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Calculations of the pair-creation energy € and the Fano factor F for semiconductors are
done for the assumptions that in each scattering event all possible sets of product particles
are equally probable, that the energy bands are those of free particles separated by a band
gap E,, and that there is a single phonon energy #iw,. The results from calculations done
previously with the use of a recursive method are corroborated and expanded with the use of
the Monte Carlo method. The electron-phonon interaction is divided into a deformation-
potential interaction and a polar-mode electrostatic interaction, and the #iw, dependence of
these interactions is incorporated into the calculations. New values of € and F are calculat-
ed. For many semiconductors, the accord of these values with experiments is as good as the
accord of previous calculations done with the deformation potential alone, indicating the in-

sensitivity of € to the added interaction.

I. INTRODUCTION

Calculations of the pair-creation energy € and the
Fano factor F in semiconductors are described in a
previously published paper.! These quantities are
measured when high-energy electrons and holes
scatter by ionization and by phonon emission. The
calculations were done using a recursive method to
calculate the scattering probabilities. Although the
recursive method was well suited to demonstrate the
conclusions of that study, i.e., the insensitivity of €
and F to electron energy loss to plasmons and to
differences in the threshold energy for ionization, it
is cumbersome both to describe and to use. An al-
ternative method, the Monte Carlo method, to cal-
culate € and F is used here. It is obvious in descrip-
tion and simple to apply. It yields the same values
of € and F as the recursive method, confirming the
earlier calculations. In addition, quantities that
were difficult to obtain with the recursive method
are easily obtained with the Monte Carlo method.

After the Monte Carlo method has been intro-
duced, it will be applied to the calculation of scatter-
ing rates due to both the deformation-potential
electron-phonon interaction, described in the earlier
report,) and to the polar-mode electrostatic
electron-phonon interaction, which is introduced
here. New lower limits on € are calculated. Al-
though they are generally larger than those reported
earlier because of the additional interaction, they are
not much larger. Hence € is not sensitive to this ad-
ditional scattering. In particular, the upper bounds
on the cathodoluminescent efficiency, which varies
inversely with ¢, still exceed the maximum measured
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efficiencies.

The Monte Carlo method is described in Sec. II.
The Monte Carlo method was also used by van
Roosbroeck? to verify the analysis he called “crazy
carpentry.” The scattering rate assumption used
here and in Ref. 1 is equivalent to the assumption
used by van Roosbroeck.> Thus when the different
assumptions used to do the calculations here and in
Ref. 2 are taken into account, direct comparisons of
the calculations are possible. These comparisons are
discussed in Sec. IV of this paper.

In Sec. III the polar-mode electrostatic electron-
phonon interaction is introduced. The matrix ele-
ments for both the deformation-potential and the
polar-mode electrostatic electron-phonon interac-
tions, as evaluated in the free-particle approxima-
tion, are described. The matrix element for the
deformation-potential interaction is introduced in
the same manner as in Ref. 1. The matrix element
for the polar-mode electrostatic interaction is then
introduced in an analogous manner.

In Ref. 1 an empirical constant, labeled 4, was in-
troduced to describe the ratio of the matrix elements
for the electron-phonon interaction and the
Coulomb interaction. Here, this constant A4 is re-
stricted to the deformation-potential part of the
electron-phonon interaction, and a second empirical
constant, labeled B, is introduced. By analogy, it is
the ratio of the matrix elements of the polar-mode
electrostatic interaction and the Coulomb interac-
tion.

The matrix elements of the deformation-potential
and polar-mode electrostatic interactions, considered
now in the free-particle approximation, have dif-
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ferent dependences on the phonon energy #iw,, and
so the ratios of these two scattering rates to the ioni-
zation scattering rate have different dependences on
#iwy. Therefore the phonon energy has been re-
moved from the constants 4 and B, and new con-
stants A’ and B’ are defined. This modification is
necessary to have a consistent theory with #w, as a
parameter.

Following the procedure of Ref. 1, the constant 4’
is assumed to be independent of the particle energy
and invariant for electrons and holes, for different
materials, and for all ambient conditions. A similar
assumption is made about B’. Following Ref. 1 the
constant A’ is fixed from the measured value of €
for Si. In Si, of course, the polar-mode electrostatic
interaction is zero. Then, using the above assump-
tion, A’ is given the same value in CdS as in Si. The
additional phonon scattering required to calculate a
value of € for CdS equal to the measured value is
then used to fix the constant B’. These values of A’
and B’ are used in the subsequent calculations for
other semiconductors. The new calculations of €
and those of Ref. 1 agree with the measured values
equally well.

