations important
for the conduction process, and a reduction of the number
of stable configurations (configuration quenching). The
latter phenomenon is observed if the displacements in the
particular configurations exceed the distance between a
lattice site and the potential barrier.

A similar rigorous calculation for a two- or three-
dimensional lattice would be far too complex, and more

approximate procedures have to be found to take care of
relaxation effects. In this paper we want to show that a
straightforward way to do this is offered by the cluster-
variation (CV) method of Kikuchi. This method is basi-
cally a lattice-gas approach in which relaxation effects can
be taken into account by introducing many-body interac-
tions and configuration quenching by neglecting extreme
cluster configurations. %'e will apply these ideas to two-
dimensional solid electrolyte compounds based on AgCrS2.
In particular, we will try to simulate the main features of
the phase diagram of the conduction-ion subsystem.

AgCrS2 has a layer structure in which the silver ions oc-
cupy half of the sites on a puckered honeycomb lattice sit-
uated between CrS2 "sandwiches" (Fig. 1). The material
shows an order-disorder transition at 673 K (Refs. 4 and
5) from an ordered phase in which only one of the two tri-
angular sublattices of the honeycomb lattice is occupied,
to a disordered phase in which all sites are occupied with
equal probability. By means of chemical substitutions into
the CrS2 framework, the occupancy of the silver sublat-
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FIG. 1. {a) Structure of AgCrS2 is rhombohedral and consists
of alternating silver, sulfur, chromium, and sulfur layers. (b)
Tetrahedrally coordinated sites for the silver ions build a puck-
ered honeycomb lattice. At low temperatures only the a sublat-
tice is occupied; above the order-disorder transition temperature
at 673 K both triangular sublattices are occupied.
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tice may be varied and consequently the phase diagram of
the silver subsystem, i.e., the critical temperature as a
function of the occupancy of the lattice, can be deter-
mined.

In Sec. II we will describe the preparation and charac-
terization of the chemically modified AgCrS2-based ma-
terials. The results of the measurements of the order-
disorder transition temperature for these materials are
given in Sec. III. A characteristic feature of the experi-
rnental phase diagram is its pronounced asymmetry
around the half-filled lattice. As will be argued in Sec. IV,
this feature is associated with the specific nature of the
disorder in a solid electrolyte. In Sec. V the phase-
diagram calculation using the CV method is presented.
First, a conventional discrete lattice-gas type of calcula-
tion is carried out, assuming pairwise interactions and tak-
ing a hexagon as a basic cluster. For the calculation of the
asymmetric phase diagram, a different cluster, the star, is
chosen to allow the introduction of the most relevant
many-body interactions. The results of this calculation
are compared with the experimental phase diagram in Sec.
VI.

II. MATERIALS
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AgCrS2 is essentially a stoichiometric compound.
From coulometric titration measurements, using AgI as a
solid silver-ion conductor, the stoichiometry range for
silver at the phase-transition temperature is only a few per
mil. To determine the phase diagram of the silver subsys-
tem, a much larger variation is necessary. This was ac-
complished by substituting the ions of the CrS2 frame-
work with ions having approximately the same size, but a
different valency. Suitable substitutions were found to be
V, Ti, or Sn for Cr, and Cl for S.

The materials were prepared by heating a mixture of the
elements in evacuated silica tubes at 1000 C for several
days and cooling down slowly. In the case of the Cl-
substituted materials, small amounts of AgCl or CrC13
were added. Guinier x-ray photographs were used to
check whether the materials had the same crystal structure
as AgCrS2, and to measure the lattice constants. The
development of the lattice parameter for the hexagona1
plane (a) is shown in Fig. 2. The x-ray pictures also
showed whether second phases like silver metal, silver sul-
fide, or transition-metal sulfides were present. In addi-
tion, specific-heat measurements were used to detect small
quantities of elemental sulfur and Ag2S. The specific-heat
rneasurernents were performed using a Perkin-Elmer dif-
ferential scanning calorimeter II.

As might be expected, the substitutions lead to silver-
deficient materials. With the exception of the V-
substituted material, the silver content is close to 1 —x, x
being the fraction of substituted ions. The stoichiometry
range for silver increases with increasing degree of substi-
tution but stays narrow. The maximum rates of substitu-
tion were approximately 0.25 for Ti and Sn, and 0.1 for
Cl.

