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Previous Korringa-Kohn-Rostoker coherent-potential-approximation electronic-structure
calculations for substitutionally random alloys have been based on ad hoc potentials. The
lack of procedures suitable to provide self-consistent, parameter-free potentials prevented

computations for systems consisting of dissimilar atoms and is also the reason why quanti-

ties like, for example, cohesive energies or lattice constants, have not so far been evaluated

for systems of similar constituents. %e present in full detail a generally applicable scheme
devised for calculating the self-consistent electronic structures of substitutionally disordered

systems. Its feasibility is demonstratedby presenting theresults obtained for the Ag„Pd& „
alloy series. They are compared with those of former non-self-consistent calculations which

use Mattheiss prescription potentials and the +=1 Slater exchange, whereas the von

Barth —Hedin expression is employed in our work. The differences are perceptible and have

to be understood as combined self-consistency and exchange-correlation effects.

I. INTRODUCTION

The application of the one-particle approach to
the treatment of electrons in condensed matter re-
quires some approximation for the effective-
Coulomb interaction. Usually the local-density-
functional approach (LDFA) is used. ' The
Coulomb interaction in the LDFA is. written as the
sum of the direct potential V as seen by a given
electron due to the average charge distribution in the
system and the exchange-correlation part V„. V„,
at a given position depends only on the local-charge
and spin-charge densities in that approach. The ap-
plication of the LDFA can be justified from a
theoretical point of view for systems in which the
spatial charge-density variation is smooth. As this
requirement is not met in all regions within a solid
there is no a priori justification for the application
of this scheme to such a system. Its merits and lim-
itations therefore can only be recognized by compar-
ing the values of calculated physical quantities to
experiment. The request for maximum precision in
the involved computations therefore bears not only
practical but also principal significance. A basic
demand in this context is that self-consistency of the
calculations with respect to the one-particle poten-
tial should be obtained; that is to say, the input po-

tential to the computation of quantities like energy
eigenvalues, densities of states, etc., should be the
same as the output potential as constructed with the
help of those quantities. In fact, before the advent
of reliable self-consistent band-structure calculations
for ordered solids expressions for V„, which con-
tained adjustable parameters had to be used in many
cases. The best-known example for this is the Slater

p —, expression with an adjustable prefactor u. In
many applications based on non-self-consistent com-
putations a value of I had to be chosen for a in or-
der to get the best possible agreement between
theory and experiment even in cases of high elec-
tronic densities where theory would have rather sug-

2
gested values near —,. The present state of the art of
self-consistent electronic structure calculations for
ordered solids, however, is so high that the expres-
sions evaluated are fully parameter-free and remain-
ing discrepancies between theory and experiment
can genuinely be attributed to many body effects for
many quantities. Qn the other hand, only due to the
high standard of the practical calculations the amaz-
ingly wide applicability of the one-particle approach
has been revealed.

In the case of disordered systems the situation is
more complicated. Owing to the lack of Bloch sym-
metry it is much harder to perform reasonable
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electronic-structure calculations. In addition, be-
cause some configurational averaging is involved in
the computation of any physical quantity accessible
to experiment approximations in addition to those
connected with the single-particle picture enter any
theory concerned with disordered solids. In order to
test the validity of the alloy theory used and to get
the best possible results for physical quantities
within that theory it is therefore of great importance
to work with good alloy potentials, which are self-
consistent within the frame of the applied scheme.

In the present paper we consider configurationally
disordered systems, the atoms of which are supposed
to sit at the sites of a regular lattice. The most
realistic theory for such systems has proven to be
the Korringa-Kohn-Rostoker coherent-potential ap-
proximation (KKR-CPA). It replaces the atoms
of the alloy by a medium of effective scatterers. In
the case of a A„B& „alloy the sites of the effective
medium are all characterized by the same single-site
scattering matrices t, which are determined by the
requirement that, on the average, the effective medi-
um should have the same scattering properties as the
alloy. Given the alloy potentials, the t, 's have to be
determined self-consistently for each electron ener-

gy, in order to meet the aforementioned CPA condi-
tion. Until recently the labor involved in the fulfill-
ment of the CPA condition has prevented self-
consistent calculations with respect to the alloy po-
tential. As a consequence, KKR-CPA computa-
tions have been restricted to systems consisting of
similar constituents, like Ag„Pd~ „or Cu„wi& „al-
lays, for which, due to the expected smallness of the
charge transfer, potentials obtained by the use of the
Mattheiss prescription should lead to reasonable re-

sults. This assumption has been corroborated by the
calculation of many physical quantities based on
electronic-structure quantities as obtained in non-

self-consistent KKR-CPA computations, like partial
densities of states, Bloch spectral functions, Fermi
surfaces, etc. Examples are the evaluation of the
residual electrical resistivities of Ag„Pd~ „alloys,
the interpretation of soft-x-ray-emission experi-
ments, the calculation of electron-phonon coupling
parameters, ' of positron-annihilation cross sec-
tions, " of angle-resolved photoemission cross sec-
tions, etc.