II. MONTE CARLO METHOD

A. Method

The Monte Carlo method consists of simulating
random microscopic processes a large number of
times. Macroscopic properties may then be deter-
mined by averaging over the large number of simu-
lations. Each simulation consists of a cascade such
as that shown in Fig. 1 of Ref. 1. An incident parti-
cle, or primary, enters the semiconductor with an
energy E that is large compared to the semiconduct-
or band gap. It scatters by ionization, i.e., by creat-
ing electron-hole pairs, and by phonon emission to
generate a number of thermalized electron-hole
pairs. The probability that n such pairs are created
was denoted p,(E) and was called the pair-number
probability distribution in Ref. 1. In the Monte
Carlo method, the fraction of the simulations yield-
ing n pairs is p,(E).

The calculation of € and F was done with the de-
finitions

E
€= (n(E) (1)
and
_ (nXE))—(n(E))*
F= (n(E)) R (2)
where

00

(n(E))=3 np,(E) 3)
n=0
and
(nE)y=3, n%p,(E) )
n=0

are the first and second moments of p,(E), respec-
tively.

The scattering-rate assumption from Ref. 1 was
used to generate each cascade. Under this assump-
tion, in each ionization scattering event of a cascade,
all the states available to the three product particles
have equal probabilities to be filled. The selection of
the three states which are filled from the many
available states is the random feature of this calcula-
tion. Since the available states are not distributed
uniformly in energy, but the random numbers are
uniformly distributed on the unit interval, an associ-
ation between a randomly generated number and the
energy of a state must be developed. This associa-
tion is described in the next section.

B. Ionization scattering

When a particle of energy E scatters by ioniza-
tion, three particles (the particle plus the electron
and hole created by ionization) are created, with ki-
netic energies Ey, E,, and E—E,—E,—E,, where
E, is the semiconductor band gap. With the use of
the scattering-rate assumption, the probability dg,
that a particle of energy E scatters to create a parti-
cle with energy between E; and E; +dE, is

" [dEpEfE)

(5)

where
fLEN= [ dE, [ dE:p(E;)p(E;)
X8(E—E;—E—E,—Ej3)
and p(E) is the density of states. In the free-particle
model in which the band structures of the conduc-
tion and valence bands are isotropic and parabolic,

p(E) is proportional to V'E. Then, following Eq.
(18) of Ref. 1,

dg= S22 (E~E,)~"VE, dE,
m E—E —E

x[, 'VE,(E—E,—E,—E,)*dE,
'—‘%(1—0‘1)2\/ ajday, (6)

where a;=E;/(E—E,), so 0<a;<1. Since all
available states are equally probable, they will be oc-
cupied randomly, and the energy E; of the state as-
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FIG. 1. (a) Plot of dg,/da, vs a; as given by Eq. (6).
(b) Plot of a(R), the inverse of the function shown in
Eq. (7). All values of R; occur with equal probability;
thus large values of E;=a,(E—E,) are less likely than
small values. (c) Plot of dg,/da, vs a, as given by Eq.
(9). (d) Plot of a,(R;), the inverse of the function shown
in Eq. (10).

sociated with the random number R, is given by
a(R,) where

R
R,= fo ‘dg,= fo

af 2a,
7 5

105 3/
=5 aj

(7

W =

This equation was inverted numerically to obtain
a1(Ry), which is used to associate the randomly
generated number R; with the energy E; assigned to
one of the scattered particles. The functions
dq,/da, and a;(R) are shown in Fig. 1. The peak
in dq, /da, at low energies, for which there are rela-
tively few states, arises because three particles leave
each scattering event, and if one has a low energy,
the remaining two have a larger energy that can be
divided between more pairs of states.