The V-substituted materials behaved quite differently.
The stoichiometry range for Ag increased strongly with
increasing degree of substitution. For a fixed V content,
the Ag content can be varied between a va1ue larger than

Rate of Substitution x

FIG. 2. Lattice parameter a of the hexagonal plane for the
chemically modified AgCrS2-based materials as a function of the
rate of substitution x.

but close to 1 —x and a value slightly exceeding 1. At
least half of the Cr ions can be substituted with V ions
without a change in structure or the appearance of a
second phase. Attempts to introduce foreign cations with
a valency smaller than 3 were unsuccessful.

III. EXPERIMENTAL PHASE DIAGRAMS
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FIG. 3. Specific heat of AgCrS2. The anomalous structure at
673 K is due to the order-disorder transition of the silver ions.

Order-disorder transition temperatures were determined
from specific-heat measurements. As an example, the
specific-heat curve of AgCrS2 is shown in Fig. 3. The
critical temperature (T, ) was taken to be the position of
the maximum of the specific-heat anomaly. In Fig. 4 the
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FIG. 4. Order-disorder transition temperature as a function
of the rate of substitution in the CrS2 framework for Ti, Sn,
and Cl substitutions.

critical temperature as a function of the silver density is
shown for the compounds Ag& „{Cr& „Ti )S2,
Ag~ (Cr~ „Sn„)S2, and Ag~ Cr(Sz „Cl„). The range
of measurement on the low-density side is limited by the
broadening of the specific-heat anomaly with increasing
silver deficiency. For the V-substituted Inaterial, the vari-
ation of the critical temperature with the degree of substi-
tution is shown for three cases (Fig. 5): (a) samples in
equilibrium with silver sulfide and sulfur, having the
lowest possible silver content, which are larger than but
close to l —x [Ag~ ss(Cr~ „V„)S2], (b) samples with a
fixed silver content of l [Ag(Cr~ „V„)S2],and (c) samples
in equilibrium with metallic silver having the highest pos-
sible silver content, which is somewhat larger than 1

[Ag&+sp„s(Cr& „V„)Sq]. The broad stoichiometry range
for silver in this case offers the possibility to determine the
variation of the critical temperature as a function of the
silver density for a fixed rate of V substitution {5O). Start-
ing from silver-deficient samples, small amounts of silver
metal were added and dissolved by heating to tempera-
tures slightly above the transition temperature. This was
done for three values of 50. 0.05, 0.1, and 0.2. The critical
temperature versus silver-density curves are shown in Fig.
6.

We therefore dispose of six curves representing the
phase diagram of the silver subsystem in a AgCrS2-type
layer structure, three in which the silver density was
changed parallel to the chemical substitution into the
framework {the Ti-, Sn- and Cl-substituted materials), and
three in which the degree of substitution was kept fixed
and only the silver content was changed (the V-substituted
materials). In Fig. 7 these data are compared by normaliz-

FIG. 5. Order-disorder transition temperature as a function
of the rate of substitution of Cr by V in AgCrS2, for samples in
equilibrium with silver metal, samples with a fixed silver content
of 1, and samples in equilibrium with silver sulfide and sulfur.

ing the critical temperatures to the one for the half-filled
lattice. All the curves have in common that the critical
temperature increases very strongly with increasing silver
density. In fact, the data fall approximately on a single
master curve with the exception of the Sn-substituted ma-
terial. This similarity shows that the functional shape of
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FIG. 6. Order-disorder transition temperature for V-
substituted AgCrS2 as a function of the silver deficiency for
three fixed V contents: 6=0.05, 0.1, and 0.2.
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the phase diagram is more or less independent of the na-
ture of the chemical changes in the transition-metal di-
chalcogenide framework.

IV. ASYMMETRY OF THE PHASE DIAGRAM

For constant pairwise interactions, no matter how long
range they are, lattice-gas theory predicts a symmetric
phase diagram around the half-filled lattice. This sym-
metry is a result of the particle-hole equivalence in the
free-energy expression. The experimental phase diagrams
of Fig. 7, however, are very asymmetric, i.e., the slope of
the normalized critical temperature at p= —, is very dif-
ferent from zero, i.e.,

dTc
(1)

Tc dP

for all but the Sn-substituted case, for which a value of
about 5.5 is obtained. As was pointed out in the Introduc-
tion, strong deviations from a discrete lattice-gas theory
are indeed expected because of the liquidlike aspects of
solid electrolytes. It is therefore natural to associate the
asymmetry of the phase diagram with relaxation effects

