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Wavelength dependence of electronic excess energy
of a composition-modulated metallic mixture
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An electronic excess energy or the difference in electronic energy between the homogene-
ous metallic solution and one with a composition modulation is calculated by means of the
Hohenberg-Kohn formula for the ground-state energy of a nonuniform electron-gas system.
Such an electronic excess energy increases as the modulation wavelength decreases and may
or may not have a maximum, depending on the system. An effective-gradient-energy coeffi-
cient is shown to decrease as the wavelength decreases. This is reIated to an observation
that electron distribution is rather flattened compared with the distribution of positive
charges when the wavelength is sufficiently short.

I. INTRODUCTION

Included in Cahn and Hilliard's formula' for
free energy of a nonuniform system were two major
contributions: (i) f(c), which depends on the local
composition at arbitrary position r,c(r), and (ii)
a(VC), which is dependent on the composition of
the immediate environment through the composition
gradient at position r, Vc(r) and is termed a "gra-
dient energy" with a being the gradient-energy coef-
ficient. Utilizing this formula for free energy, Cahn
and Hilliard and Cahn, respectively, developed
theories of nucleation and of spinodal decomposi-
tion.

Recently, we estimated electronic contributions to
the mixing energy [which was proportional to the
enthalpy term in f(c)) and to the gradient energy
of a composition-modulated metallic mixture by
means of the Hohenberg-Kohn formula for the
electronic ground-state energy. In a metallic mix-
ture with a very dilute free-electron density such as
an alloy of the Cs-Rb system, a miscibility gap was

expected to exist at low temperatures. This was con-
sidered as a possible explanation for a continuous
solid-solution field below the solidus curve appear-
ing in the experimental phase diagram of such a sys-
tern as Cs-Rb. Spinodal decomposition was also ex-

pected in such a system, though kinetics might be
very slow. This was because negative electronic
mixing energy and positive electronic gradient ener-

gy were expected for a system with a dilute free-
electron density, and these contributions were as-
sumed to be dominant in such a system. In mix-
tures of common metals, these electronic contribu-
tions were shown to be merely a part of the total
mixing energy and the gradient energy.

In the present work, we employ the same theoreti-
cal foundation as the previous ones ' but retain
higher-order terms than the gradient-energy term in
the electronic excess energy by performing fully nu-
merical calculations. Then the wavelength depen-
dence of the excess energy and an effective gradient
energy is discussed.

A,„=min(co, 1 —co) . (2)

If ft and v; represent, respectively, the effective
valence number and the atomic volume of an atom
of I kind (I=A,B), the density of positive charges
may be distributed following

gz [1—C(x)]+Psc(x)
n+(x) =

vg [1—c(x)]+vlcc (x)

Here, it must be noted that the discrete nature of the

II. THEORY

A binary mixture of A and 8 atoms is considered.
The local composition in the system is assumed to
fluctuate according to a sinusoidal plane wave of the
following form:

c(x)=co+A cos(kx ),
where c (x) is the local composition of component B
on a plane located at position x along the wave-
propagation direction, co is the average composition
of component 8, A is the amplitude of the wave, and
k is the wave number, which is equal to 2' lk, with
A, being the wavelength. Note that since c(x) is a
non-negative quantity, the possible maximum ampli-
tude (which may not be realized by natural spinodal
decomposition) is given by
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positive-charge distribution in a crystalline lattice is
ignored and positive charges are smeared to yield a
continuum, i.e., a jellium model. If both the atomic
volume difference between an A and a B atom de-
fined by

=2(vg'—vs)/(Up +vs)

and the modulation wave amplitude A are small
compared with unity, n+(x} is obtained from Eqs.
(1) and (3):

n+(x) =np[1+a cos(kx)],

where

np =ng ( 1—cp ) +

naacp

+E( gn—ns )cp( 1 —cp )

and

a=A(nrr nz )[1——e(l —2cp)]inp,

in which

nr =fr/Ur (I=A B)

Note that nz represents the average free-electron
density of pure metal of I kind, if fr and u; are not
altered by alloying. When n+(x) obeys a sinusoidal
distribution, as given in Eq. (4), it is natural to as-
sume that the electron distribution n (x}follows

n(x) =np[1+Pcos(kx)], (5)

U, [n]=E„[n]+T,[n]+E„[n]+E,[n]

where E„,T„E„,and E, are energy functionals of
the electron-distribution function n and represent,
respectively, the Coulomb, kinetic, exchange, and
correlation energy of electrons:

in which the normalized amplitude of electron wave

P is a parameter to be determined. It is apparent
that n+(x) and n(x) satisfy the electroneutrality
condition within a distance of the wavelength.