Again using the scattering-rate assumption, the
probability dg, that a particle of energy E creates a
particle of energy E, while it scatters to a state of
energy between E, and E, +dE, is

__plEy)8(E\,E,)dE,
* [ dEp(Ey)g(E\LEy)

dq (8)

where

g(E\,E;)= [ dEsp(E;)8(E—E,—E,
—E,—Ej;)
=p(E—E;—E,—E,) .
In the free-particle model,
dgy— VE,(E—E,—E,—E,)"*dE,
(m/8(E—E;,—E,)

=8/7Wa(1—a,)da, , 9)

where o, =E,/(E—E;—E;) so 0<a, <1. Again,
since all available states are equally probable, they
will be occupied randomly, and the energy E, of the
state associated with the random number R, is given
by a,(R;), where

a

R
Ry= fo 2d42= fo

= (2/7)2a; — 1)V ay(1—a,)”?

dq,

da2 da2

+7 tsinH2a, — D+ 5 . (10)

This equation was inverted numerically to obtain
a;,(R;), which is used to associate the randomly
generated number R, with energy E, to be assigned
to another of the scattered particles. The functions
dq,/da, and a,(R,) are shown in Fig. 1. The func-
tion dq,/da, is symmetric about a,=0.5, as ex-
pected when two particles occupy pairs of states
with constant total energy.

C. Comparison with the recursive method

A particle of energy E may also scatter by the
emission of a phonon with energy #w,. The rates of
scattering by phonon emission and by ionization
were related in Ref. 1 by an empirical constant 4,
defined by Egs. (20) and (21) of Ref. 1. Randomly
generated numbers were used with Eq. (20) of Ref. 1
to assign each scattering event to ionization or pho-
non emission. If a given scattering event resulted in
ionization, the procedure described in the preceding
section was used to find the energies of the scattered
particles. If it resulted in a phonon emission, the
scattered particle was assigned the energy E —#iw,.

The random numbers were generated with a li-
brary subroutine.* Calculations were done to verify
that the Monte Carlo method gives the same values
for € and F as the recursive method used in Ref. 1.
The threshold energies from Eq. (23) of Ref. 1, those
obtained by neglecting momentum conservation,
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were used in all these calculations and the plasmon
energy was ignored. Thus in the notation of Ref. 1,
the overscored and unsubscripted values of € and F
were calculated; the overscore will not be used in
this paper.

In the Monte Carlo method only the mean values
of € and F can be calculated. There will be uncer-
tainties in the values related to the initial energy E
of each cascade and the number N of cascades cal-
culated. These uncertainties were taken at the 95%
confidence level. The number of cascades was limit-
ed by the cost of computer time. No calculation was
allowed to run much in excess of 100 CPU sec on an
IBM 370. As a result N never exceeded 10000, and
it has to be restricted to smaller values when E ex-
ceeded S0E,. The initial energy of each cascade is
limited by the capacity of the computer memory to
retain the energies of all the particles in the cascade.
This limit is about 100000 pairs per cascade.

The values calculated for €(E) and F(E) for
E <12E;, using the Monte Carlo method agree,
within the 95% confidence level, with the values
given in Ref. 1. Calculations were done for Si using
A=5.2 eV3 and 4 =0, and the uncertainties in €(E)
were less than 1% of the mean values for E >4 eV;
the uncertainties in F(E) were less than 6%. The
values calculated for p,(E) also agree with those cal-
culated in Ref. 1.

As was pointed out in Ref. 1, calculations for E
much larger than 10E, are prohibitively expensive
with the recursive method. With the Monte Carlo
method, however, only the computer memory limits
the initial energies for which €(E) can be calculated,
and calculations for E up to and beyond 100000E,
are easily done. Thus calculations which are diffi-
cult with the recursive method are easy with the
Monte Carlo method. There are, of course, other
calculations which are difficult with the Monte Car-
lo method, but easy with the recursive method, as,
for example, calculations of €z(E) as given in Eq.
(25) of Ref. 1, which requires integration of p,(E)
over E.

Since the uncertainty in €(E) depends only on the
number of pairs calculated, values of €(E) with un-
certainies below 1% of the mean can be calculated
for large values of E. The plot of €(E) shown in
Figs. 2 and 5 of Ref. 1 is extended up to 10000 eV
in Fig. 2. However, the uncertainity in F(E) de-
pends on the number of cascades, and for reasons of
cost, the number of cascades had to be severely re-
stricted for values of E above 200E,. Thus values of
F(E) with uncertainties below 10% of the mean can
only be calculated for E <200E,;. Likewise, since

the accuracy of the values of p,(E) for a given E de-

pend on the number of cascades, accurate values can
only be calculated for E <200E;. The calculated
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FIG. 2. Pair-creation energy €(E) is plotted vs E. The
values were calculated for 4 =5.2 eV? for the band gap
and phonon energy of Si. The points show the Monte
Carlo calculations. The values for E <15 eV differ little
from the values shown in Figs. 2 and 5 of Ref. 1. The
asymptotic behavior for large E was verified by a calcula-
tion for 0.3 MeV. The function ef(E) from Fig. 5 of Ref.
1 is repeated here.