=-3.0
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FIG. 7. Phase diagram of the silver subsystem in AgCrS&-
based materials as a function of the occupancy p of the honey-
comb lattice [Ag, „Cr, sVsSq, 5=0.05 (IsI), 0.1 (0), and 0.2
(~); Ag) „Cr) „Ti„S) (4); Ag) „Cri „Sn„S2 ( + ) and
Ag~ „CrSz,C1„( )]. The transition temperatures have been
normalized to the one for the half-filled lattice.

typical for these materials. A number of alternative
mechanisms, however, might be of importance as well and
will be discussed first.

A more or less trivial cause for the asymmetry of the
phase diagram would be a dependence of the pairwise po-
tentials on the silver density. The variation of the silver
content in our systems is necessarily accompanied by
changes in the chemical composition and the electronic
structure of the framework of nonconducting ions. These
changes will influence the pairwise interactions through
the interionic distance, the ionic charge, and the dielectric
constant. The effect of the change in the lattice parameter
can by ruled out by a rough estimate, using the data of
Fig. 2. Besides the fact that with exception of the Sn case,
the wrong sign is predicted for the slope of the phase dia-
gram at p= —,', the magnitude of the lattice expansion or
contraction is much too small to be of importance. Simi-
larly, small changes in the rate of charge transfer from the
silver atoms to the transition-metal dichalcogenide layers
can neither explain the sign nor the magnitude of this
slope. A more serious factor is the change in the electron-
ic screening of the interactions of the mobile ions by the
changes in the electronic structure of the framework. To
check this possibility, we have determined the optical
dielectric constant from the optical reflectivity of polished
pellets of the chemically modified materials as compared
to pure AgCrS2 in the infrared region between 1000 and
4000 cm '. To minimize the reduction of the signal by
surface roughness, the value at 1000 cm ' was taken. For
the silver-deficient samples a small but distinct increase in
the reflectivity was observed. For x =0.1, values around
0.190 were obtained as compared to 0.185 for pure
AgCrS2. The corresponding increase in the dielectric con-
stant is from 6.3 to 6.5. This increase is at least a factor
of 5 too small to explain the observed slope of the phase
diagram. It does explain the decrease in the critical tem-
perature with the increasing rate of V substitution for a
constant silver content of 1 [the Ag(Cr~ „V„)S2series in
Fig. 5].

The above arguments ascertain that local relaxation ef-
fects are responsible for the asymmetry of the phase dia-
gram. In fact, there is ample independent experimental
evidence for the importance of these phenomena in
AgCrS2, from diffuse x-ray, far-infrared, and inelastic
neutron scattering data.

The diffuse x-ray pattern of AgCrS2 in the disordered
state is characteristic for a two-dimensional liquid. The
radial distribution function shows a first peak at 3.0 A, as
compared to the first-neighbor distance on the honeycomb
lattice of 2.0 A, suggesting a considerable average dis-
placement of the silver ions.

Far-infrared and inelastic neutron scattering measure-
ments show that very low-frequency modes of vibration
exist, involving the motion of the silver ions in directions
parallel to the layers, suggesting that the potential wells
for these ions are relatively shallow. The frequency of the
optically active mode decreases strongly with temperature,
showing that anharmonic contributions to the potential
play a significant part even at very low temperatures. A
shallow potential surface favors the displacement relaxa-
tion of the conduction ions.

The relaxation effects are not restricted to the silver
subsystem. If the framework of nonconducting ions is not
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rigid but highly polarizable as is the case for the chal-
cogenide compounds we studied, relaxation effects in the
framework will be induced by a local excess or deficiency
of conduction ions in the disordered state. These relaxa-
tions must be taken care of as well in the description of
the state of order of the system.

Independent of their nature, the local relaxation effects
may be formally included in a lattice-gas model by intro-
ducing many-body interactions. A very convenient for-
malism to treat these interactions is the CV method
developed by Kikuchi. The many-body contributions are
simply introduced by assigning individual interaction en-
ergies to all different configurations of the basic cluster.
The method can be applied to complicated lattices, and
elegant iteration procedures have been developed recent-
ly ' to simplify the calculational problems for large clus-
ters. It has recently been used with considerable success to
calculate rather complicated phase diagrams of binary and
ternary systems with first- and second-neighbor interac-
tions. ' ' In the next section we will apply the method
to the honeycomb lattice. As a reference, we will first cal-
culate the phase diagram for pairwise interactions and
subsequently introduce many-body interactions in the cal-
culation in order to simulate the asymmetry of the phase
diagram.