Self-consistent alloy potentials even for systems
like those cited above are not only desirable in order
to improve the results for the aforementioned and
similar quantities, but also in order to be able to cal-
culate quantities which are likely to be very sensitive
to the finer details of the electronic structure, like
the cohesive energy, or to study whether there is any
propensity for some short-range order in the system
under consideration, etc. Only if self-consistency

has been achieved, the question can be answered
conclusively, if the KKR-CPA method itself is good
enough to deal with such more subtle problems. Of
paramount importance, however, is self-consistency
for alloys consisting of atoms dissimilar in their
atomic numbers and (or) their numbers of valence
electrons. Without self-consistent potentials it is
hard to make a theory for any of their physical
properties.

The treatment of all the alloy problems so far pre-
cluded by the lack of self-consistency is now possible
due to our method devised for doing full self-
consistent KKR-CPA calculations. A short account
of this work has been given in Ref. 13 and a descrip-
tion of the method, containing all the necessary in-
formation in a rather condensed form, together with
its application to the Agp 2Pdp s alloy has been pub-
lished in Ref. 14.

In the present paper we discuss the formalism in
full detail and present the results of self-consistent
electronic-structure calculations for the whole
Ag„Pd~ „alloy series with the systems Agp 2Pdp s,
Ago 5Pdo 5, and Ago 8Pdp 2 as examples. We com-
pare our results with those of Ref. 6. For the case
of the d-resonance positions in Agp 2Pdp & we
separate the effects caused by the use of different
exchange-correlation potentials from those which
are due to the achievement of self-consistency. Only
the net effect will be discussed for other quantities.

Self-consistent potentials obtained by the use of
our programs have already been applied to the cal-
culation of the residual resistivities of Ag„Pd~ „al-
loys and led to the improvement of the results over
those based on the non-self-consistent potentials. '

The self-consistent evaluation of the electronic
structure of the Cu„Pd~ „systems, which will be
published elsewhere, ' proved necessary to explain
the disorder-order transition in those alloys as a
consequence of the nesting properties of their Fermi
surfaces. ' The results of fully self-cansistent
KKR-CPA calculations are currently used to study
clustering effects in Ag„Pd~ „and Cu„Ni& „sys-
tems, to calculate cohesive energies and x-ray and
ultraviolet photoelectron spectroscopy (XPS and
UPS) spectra. A further interesting application,
currently under way, is the investigation of magne-
tism in iron and nickel at finite temperatures both
below and above the Curie point, where our method
is applied to the disordered spin system of the
valence electrons.

The present paper is organized as follows. In Sec.
II we give a detailed discussion of the formalism,
whereby the CPA is considered as the lowest-order
approximation to a more general scheme for the
treatment of substitutionally disordered alloys. In
Sec. III we collect the points which show why the
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cluster approach applied to an essential part of the
procedure is able to treat systems big enough for
providing reliable spatial electronic charge densities,
which are used for the construction of the self-
consistent potentials. Section IV is devoted to the
discussion of the results obtained for the Ag„Pd~
alloy series, which perfectly back the statements
made in the more general sections II and III. The
paper concludes with a short summary.

II. THE FORMALISM
FOR THE SELF-CONSISTENT CALCULATIONS

In the usual non-self-consistent treatment of the
alloy problem the potentials around the atoms A and
B, which go into the calculations via their single-
site-scattering matrices tz and tz, respectively, are
considered as input quantities and are obtained by
using some sort of Mattheiss construction. The
main effort to do a reasonable approximation to the
configurational averaging is therefore put into the
step, which calculates the scattering path operator T
of the whole system out of the single-site scattering
properties. This is usually done by solving the equa-
tion"

for T. i,j,i of Eq. (1) label the sites in the alloy and
the go' are matrix elements of the free-electron
Green's function. t' is given by

where g" is 1 if i is occupied by an atom of sort A,
and zero otherwise. The dependence of tq and t~ on
the particular configuration is neglected in this
non-self-consistent treatment. In order to compare
the theoretical results to experiment, the measured
quantity has to be expressed by the quantities calcu-
lated by scattering theory and the configurational
average taken at the end. So in principle (1) would
have to be solved for all relevant configurations in
the alloy system. On account of the large number of
configurations involved and the lack of both point
and Bloch symmetry clearly some approximation
has to be introduced into the problem.