pp (E)

n

FIG. 3. Calculated values of the pair-number probabil-
ity distributions p, (50 eV) and p, (100 eV) for Si as calcu-
lated with the Monte Carlo method. The values of (n)
and (n?) in Eqgs. (3) and (4) are the first and second mo-
ments of these histograms. For a primary energy of 50
eV, (n)=13.38 and (n?)=180.58, and for a primary en-
ergy 100 eV, {(n)=27.12 and (n2)=738.32. If these
histograms had been obtained experimentally with
monoenergetic primary particles, the ordinate would be
labeled with N(n), the number of primaries yielding n
pairs. For example, if 500 primaries were used, the verti-
cal scale would be multiplied by 500. If the envelope of
these histograms were Gaussian, as pointed out in Ref. 1,
the full width at half maximum of these curves would be
(8FE In2/€)'"?, or for € =3.64 eV and F=0.113, they are
2.93 and 4.15 at E=50 and 100 eV, respectively; the
values from these histograms are 3 and 4.
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functions p,(E) for selected values of E in Si with
A =5.2 eV? are shown in Fig. 3.

It is seen in Fig. 2 that €(E) does approach a con-
stant value € at large E, but it does so only for E
large compared to 10E,. This result could not be
shown in Ref. 1 and € had to be approximated by
the operational definition € =¢€¢(6E,). The function
€z(E) from Ref. 1 is shown in Fig. 2. The values of
€ calculated with the Monte Carlo method, taking
e=e€(E) for E greater than 1000E,, differed from
those calculated in Ref. 1 by less than 1%, verifying
the operational definition.

Likewise, the Fano factor F(E) does approach a
constant value F at large E, but only for E large
compared to 10E,. In Ref. 1, F had to be approxi-
mated by F=F(6E;). The values of F calculated
with the Monte Carlo method, taking F=F(E) for
E between 50E; and 200E,, were near those calcu-
lated in Ref. 1.

If the functions p,(E) approach Gaussians for
large E, the skew and kurtosis should approach O,
since the skew and kurtosis are related to the third
and fourth moments of p,(E). The values of these
quantities depend strongly on the wings of the func-
tions p,(E), and they can be reliably calculated only
when the number of cascades is very large. For Si
with 4=5.2 eV® and E between 20 and 100E,, the
values of the skew were always less than 0.1, and the
absolute values of the kurtosis were always less than
0.2.

III. ELECTROSTATIC ELECTRON-PHONON
INTERACTION

A. Scattering rates

The scattering rates for the electron-phonon in-
teraction due to the deformation potential and to the
polar-mode electrostatic potential are

(KD )2 3/2(E/2)1/2
rpp(B)=——t (11)
TH WP
and
#iwoIn(4E /fiw)
Fop(E) = —2 0 (12)

k*ag(2mE)\/? "’

where KD, is the optical-mode deformation-
potential constant (where K has the dimension of re-
ciprocal length and D, has the dimension of energy),
p is the semiconductor density, k* is the effective
dielectric constant,

*—1__ 1 —1

K K; —Ko >

and a, is the Bohr radius. The approximations
kT =0 and E >>%w have been used in Egs. (11) and
(12). The deformation-potential scattering rate has

the same energy dependence as was assumed in Ref.
1, namely, V'E, while the polar-mode electrostatic
scattering rate has the energy dependence
E~'Yn(4E /#iw,). Both these scattering modes
were incorporated into the Monte Carlo calculation.

In Eq. (20) of Ref. 1, the ratio of rpp(E) to r(E),
the scattering rate due to ionization, was represented
as

rpp(E)/r(E)=1054VE /[2m(E—E,)""] ,
(13)
where, now with r(E) from Eq. (18) of Ref. 1,

p (KD; )2m 3/2477. 5(ﬁ2/2m )9/2 14
T mV2pwg | M |2VA

from Eq. (11) with M, V, and A defined as in Ref. 1.
In Ref. 1, A was assigned the value 5.2 eV from the
pair-creation energy for Si. Since rpg(E)=0 in Si,
an elemental semiconductor, 4 retains the value as-
signed in Ref. 1.