In the CV method the configurational entropy is ap-
proximated by

5=kglnL2,

0,=g + [x(r,l)¹!]r",

connected points and are therefore open clusters. The hex-
agon seems to be a reasonable choice, because also second-
and third-neighbor interactions may be included. In prin-
ciple, many ordered structures on the honeycomb lattice
might be dealt with, using one or more different types of
hexagons. Because we are interested in the order-disorder
transition for the close to half-filled honeycomb lattice, we
will restrict our calculations to these two phases, and only
one hexagon with alternating a and P sites has to be con-
sidered.

As was pointed out in the preceding section, pairwise
interactions lead to a symmetric phase diagram, and
many-body interactions have to be introduced to simulate
the extreme asymmetry of the experimental phase dia-
gram. The hexagon is not the most appropriate cluster to
do this. Preferably, the basic cluster should contain a lat-
tice point and all its first neighbors. The smallest cluster
of this kind is the four-point cluster consisting of a central
ion and its three neighbors, which we will call a star (see
Fig. 8). Note that this cluster is an open cluster with
respect to first-neighbor bonds, and the results for first-
neighbor interactions will reduce to those for the pair ap-
proximation.

For both the hexagon and the star, the next largest over-
lap cluster is the first-neighbor pair. The subclusters to be
considered are therefore only pairs and points. In Table I
we have listed the values for the numbers N(r)/N and
n {r,q) for the hexagon, star, first-neighbor pair, and point
clusters. Note that the number of lattice points was taken
to be 2% to avoid nonintegral quantities. Also listed are
the values for the coefficients y(r) for the pair {F), star
(5), and hexagon (H) approximation, calculated using Eq.
(3). The number of configurations for the various approx-
imations are as follows:

where kz is the Boltzmann constant, X is the number of
lattice points, A is the number of configurations, and
x (r, l) is the probability of occurrence of a particular con-
figuration l on the cluster of sites of type r. The coeffi-
cient y(r) may be calculated from'

ny —x4/r',
Qg ——F /5

QH ——F /HX (4c)

Z(r) =N(r) IN gn (r,q)Z(q), — (3) X= Q (x;N!), (Sa)

where N(r) is the total number of different r clusters of
the lattice and n (r,q) is the number of q clusters in which
the r clusters can be decomposed. Starting with the basic
cluster n for which y(n) =N(n) jN, the y(r) of successively
smaller subclusters are easily calculated from Eq. (3).
Only those subclusters have nonzero y(r), which are iden-
tical to the overlap regions of the larger clusters. '

The choice of the basic cluster depends on the range of
the interaction potentials and the degree of approximation
wanted. The simplest approximation in which the first-
neighbor pair is chosen as the basic cluster is identical to
the well known quasichemical approximation. ' For
first-neighbor interactions, improved results can only be
expected if the basic cluster is a so-called closed cluster,
i.e., a cluster which contains no points belonging to only
one of the principal overlap clusters, because open clusters
give results which are identical to those for its largest
closed subcluster. ' For the honeycomb lattice, the small-
est closed cluster larger than a pair is the hexagon. All
smalleI three-, four-, or five-point clusters contain singly

F= g (y; N!), (5b)

S= + (s~)k!N!),
i,j,k, l

H= g (h~jk! „Nl)
i,j,k, l, m, n

(5d)

xp~xz~&rwxzx
FIG. 8. Clusters used in the CV calculations.

The indices take on a value of 1 if the corresponding site
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TABLE I. Quantities needed for the calculation of the entropy in the CV approximation on a honey-
comb lattice with a hexagon (H), star (S), or pair ( Y) as a basic cluster [Eqs. (2) and (3)].