According to Hohenberg and Kohn, the ground-
state energy U, of a nonuniform electron-gas system

may be given by

[n(r) —n+(r)][n(r ') —n+(r ')]
E„[n]=- drdr',8$ (7)

T, [n]=—(3m ) f [n(r)] r dr+i' f dr,
n(r)

(8)

' 1/3
3 3E„[n]= ——

x 4 f [n(r)] r dr

and

E,[n]=—f IO 0575+0.01551 [4.nn (rn)/3]' In(r)dr . (10)

As has been used in Eqs. (7)—(10), atomic units
(a.u. ) will be used throughout. As seen in Eq. (8),
the Thomas-Fermi —von Weiszacker formula is uti-
lized for the kinetic energy. The second term on the
right-hand side of Eq. (8) takes the nonuniformity
contribution into account. The von Weiszacker

0.45
coefficient ut may be set equal to, . For the
correlation energy, the Nozieres-Pines expression
[given in Eq. (10)] for an intermediate range of the
electron density is employed. In our previous
work, the electronic mixing energy was calculated
by use of three different expressions for the correla-
tion energy: the Wigner formula for a very dilute
electron gas, the Nozieres-Pines formula for an
intermediate-density electron gas, and the Gell-
Mann-Brueckner formula for a very high-density
electron gas. The numerical results due to the two
former formulas were more or less close. Note that

t

none of these approximate formulas are sufficiently
precise. There may be gradient terms such as the
von Weiszacker term even in the exchange and
correlation energy. Sometimes, such contributions
improved quantitative results. ' However, they are
not taken into account in the present work just for
the sake of simplicity. The same choice for T„E„,
and E, as those given in Eqs. (8)—(10) was previous-
ly employed by Gyemant and Solt" in their study of
void formation energy.

With the density distributions of positive charges
and of electrons given in Eqs. (4) and (5), respective-
ly, electronic excess energy or the difference in elect-
ronic energy per unit volume, b, U, /V, between the
homogeneous solution [in which c(r)=cp] and one
with a composition given by Eq. (1) can be calculat-
ed by use of Eqs. (6)—(10}:
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' 1/3

5U /V=mnp(a —p) /k + ~g
(3w ) np Q5/3(P) ——— np 'Q4/3(P)

3 77

n (in[[1+(1—p )' ]/2}+ I —(I —p )' )+( ) [I—(I —P ) ]k

where the integral Q~(p) is defined by

gn ~, ~ P(P —1) (P —2m+1) (2m —1)!!P2~
2~ . (2m )! (2m )!!

Note that, in the expression of b, U, /V given in Eq. (11),an unknown parameter p is still included. Parameter
p should be determined by minimizing b, U, /V:

d(b, U, /V)/dp=O= —2nnp(a —p)/k + —,(3~ ) np Q2/3(P)
1/3

nt Q&/3(p) —,np[1 —(1 pz)'/ ]—/p+, nppk l(1—p )' . (12)

III. RESULTS AND DISCUSSION

Numerical calculation was performed for solving
Eq. (12) by means of the Newton-Raphson method.
The numerical integral in Eqs. (11) and (12) were
carried out by means of Simpson's rule, applied for
every angle section equal to 2n. /240. Initial values
for p were obtained by approximately solving Eq.
(12) for small P's:

P»p
—— a[/I +(a) pc/„o) k+ (co, /a)„)k ],

where

2
toes =an p,

(13)

ro =—[(3~ ) np —(3/~) np —0.0155np],

and
0.45

co) ——„np .

For various values of np and k, numerical results
were in excellent agreement with P»~'s given in Eq.
(13) within +1% (but usually within +0.1%). It is
easily seen from Eq. (13) that, since co„and ro& are
positive quantities, 0&p&a for any k's if cop)0.
Even for Cs—v at. % Rb (v&60) alloys in which
cop&0, p's do not exceed a more than 0.1%. In
Fig. 1, curve a shows the change of the ratio p/a
with respect to the wavelength A, (=2m/k) in the
Cs—50 at. % Rb alloy. It is seen that for A, & 2 nm

p/a sharply decreases as )I, decreases. This is a
common feature to almost all alloys, including the
Au —50 at. % Ni alloy as demonstrated by curve b.

Utilizing p as a solution of Eq. (12) in Eq. (11),elec-
tronic excess energy per unit volume, AU, /V, can be
obtained for a given set of parameters n p, u, and k.

This indicates that, when composition wavelength A,

is larger than 2-3 nm, the electron distribution n

varies almost exactly the same as the positive-charge
distribution n+, while n tends to flatten for short
A, 's. In the cases shown in Fig. 1, P was less than
60%%uo of a at the shortest wavelength A, (that was
set equal to the lattice constant of the crystal of pure
element of smaller size). That is, for A, & 2-3 nm, a
series of dipoles, each having a length equal to A, /2,
starts to form. This reminds us of the effective sur-
face energy versus radius curve for spherical voids
in metals. "' Owing to the nature of a flattened
electron distribution, the effective surface energy of
a single atom vacancy in pure Na crystal was re-
duced to less than 60% of the surface energy of a
flat surface.