The ratio rpg(E) to r(E) can be similarly
represented as

rpe(E)  105BIn(4E /i)
rE) ZWK*VF(E—Eg )72

(15)

where

p_ @0 4m’(#/2m)"
CagV2m | M |PVPA
from Eq. (12). This parameter will be assigned a

value from the measured pair-creation energy for
CdS.

(16)

B. Calculations

From Egs. (14) and (16) for 4 and B it can be seen
that 4 varies inversely with #iw, while B varies
directly with %w,. Since #w, is a parameter of the
theory, it is consistent to extract this dependence
from A and B. Thus new constants 4’ and B’ are
defined, where 4’'=%wy4 and B'=B /#w,. From
A =5.2 eV? for Si where #iw,=0.063 eV, 4'=0.328
eV*. Following the approach in Ref. 1, the con-
stants 4’ and B’ are assumed independent of the
particle energy and invariant for holes and electrons,
for different materials, and for all ambient condi-
tions.

The value for B’ was determined from the mea-
sured value of € for CdS. With the use of 4’ given
above to specify the phonon scattering due to the
deformation-potential interaction in CdS, the addi-
tional phonon scattering needed to make the calcu-
lated value of € equal to the measured value of € in
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TABLE I. Calculated and measured values of €.

E,;? fiwy? € € (expt.)?
Semiconductor (eV) eV) * =10 V) (eV)
Ge 0.735 0.037 0 2.99 2.96
Si 1.12 0.063 0 3.64 3.63
GaAs 1.42 0.034 0.0140 4.31 4.35
CdTe 1.52 0.021 0.0409 4.49 4.46
Hgl, 2.13 0.007 0.143 5.42 4.2
GaP 2.22 0.045 0.0202 5.75 6.54
CdS 2.41 0.038 0.0685 6.30 6.3
AgBr 2.68 0.016 0.133 6.49 5.8
PbO 2.76 0.054 (0.0555)°¢ 7.02 8
SiC 2.86 0.120 0.0504 7.86 6.9
AgCl 3.25 0.024 0.162 7.65 7.5
C 5.47 0.163 0 10.8 13.1
SiO, 8.9 0.081 0.241 18.0 18

2Reference 1.
"Reference 6.
°Estimated.

CdS was used to determine B’. This value is
B’=4000 eV>. These values of A’ and B’ were used
to calculate the values of € which are shown in
Table I. These calculations were done for initial en-
ergies between 4000E, and 5000E, and up to 50 cas-
cades. The uncertainties in € were always less than
0.03 eV, and frequently less than 0.01 eV. The mea-
sured values of € are also shown in Table I. The
values of k* ! were obtained from the sources listed
in Ref. 6. The measured and calculated values of €

Si02

PbOg
@AgCl
GaP, esic
* 043
®agBr
5r CdTe 4

HgT.
Sig/Gans® 2
/

o
Ge

MEASURED PAIR-CREATION ENERGY (eV)

L ! 1
00 5 10 15 20

CALCULATED PAIR-CREATION ENERGY (eV)

FIG. 4. Measured values of the pair-creation energy,
listed in Table I, are plotted vs the calculated values of ¢,
also listed in Table I. The straight line has unit slope and
is the lower bound expected for the measured values.

are plotted in Fig. 4. This choice of B’ is seen to
give excellent agreement between the measured and
calculated values of € for GaAs and CdTe as well as
CdS; the measurements for these three semiconduct-
ors are among those done most recently.

The additional electron-phonon  scattering
mechanism in the binary semiconductors must in-
crease the values calculated for €, and these values
are lower bounds on €. Since the measured and cal-
culated values of € in Ref. 1 were nearly equal for
some semiconductors, now the measured values of €
are smaller than the calculated values for some
semiconductors. It must be concluded, therefore,
that either the measurements or the theory is in er-
ror; the limitations on the theory are discussed in
Sec. IV. Nevertheless, the increases in the calculated
values of € are generally small, the largest being
18%. In fact, the general agreement between the
calculated and measured values shown in Fig. 4 is as
good as that shown in Fig. 8 of Ref. 1.

No additional electron-phonon scattering mechan-
ism was added for the elemental semiconductors,
and no changes were made in the parameter 4 for
Si. For Ge, the use of 4’ instead of 4 increased the
value calculated for €; this improved the agreement
of the calculated and measured values. For dia-
mond, the use of 4’ instead of 4 decreased the value
calculated for €; the measured value is still much
larger than the calculated value.