N (r)/N
n (r,q)

q =S q = Y yg( I ) yy( «)

hexagon (H )

star (S)
pair ( Y)
point (X)

1

0
—3

2

2
—3

0
3

—4

is occupied and 0 if it is empty
A straightforward procedure would be to minimize the

free energy

F=E Nkz T —g y(r) g x(r, l )ln[x(r, l)],
r= 1 I

with respect to all independent configuration variables,
which may be found by considering all conditions con-
necting the configuration probabilities occurring in Eq.
(6). A more convenient method for larger clusters, howev-
er, is the natural-iteration method of Kikuchi, in which
the grand potential

Fig. 1, each consisting of % sites. The first-neighbor in-
teraction energy can be written as

~ ~jrBJ
The conditions

P~Ag ~ &I = ~3'jI
J j

(9)

(10)

may be accounted for by writing the superposition expres-
sion in the form,

y) ——(x; x) ) expI [2A+p(i+ j)—3e)]/3k&TI .

is minimized with respect to all basic cluster variables.
The subsidiary conditions among the parameters are taken
care of as completely as possible by writing the free energy
in its most symmetric form, and if necessary, by adding
the corresponding Lagrange terms to the expression for
the grand potential. ' In many cases it is sufficient to add
the normalization condition, i.e.,

6=F j),pN+ AN 1——g x(n, i)
I

Differentiation with respect to the x (n, l} leads to the so-
called superposition equations, expressing the basic cluster
variables as powers of the subcluster variables and an ex-
ponential containing the energy and Lagrangian parame-
ters as well as the chemical potential. For a fixed chemi-
cal potential and temperature, these equations are solved
by iteration, and the phase with the lowest grand potential
is the more stable phase. The critical temperature for a
second-order phase transition is determined by the condi-
tion that the determinant of the matrix of second deriva-
tives of the free energy with respect to the order parame-
ters vanishes.

e 9p( 1 —p)=ln
ks T, (3p —1 )(2—3p)

(12}

where p is the occupancy of the lattice and T, is the criti-
cal temperature.

B. Hexagon approximation

W'e define hexagon probabilities h,jkI „, for which the
first, third, and fifth index are associated with an a site
and the remaining ones with a P site. The subsidiary con-
ditions

These equations may be solved by applying the natural-
iteration method, i.e., trial values for x; and x; are used
to calculate y;) from Eq. (11), and new values for x; and
x,jt are than determined from Eqs. (10). This procedure is
repeated until the changes after each new iteration cycle
are sufficiently small.

In this case, however, an analytical expression for the
phase diagram may be derived by conventional pro-
cedures, ' reading

A. Pair approximation k, l, m, nk, l, m, nk, l, m, n
Vij = P jtijklmn P jtklijmn = g jtklmnij (13)

For the ordered phase around p = —,
' on a honeycomb

lattice there are two sublattices a and P as shown in
I

as well as Eqs. (10) are again taken care of by the symme-
try of the superposition equation:

j /2(y ykjy y y'k y t}".
(x, x)jjxkxpx x jr)'"

2A+ p(i +j+k + I +m +n ) /3 —e ).kj „
kg T

where

E' jkj =
6 t (ij +jk +kl +1m +m n +ni ) /2 +e2(i k +j1+km +in +mi +nj ) +e&(i l +jm +kn ) (15}
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and e], e2, and e3 are the first-, second- and third-neighbor
interactions. These equations can be solved by an iteration
procedure similar to the one described for the pair approx-
imation.

For first-neighbor interactions only (ei+E2 E3—=0), the
phase limits at low temperatures are at p=0. 5+0. 123 (see
Fig. 9). For the pair approximation these limits are at
p= —,', and —', „respectively. The improvement of the hexa-
gon over the pair approximation is considerable if the
values for kB T, /e& for the half-filled lattice are compared
with the exact result: 0.45512 for the pair, 0.40230 for
the hexagon approximation, and 0.37966 for the exact
solution. "

If second-neighbor interactions are also different from
zero, the most remarkable change is the low-temperature
behavior. In the limit of 0 K, the ordered phase is only
stable at p= —,. The ratio kB T, /e] at the half-filled lattice
decreases with increasing e2 until the ordered phase disap-
pears completely for e2/e& &0.25. The fact that the or-
dered structure considered here is observed experimentally
shows that in AgCrS2 the second-neighbor interaction
must be considerably smaller than the first-neighbor in-
teraction. This is a reasonable result because a pair of
first-neighbor silver ions "touch" so that the core repul-

I

ij ~ sijkl ~ sikjl ~ siklj
k, l k, l k, l

Ji —~ siJkl ~ $&kJl ~ siklj
k, l k, l k, l

(16a)

(16b)

and Eqs. (10). The permutation symmetry among j, k,
and I again can be accounted for by writing the superposi-
tion equations in the appropriate form. However, the rela-
tion between star probabilities around a and P sites have
to be dealt with separately by adding the following terms
to the grand potential:

[(aj'+aik+aii )sjkl (aj'i +ak'+aii )s jkl1'
i,j,k, l

where the a;J are the Lagrangian coefficients. Differentia-
tion with respect to the star-configuration probabilities
gives the following superposition expressions:

sion contributes considerably to the first-neighbor interac-
tion.