Figure 2 shows the wavelength dependence of the
excess energy in the Cs—50 at. % Rb alloy when the
composition wave amplitude is set equal to A

given in Eq. (2). At A, =ao or k=O, b, U, /(VA )

corresponds to the mixing energy which is negative
for this alloy. Since

~

b, U, /V
~

at A, =~ is small,
b, U, /V becomes positive for A, smaller than 3.7 nm
because of a positive gradient energy, ' and rapidly
increases as A, decreases towards A, . In our previ-
ous works, ' p»~ obtained from Eq. (13) was direct-
ly substituted into Eq. (11) to obtain an approximate
expression for b, U, / V:

a (cop+roik )
(&U, /V)»p ——

I+(cop/co„)k +(co)/co„)k~
(14)

Comparison of the numerical values for EUe/V
with (b U, /V)»~ shows that both quantities are in
agreement within +4% at any wavelength
throughout the Cs-Rb system. (In the Au-Ni sys-
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FIG. 1. Wavelength k dependence of ratio of electron-
distribution wave amplitude P [defined in Eq. {5)], to
positive-charge distribution wave amplitude a [defined in
Eq. (4)] in {a}Cs—50at. % Rb and(b) Au —50at. % Ni.

FIG. 2. Wavelength A, dependence of electronic excess
energy hU, /V [defined in Eq. (11}]in Cs—50 at. % Rb
when the maximum amplitude [defined in Eq. (2)] is uti-
lized.

(b U, /V), pp
——(A /4)(up'+2m, k ),

where

(15)

and

up =4(cop

tern, the agreement was within +l%%uo.) Thus, the
above comparison ensures the validity of the ap-
proximate formula of b, U, /V given in Eq. (14)
which was already intensively utilized in previous
works. ' It must be noted that if A, becomes smaller
than A, , b, U, /V approaches zero as can easily be
seen from Eq. (14). That is, when A, =O, the mixture
becomes homogeneous in the present continuum
model.

If terms of order higher than k are ignored in
b, U, /V in order to obtain an analogous expression
to Cahn's excess free energy [Eq. (4) of Ref. 3], Eq.
(14) may be simplified s as

calculated by use of Eq. (17). However, for small
A, 's (& 1.5 nm), a',ff becomes significantly smaller
than a;. At A,., a',ff is less than 50%%uo of a, Quali-
tatively speaking, experimentally determined
gradient-energy coefficient in such a system as Al-
Ag (Ref. 13) seems to reduce its magnitude as the
modulation wavelength decreases. It should be not-
ed that a,ff defined in Eq. (18) is practically ampli-
tude independent (within+0. 3%). This can be easi-
ly seen if (b, U, /V), ~~ is employed in place of
hU, /V in Eq. (18). Since the gradient energy is re-
lated to the interfacial energy, ' the above feature
directly corresponds to the decrease of the effective
surface energy of a spherical void when its radius
decreases, "' as previously mentioned. Thus, the
physical background of Figs. 1 and 3 is common.
Finally it should be emphasized that, when nu-
cleation phenomena in metallic systems are treated,

a, =2/(coi —cop/o), g),
in which

(= I(n" ns)[1 —e—(1—2cp)]/np]

(17)

E

OI

'o

10—

Since up'A /4=(AU, /V)k p, an effective gradient-
energy coefficient may be defined for the excess en-

ergy b, U, /Vgiven in Eq. (11):

ICeff=2[6, U/V (b, U, /V)k p]/A k— (18)

In Fig. 3, K,f~ calculated for the Cs—50 at. %%u~Rbal-
loy is plotted against the wavelength A, . For large
A, 's, K,ff is nearly constant, being closely equal to K~

g (nm)

FIG. 3. Wavelength A, dependence of effective-
gradient-energy coefficient a,ff [defined in Eq. (18)], in

Cs—50 at. % Rb. Here, g =[np/(n~ —ns}]'.
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the decrease of the effective gradient-energy coeffi-
cient or the interfacial energy, as the dimension of
nuclei decreases, must be properly taken into ac-
count.

IV. CONCLUSION

With the use of the Hohenberg-Kohn formula for
the ground-state energy of a nonuniform electron-
gas system in a jellium model, electronic excess ener-

gy or the difference in electronic energy between the
homogeneous solution and one with a sinusoidally
modulated composition was derived. By means of a
fully numerical calculations, the validity of an ap-

proximate expression which had previously been uti-
lized was ensured. The electronic excess energy in-
creased as the modulation wavelength decreases. An
effective gradient-energy coefficient was shown to
decrease as the wavelength decreased. This was
caused by the fact that electrons rather stayed flat-
tened compared with the distribution of positive
charges. This may be significant when small nuclei
in metallic systems are theoretically treated.
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