Calculations of the Fano factor were done for
5000 cascades with initial energies of about 100Eg.
The calculated Fano factors were 0.113+0.005 for
Si and 0.126+0.005 for Ge. These values are near
those reported in Ref. 1 and in good agreement with
the measured values.
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IV. DISCUSSION

A. Crazy Carpentry

Van Roosbroeck? also used the Monte Carlo
method to calculate € and F in 1965. He introduced
the method to verify an analysis called “crazy car-
pentry.” The basic assumptions used in Refs. 1 and
2 are equivalent.® The differences arise from the
particular assumptions made to perform the calcula-
tions. For example, (1) in crazy carpentry the ratio
of the scattering rates shown in Eq. (13) above was
assumed constant for all energies, while in Ref. 1,
the ratio of scattering matrix elements, 4 of Eq.
(14), is assumed constant. No distinction was made
between the various electron-phonon interactions in
either Refs. 1 or 2. Also, (2) the newly created parti-
cles in Ref. 2 were assumed to have equal energies,
i.e., dq,/da, was set to 8(a@, —0.5) in Fig. 1. Final-
ly, (3) the density of states was assumed constant in
the formulation of Ref. 2.

For A =0, the first difference mentioned above is
nullified. The function dq,/da, was changed to
8(ay—0.5) to evaluate the effects of the second
difference. The calculated value of € was not affect-
ed significantly, and, indeed, as noted in Ref. 1, both
calculations gave similar values for € when 4 =0.
The calculated value of F was significantly affected,
however. The value was consistent with the value
0.12561 given in Ref. 2, but the value calculated
with the dq,/da, shown in Fig. 1 was consistent
with the value 0.08 given in Ref. 1. When the densi-
ty of states function was changed to evaluate the ef-
fects of the third difference, little change in the cal-
culated values of € and F was found.

B. Optical-phonon deformation-potential
constant

As is described in greater detail in Ref. 7, the con-
stants A’ and B’ contain two unknown quantities,
the matrix element of the Coulomb interaction and
KD,, the deformation-potential constant. From the
values assigned empirically to A’ and B’, the value

KD,=2Vpx 108 (17)

in units of eV/cm, where p is the numerical value of
the semiconductor density in g/cm? was obtained.
As discussed in Ref. 7, this value is consistent with
the values reported from transport measurements in
Ge and Si. In Raman scattering measurements, a
deformation-potential constant d =2aKD,, where a
is the lattice constant, is measured.® Again the value
given in Eq. (17) is consistent with the values of d
from Raman scattering measurements and with
values calculated from pseudopotential theory.®

This value of KD, may be used in Eq. (11) to esti-
mate the absolute value of the phonon scattering
rate, ie., rpp(E)=5X10'YVE /#fiw,) VeV /sec.
The rate obtained for 1.5-eV electrons in GaAs,
2% 103 sec™ 1, is in good agreement with the rate es-
timated from the electric field strength required for
impact ionization.’

C. Rare-gas solids

Recently measurements of € in several rare-gas
solids have been reported.'® These materials, Xe,
Kr, and Ar, have larger band gaps,!! 9.3, 11.6, and
14.2 eV, respectively, than any of the materials
shown in Table I. These band gaps are so large, in
fact, that phonon scattering should not contribute
significantly to €, i.e., the calculated lower bounds
on € should be only slightly larger than the values
calculated for 4=0. For the ionization threshold
energies given in Eqgs. (22) and (23) of Ref. 1, these
values are 2.04E, and 1.62E,. Thus unlike the
semiconductors discussed in Ref. 1, the calculated
values of € for these materials are sensitive to differ-
ences in the threshold energies for ionization. The
measured value of € for Xe, 24 eV, is well above the
calculated lower bounds using either of these thresh-
olds. The measured values for Kr and Ar, 25 and
27 eV, respectively, cast doubt on the validity of us-
ing the threshold energies given by Eq. (22) of Ref.
1, i.e., those obtained from the free-particle model
with momentum conservation. All the measured
values are consistent with Eq. (23), which was ob-
tained without momentum conservation and used in
the calculations of Secs. II and III above.