C. Star approximation

Two different kinds of star-configuration probabilities
are to be defined, siJkl and siJkl. The first index is associat-
ed with the central a or P site, respectively. The subsidi-
ary conditions are

a ]/2
sijkl (V jV kV'i ) exp

s;Jkl ——(yJ;yk; y» )' expP ]/2

~+p(I +j+k+ I)/4 —~Jkl+~;, +~;k+~;l
2kB T

X+ jj(i +.j +k +1)/4 e,jki
——aj; ak; —a—i;

2kB T

(17a)

(17b)

For the Lagrangian multipliers the following equations may be derived using Eqs. (16) and (17):

g (VkjVjI) exp[ [ P(k +i ) Fj ki akj aij ]/2kB T]
l k, l

a,j ———,kB T ln
X (V kV d ) '"exp [ [ ~ jJ«+i) ejki+ amok+ a—il ]/'2k ji T]
k, l

(18)

e;Jkl ——e](ij+ik +il ), (19)

the star approximation is identical with the pair approxi-
mation. Expression (19) allows us to write the superposi-
tion equations in the following form:

a a a a P P g
sijkl zgj zjkzil y sij kl zji zkiz i r (2o)

where

a ]/2
z;J

——(y;J ) exp
A, +p(i+ 3j )/4+ 3n;J —3e

6kB T

(21a)

Each major iteration cycle using Eqs. (16) and (17) is fol-
lowed by a minor iteration cycle' to determine the La-
grangian multipliers from (18), either by calculating the
a;J on the left-hand side using the old values on the right-
hand side, or by applying the Newton-Raphson method. '

Before discussing some of the solutions of the general
case, we will prove that, if only first-neighbor interactions
are taken into account, i.e., if

A, +p(j +3i)/ 4+a3; j 3eij-
z,J

——(y;J )
' exp

BT

(21b)

The subsidiary conditions (10) can now be written as

P ~ Px;= ~~z;, , x;= ~~zj;
J J

and Eqs. (16), together with Eqs. (20) and (22), as

ij= 'j i) ~ Vji= ji i) (23)

Elimination of the a,J from the latter equations leads to
the superposition expression for the pair approximation
[Eq. (11)].

Up to this point we have only discussed the phase dia-
gram for the case of pairwise interactions. We will now
introduce three- and four-point interactions by taking the
interaction energies for the eight different star configura-
tions e,Jkl to be different from the sum of pairwise interac-
tions. First, we will consider the case that only those star
configurations are affected by relaxation effects, having an
occupied central site as well as one or more peripheral
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sites. This situation is met if the framework ions are rigid
and unpolarizable, so that the configurations, having a
central empty site, are not affected by relaxation effects.
Instead of using the energy parameters relevant to this
problem as such, i.e., e~~~~, e~~&0, and e»oo, it is more con-
venient for the discussion of the asymmetry of the phase
diagram to use the average first-neighbor interaction for a
particular configuration,

e~(3)=e„„/3, e~(2) =e„,o/2, e~(1)=e()oo,

(24)

FIG. 9. Phase diagram in the CV approximation with a hexa-
gon as a basic cluster and first- and second-neighbor interactions
(el, e2) as compared to the phase diagram in the pair approxima-
tion.

0.8
kTc

07— STAR APPROXIMATION

( MANY- PARTICLE INTERACTIONS )

0.5—

of pairs of particles n, so that 5&(3)=25&(2) =25&. In Fig.
10 the phase diagram for different values of the asym-
metry parameters 5& are shown. For an increasing average
pair interaction with the number of particle pairs or a pos-
itive 5&, the phase diagram becomes narrower, for a nega-
tive 5& it becomes broader. The slope of the phase dia-
gram at p= —,

' is not very different from zero, except for
large and positive 5&. Another important feature of the
phase diagrams of Fig. 10 is that the deviations with
respect to the symmetric case are mainly on the high-
density side. The reason is that the star configurations re-
sponsible for these many-body corrections are high-density
configurations. Below the half-filled lattice the probabili-
ty to find these configurations is small anyhow and their
contributions to the free energy are not very significant.