Instead of imposing some approximation on a
perturbation-theory-based formulation, which hard-

ly leads to both a physically intelligible and compu-
tational kind of theory, the use of CPA is a quite

suggestive approach from a physical point of view.
It gives an approximation to the configurationally
averaged matrix elements of the scattering path
operator T ' ', at a particular atom by replacing its
environment in the alloy by an effective medium
whose sites carry the single-site scattering matrices,
t, . T"' ' is easily obtained by solving this single-
impurity problem and we obtain

Z
A(8) [1+yc(t —) r

—1)j
—1Z c (3)

The evaluation of T"' ' implies the inversion of
only a small matrix in any case. If the system has
O~ symmetry and the maximum angular momen-
tum, which has to be taken into account in an
angular-momentum representation of the involved
quantities, is 1=2, (3) is merely an algebraic equa-
tion. In Eq. (3) T' is the scattering path operator of
the pure effective medium and has to be calculated
by solving the equation

T'=t, +t,goT' . (4)

Relation (4) is the scattering equation of an ordered
one-component solid.

At this stage, t, is not yet specified. The CPA
determines this quantity in such a way as to adjust
the overall scattering properties of the effective
medium to those of the alloy. The CPA condition,
which assures that the average atom in the alloy
causes no extra scattering when embedded into the
effective medium, reads

cT"+(1 c)T =T' .—

Here c is the concentration of the A atoms in the
system. This relation is usually cast into an equa-
tion for r, . By inserting (3) into (5) one obtains

f~ =cry +(1 c)tg—
(6)

Equations (5) and (6) have to be solved simultane-
ously for both t, and T'. The numerical treatment
of this problem will be referred to as the CPA cycle
in the following. By running through the CPA cy-
cle for a sufficiently dense mesh of energy points the
physical quantities of interest can be calculated
within the non-self-consistent CPA approximation.
The charge density at the average A or B site, e.g.,
may be obtained by exploiting its relation to the
energy-integrated imaginary part of the single-
particle Green's function':
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Here p is the spatial coordinate counted from site A.
An equivalent formula holds for n (p) .Zt" is a
solution of the Schrodinger equation in the alloy po-
tential V" in the Wigner-Seitz cell of the average A

atom in the alloy. V" is assumed to be of muffin-tin
form and I. stands for the angular-momentum quan-
tum numbers of Z.

In order to establish a formalism which is suitable
to obtain self-consistency with respect to the alloy
potentials we have to give a prescription for con-
structing potentials out of the charge densities deter-
mined by formula (7). In contrast to the ordered
case this is not straighforward, because again some
kind of configurations averaging is involved in this
step. It should be on the same level as that applied
to the scattering equation (1). For this purpose it is
useful to devise a hierarchy of approximation to the
alloy problem within which the CPA may be can-
sidered as the lowest-order one. This is done in the
following way. The alloy is subdivided into two re-
gions (Fig. 1): Region I contains the site whose
scattering properties are to be calculated, whereas
region II consists of the more distant sites outside
region I. Whereas in region I a particular configura-
tion of the atoms is considered, the atoms of region
II are replaced by the scatterers of the effective
medium. Similarly to Eq. (3) the scattering matrix
of this system may be written in terms of the
scattering matrix, T', of the effective medium as
given by Eq. (4)

T=[1+T'(t, ' —t, ')] 'T'. (8)

Computing T via Eq. (8) requires the inversion of a
matrix whose dimension is determined by the num-
ber of atoms within region I and the maximum an-
gular momenta taken into account. In general the
single-site t matrices t&, in region I are different for
each site and depend on the given configuration.
The CPA consists in restricting region I to just the
central site and therefore is in fact the lowest-order
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lh lh 4h Ah 4h lh lh

IIreckon I
Mh 4h 3h Ah 4h 4h 4h

yv
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4L 4h

lh 4h

lh ghIF 1P'

approximation in the hierarchy of approaches which
consist in using different sizes for region I.