D. Mercuric iodide

From Fig. 4 it is apparent that three semiconduct-
ors, Hgly, AgBr, and SiC, have measured values of €
well below the calculated lower bounds. Two of
these, Hgl, and AgBr, have the smallest values of
#iwo of any of the semiconductors listed in Table I.
To see how small values of #iw, might change the
calculations, the effect of finite temperature was in-
cluded in the Monte Carlo calculations. Also, the
dependence of € on fiw, was examined to see how
electron-phonon scattering vanishes for small #iw.

At finite temperatures, i.e., when kT > fiw,, there
is scattering with phonon absorption as well as with
phonon emission. The absorption rate is proportion-
al to

no=[exp(fiwo/kT)—1]"",

and the emission rate is proportional to ng+1. The
temperature dependences of €(E) and F(E) were
modeled by setting the phonon scattering rate pro-



portional to 2ng+1 and including phonon absorp-
tion with probability ny/(2ng+1). For the parame-
ters of Hgl, no temperature dependence could be
found for either (1000 eV) or F(100 eV). The in-
creased phonon scattering was balanced by the de-
creased net phonon emission.

The relationship of € to #iw, was calculated for
the parameters of Hgl, and initial energies of 1000
eV. The value of € grew with increasing #w, as ex-
pected, and in the limit as #iw, approached zero, €
approached 5.4 eV. However, the removal of
electron-phonon scattering, i.e., setting 4’=B'=0,
gives € =3.5 eV. Physically, this difference in these
two values of € is unacceptable, as they both
represent the absence of phonon scattering. The
difference arises because of the inverse dependence
of rpp(E) on #wy in Eq. (11), and this dependence
comes from the specification of the vibrational am-
plitude in the deformation-potential theory.!”> Thus
the assumption that A’ is the same for all materials
does not extend to materials with very low fiw,.

The value of F(100 eV) calculated for the parame-
ters of Hgl, was 0.10£0.01. The value calculated
for A’=B'=0 was 0.08+0.01. Both these values
are far below the present experimental® upper
bound on F, 0.19+0.03.

12
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FIG. 5. Calculated values of € are plotted vs #iwo for
values of E, of 1.0, 2.5, and 4.0 eV and values of k*~! of
0, 0.05, and 0.20. Each calculation of € was done for ten
cascades having initial energies of 4000E,. The uncer-
tainties in € were 0.10 eV or less.
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E. Large phonon energies

In Ref. 1 € was calculated as a function of E; and
#iwy with a single value of 4. In this paper € has
been calculated as a function of Ej, #iw,, and k*~!
with single values of 4’ and B’. The dependence of
€ on #iw is shown in Fig. 5 for selected values of Eg
and k*~!. It is apparent in Fig. 5 that for x*~!=0,
i.e., for scattering due to the deformation potential
alone, € is virtually independent of #w,. This result
is consistent with the observation made in Ref. 3
that the term in the energy-loss rate due to the de-
formation potential is insensitive to wy. In the con-
text of Eq. (14), doubling @, halves 4 but doubles
the energy loss per phonon scattering event, so the
net loss is unchanged.

For nonzero values of k* 1, the values of € shown
in Fig. 5 grow with increasing wq. This growth, as
observed in Ref. 3, is due to the direct dependence of
B on wg in Eq. (16). The contribution to € due to
the polar-mode electrostatic potential dominates the
clontribution due to the deformation potential when
s[e(k* ") —E,] exeeds [e(k*~'=0)—E,]. Thus,
with the use of Fig. 5, for E,=1.0 eV and
k*~1=0.20, the polar-mode electrostatic potential
makes the larger contribution to € for fiwg>0.125
eV. For this value of «* ! and larger values of E,,
larger values of #iw are required for the polar-mode
electrostatic potential to make the larger contribu-
tion to €. As seen from Table I here and from Table
I of Ref. 14, materials with «*~'>0.20 and
#iwy >0.125 eV are uncommon. Thus materials may
occur for which the polar-mode electrostatic contri-
bution is the dominant contribution from the
electron-phonon interaction, but they do not occur
frequently.

F. Cathodoluminescent efficiency

As was pointed out in Ref. 1, the upper bound on
the cathodoluminescent efficiency of a cathode-ray
phosphor is £ =E, /€, where E, is the energy of the
photon emitted by the phosphor, i.e., an electron-
hole pair yields at most one photon. Values of &
were calculated for a number of well-known phos-
phors using the values of E,, fiwg, Ko, and k  given
in Table I of Ref. 14 to calculate €, and the values of
E, given in Table II of Ref. 14 to calculate £. The
measured efficiencies, from Ref. 14, are plotted
versus & in Fig. 6. It can be seen in Fig. 6 that in no
case does the measured efficiency exceed £.