The reverse effect, i.e., a broadening or narrowing of the
phase diagram at the low-density side results if the role of
the occupied and empty sites is interchanged in the above
calculation. In this case the effective interactions for the
star configurations with an occupied central site are equal
to the sum of the constituent first-neighbor pair interac-
tions, i.e., the parameters 5&(n) are zero. Instead different
effective average hole-pair interactions e~(n) and nonzero
asymmetry parameters 5~(n) are introduced. This situa-
tion can be realized if one allows for relaxations of the
framework of nonconducting ions around large clusters of
holes. For the same values of the corresponding asym-
metry parameters 5s(3}=25~(2)=25~ the phase diagrams
obtained are just the mirror images of the ones shown in
Fig. 10 with respect to the half-filled lattice.

Next we will consider the phenomenon of configuration
quenching in solid electrolytes. If the displacement of a

where the variable n in ez(n) denotes the number of first-
neighbor pairs of particles in the configuration. In addi-
tion, we define the asymmetry parameters,

0.4—

ep(i)
5p(i) = —1 .

e~(1}
(25)

The above parameters might be calculated by minimizing
the total energy for a particular configuration with respect
to the relative positions of the particles, with respect to the
minima of their potential wells, if the functional form of
the background and interaction potential were known.
For instance, for harmonic potential wells and a hard-core
interaction there will be an increase in the average pair in-
teraction with the number of pairs. If there are large
anharmonic contributions, as is usually the case in solid
electrolytes, the increase will be considerably smaller. Be-
cause we do not know much about these potential func-
tions, we will assume that the average pair interaction
e~(n) increases (or decreases) proportionally to the number

0.'t—

0.3
I

0.4
I

0.5 0.6 0.7
Occupancy p

FIG. 10. Phase diagram in the CV approximation with a star
as the basic cluster and many-particle interactions. A linear in-
crease ( or decrease) of the average pair interaction e(n) with the
number of first-neighbor pairs of particles n is assumed, i.e.,
5=e(2)/e(1) —1 =e(3)/e(2) —1.
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$1111 S 1110 0 (26)

All e,zk~ can be taken to be zero, except e»oo ——e1. For this
case it is possible to derive an analytical expression for the
phase diagram. From Eqs. (16) and (26):

P
$11OO =$»OO =3'»»~

$1ooo =3'10 —23'11 $1ooo =701 —2P» .P

(27a)

(27b)

By inserting the above star-configuration probabilities in
the superposition equations (17), a set of equations con-
taining only pair probabilities is obtained. From the
remaining superposition equations (those for the star con-
figurations with an empty central site), the star-
configuration probabilities can be eliminated as well by a
factorization similar to the one in Eqs. (20) and (21). The
result is Eq. (23) for i =0. Elimination of the a,

&
and p

from these equations eventually leads to two independent
equations for the pair and point probabilities:

2f01 —2711 &0

s10—2&11 &p
(28a)

and

particle in a particular configuration is equal to or larger
than the distance between the lattice site and the position
of the potential barrier to a neighboring site, the configu-
ration becomes unstable and has to be discarded from the
calculation by setting the corresponding probability to
zero.

As a first example we will again assume that the frame-
work of nonconducting ions is rigid and, in addition, that
the star configurations with two or three first-neighbor
pairs of ions are unstable or

ics is different. The lower phase boundary at 0 K is un-
changed with respect to the pair approximation, but the
upper phase boundary is shifted to a considerably lower
value (p= —,).

If, on the other hand, large clusters of empty sites are
unstable, or if

$0000 $0001 0 (32)

the phase diagram is again the mirror image with respect
to the half-filled lattice. Replacing p in Eq. (31) by 1 —p,
we have

6'1
=ln 9 2

kg T, (9p —4)(2—3p)
(33)

~i (p —33'o)'(5P —33 o —2)'= ln
(P 3'0) 3'o(1 2P+3'0)

(34a)

2 1p —8 —[(2 1p —8) —21(9p —4p) ]' i2
Xo=

21

(34b)

Obviously, a symmetrical phase diagram is obtained, but
much narrower than the one in the pair approximation
(see Fig. 11). The phase boundaries are at p= —,

' and —',
and k& T, /e1 ——0.5098 at p = —,.

Finally, we consider the case that both large clusters of
particles and large clusters of holes are unstable, i.e., Eqs.
(26) and (32) are both satisfied. Then a similar derivation
gives

3'003'» =exp
(3 10 23 11)(301 2711) kBT

(28b)

The two independent parameters may be chosen as x1 and
y11. The remaining parameters can be expressed in the in-
dependent ones by using the subsidiary conditions (10) and
the condition that the composition is fixed, i.e.,

X1+X1=2P .

From Eqs. (28) the critical temperature can be calculated
by requiring that the derivative with respect to the order
parameter g=(x, —x~~)/2 vanishes, resulting in the con-
dition that

0.8—
kTc

0.7—

0.4—

0,5—

EXCLUSION OF: EXCLUSION OF:

STAR APPROXIMATION

EXCLUSION OF:

at the critical temperature. Insertion of this condition in
Eq. (28b) yields the following expression for the phase dia-
gram:

9(1—p)
ks T, (5 —9p)(3p —1)

(31)

This phase diagram is also shown in Fig. 10. Note that
the above example of configuration quenching gives re-
sults identical to the case of an infinitely large asymmetry
parameter 5z, i.e., for infinitely high interaction energies
for star configurations containing two or three first-
neighbor pairs of particles, although the underlying phys-
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FIG. 11. Phase diagram in the CV approximation with a star
as the basic cluster, and exclusion of three- and four-point clus-
ters of particles, vacancies, or both (configuration quenching).
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VI. DISCUSSION

A comparison of the calculations. of the preceding sec-
tion with the experimental phase diagram shows that the
sign of the slope at the half-filled lattice is correctly repro-
duced if strong many-body interactions are introduced for
three- and four-point clusters of empty sites (Fig. 12). In
fact, the steepness of the phase diagram at p= —,

'
suggests

that these configurations are unstable.
Strong many-body interactions for the larger clusters of

particles, on the other hand, would result in a negative
contribution to the slope and therefore cannot be very im-
portant. This is a somewhat surprising result at first
sight, because, as was pointed out in Sec. IV, it is known
that displacement relaxation of the silver ions in AgCrS
is very important. One should note, however, that the
asymmetry of the phase diagram is not related to the
strength of the relaxation effect itself, but rather depends
on the relative increase of the average pair interaction with
the number of pairs in the relaxed configuration. If there
are very strong anharmonic contributions to the back-
ground potential, as is the case for AgCrS2, the increase of
the average pair interaction with the size of the particle
cluster may be rather small, in particular, if the displace-
ments are large. Moreover, it was shown in the preceding
section that the relaxation effects in large-particie clusters
mainly affect the shape of the phase diagram at the high-
density side. Unfortunately, the equilibrium of the
AgCrS2-based materials with metallic silver is already
reached for silver contents only slightly in excess of 1, and
consequently the phase diagram is not known in that re-
gion.

The dominating role of the many-body interactions for
clusters of empty sites must be related to the relaxation of
the framework of nonconducting ions. The sulfur ions
next to a local deficiency of conduction ions are expected
to be displaced away from the vacant sites, whereas the re-
verse effect occurs if there is a local excess of conduction
ions. These deformations of the framework will modify
the background potential for the conduction ions. A local
expansion of the lattice most likely will lower the effective
potential barriers between a cluster of vacant sites and the
neighboring occupied sites, thus destabilizing the low-
density clusters. The high-density clusters, on the other
hand, will be stabilized by a contraction of the lattice. In
agreement with this explanation is the fact that the c pa-
rameter becomes shorter at the order-disorder transition
temperature. " The asymmetry in the distribution of the
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FIG. 12. Qualitative fit of the experimental phase diagram
for the silver subsystem in AgCrS2-based materials is obtained if
three- and four-point clusters of vacancies are excluded from the
CV calculation in the star approximation [Eq. i33i].
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holes and particles causes an overall contraction of the lat-
tice in this direction.

In conclusion we have shown that the CV method is a
very suitable tool to incorporate relaxation effects in a
lattice-gas description of the state of order of a solid elec-
trolyte. Using a relatively simple basic cluster, it has been
possible to simulate the strong asymmetric phase diagram
of the conduction-ion subsystem of materials with an
AgCrS2 type of structure, by including three- and four-
body interactions. The sign of the slope of the phase dia-
gram indicates that large hole clusters are suppressed in
the disordered state by a destabilizing relaxation of the
framework.
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