In Ref. 14 the “crazy carpentry” analysis of Ref.
2 was extended to explicitly include the phonon
scattering due to the polar-mode electrostatic in-
teraction; scattering due to the deformation poten-
tial was ignored. Since the parameter B, which
described scattering due to the polar-mode electro-
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FIG. 6. Measured values of the cathodoluminescent ef-
ficiency are plotted vs the predicted upper bound £ on the
efficiency. This figure is identical to Fig. 5 of Ref. 14 ex-
cept for the new calculations of £ described here. The
straight line has unit slope and is the upper bound expect-
ed for the measured values. The code for the measured
values is the same as in Ref. 14. The calculations of €
were done for initial energies between 4000 and 5000F,
and up to 50 cascades.

static interaction, depends on 7w, a strong depen-
dence of & on #w, and k*~! was found in Ref. 14,
and the values of & spanned a broad range. Here,
however, both interactions have been considered,
and scattering due to the deformation potential is al-
ways present. The deformation-potential constant is
insensitive to the parameters of the semiconductor,
so the values of £ span a narrower relative range in
Fig. 6 than in Fig. 5 of Ref. 14.

The largest measured efficiencies are seen in Fig.
6 to occur in ZnS and CaS. The values of & for
these materials span more than half the total range
of £ in Fig. 6. Thus the singular property of these
materials responsible for the large efficiencies does
not seem to be associated with §. In summary, the
measured phosphor efficiencies are consistent with
calculations of the pair-creation process, but the ma-
terial property that makes ZnS and CaS so highly
efficient is not associated with this process.

V. SUMMARY

The probability method, based on the scattering-
rate assumption, for calculating the pair-creation en-

ergy, was described in Ref. 1. In Ref. 1 the energies
were calculated with a recursion method. In this pa-
per these same energies were calculated with the
Monte Carlo method. The identity of the values ob-
tained for the pair-creation energies from these two
calculations corroborates the values. Since either
method of calculation, the recursive or Monte Carlo,
can be used with the “probability method,” it should
perhaps have been called the “probability pro-
cedure.”

In Ref. 1 values of €(E) could only be calculated
for energies E up to about 10E,. These energies
were far too low to allow a direct estimate of the
asymptotic value of €(E) for large E, and an indirect
estimate had to be made. With the Monte Carlo
method, values of €(E) can be calculated for ener-
gies beyond 100000E, and a direct estimate of the
asymptotic value can be made. The agreement of
the indirect estimates from Ref. 1 and the direct es-
timates obtained here corroborates the values.

In Ref. 1 only limited account was taken of the
scattering by phonon emission. In particular, the
square of the matrix element was proportional to a
constant, labeled 4, which was assumed independent
of the particle energy and invariant for different ma-
terials. In fact, there are at least two distinct elec-
tron interactions which result in phonon emission.
In the free-electron approximation, these two in-
teractions, the deformation-potential and the polar-
mode electrostatic interaction, have matrix elements
which depend differently on the particle energy.
While that of the deformation potential is indepen-
dent of particle energy, that of the polar-mode elec-
trostatic interaction does depend on energy. Furth-
ermore, both these matrix elements contain the
optical-phonon energy, which is different for dif-
ferent materials.

In this paper both these electron-phonon interac-
tions were considered. The factors of the matrix ele-
ments containing the particle energy and the
optical-phonon energy were explicitly retained in the
calculation. Aside from fundamental constants, the
only remaining factors in these matrix elements are
the material density and the deformation-potential
constant in the deformation-potential interaction
and the effective dielectric constant in the polar-
mode electrostatic interaction. The effective dielec-
tric constants were taken from experimentally mea-
sured data. Since the assumptions of independence
of particle energy and invariance for all materials
were separately made for 4’ and B’, the ratio of the
deformation-potential constant and square root of
the material density has a constant value.

This treatment of the electron-phonon interaction
changed the values calculated for €(E) and F(E)
from the values given in Ref. 1 for all materials ex-
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cept Si. The changes were generally small, indicat-
ing the insensitivity of € to the added polar-mode
electrostatic scattering. Because the changes are
small, the conclusions reached in Ref. 1 remain gen-
erally valid.
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