The prescription for the construction of the po-
tential fitting into this scheme, now comes in in a
natural way. It is based on the following charge
densities. %ithin site i of region I the charge densi-
ty nI'(p ), used for the potential construction, is cal-
culated with the use of Eqs. (8) and (7). We ascribe
the concentration-weighed average n (p ) of the
charge densities at the average A and 8 atoms to the
sites of region II:

n(p)=cn'"'(p)+(1 —c)n' '(p) . (9)

A precise prescription for actually calculating
n'"'(p) and n' '(p) will be given below when we
give a detailed description of the self-consistency
procedure.

In terms of n "(p) and n(p) the potential V" at
site i in region I corresponding to a given configura-
tion is determined by the relation

FIG. 1. Approach to the alloy problem by calculating
the scattering path operator for the medium shown. Re-
gion II consists of the scatterers of the CPA effective
medium. In region I we consider a special configuration
with the shaded circles designating the A atoms and the
cross-hatched circles designating the 8 atoms.

V(i)(p )
i'G region I

f dp'2nI' '(p')
I p+R; p' R'

I

—2Z"—~l —R +p

f dp'2n(p')
f p+R; —p' —R;-f —2Z// R;+p —R; [ +V„,(n"(p)) .

i "G region II

Here Z' ' is the nuclear charge at site i' and Z is a
charge obtained in a way analogous to Eq. (9),

Z =cZ'"'+(1 —c)Z "~ .

In the following we use the muffin-tin approxima-
tion for V"'(p) throughout. This amounts to re-
placing n,"(p) and n(p) by the charge densities
displayed in Table I.

RMT(')
N,", =4m f p dpn, "(p), (12a)

In close analogy to the procedure applied to the
ordered case the muffin-tin potential is constructed
most conveniently by some regrouping of these
charge densities. For this purpose we define the to-
tal electronic charges contained in the muffin-tin
spheres:
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(n'"): the spatially averaged interstitial

charge density within
the Wigner-Seitz cell of site (i)

TABLE I. The construction of the charge densities for the computation of the alloy potential in muffin-tin form.

n,"(p): the spherically averaged charge density for p within the muffin-tin sphere
of site i
for p outside the muffin-tin sphere
but within the Wigner-Seitz cell (i)

n(p)=

n, =cn, (p)+(1—c)n, (p)
(A)

(A) (B)
with n, and n, the spherically averaged

(A) (B)
charge densities n and n, respectively.
(n)=c(n' ')+il —c)(n' ')
with (n ) and (n ) the spatial averages

(A) (B)

(A) (B)
over n and n, respectively,
in the interstitial regions.

for p within the muffin-tin sphere
of some site in region II

for p in the interstitial parts of region II

RMT(')
%=4~ p2dpn p (12b)

Here RMT" is the muffin-tin radius of site (i). The
charge distribution now is written as the sum of the
three contributions which are shown in Table II. In
Table II VMT is the volume of the muffin-tin sphere
of site (i). VMT is the volume of the average
muffin-tin sphere in the alloy. The part of the total
potential, V", coming from the charge distribution
(1) in Table II is easily calculated by noticing that,
due to charge neutrality of this term at each site,
V""' is determined by n""' and Z""' alone and is
zero in the interstitial region. V' ' may be calculat-
ed by using the Ewald summation technitlue. Ex-
cept for the contribution coming from Z,'„'', which
may easily be evaluated, the part of the potential due
to (3) of Table II has to be evaluated numerically on
a mesh of points within the Wigner-Seitz cell (i) and
the averaging procedure necessary to obtain a
muffin-tin form for the potential has to be per-
formed afterwards. In many cases it is sufficient to
approximate the potential outside the muffin-tin
spheres by the average potential in the interstitial re-
gion of the whole system and to define its value as

the muffin-tin zero. If necessary, the interstitial po-
tentials are determined by averaging over the inter-
stitial region of every Wigner-Seitz cell separately.
In this case the interstitial potentials are site-
dependent constants and the phase shifts are con-
structed by taking the logarithmic derivatives of the
radial wave functions at the radii of the Wigner-
Seitz rather than the muffin-tin spheres.

The formalism is now complete for the fully self-
consistent treatment of the problem. In any case
one starts out by restricting region I to just the cen-
tral site. In many examples of almost complete ran-
domness, e.g., for the Ag„Pd~ „alloy system we are
considering in this paper and the Cu„Pd& „system
whose self-consistent electronic structure will be
published elsewhere, this approximation is good
enough for studying most of the properties of such
systems. If it is not, or one is especially interested in
short-range-order effects, the size of region I has to
be increased after obtaining self-consistency under
the aforementioned restriction. In the restricted
case it is also possible to give a closed expression for
the alloy potentials in terms of the charge densities
of Table II. It reads

( l )(i) (i)(l) n electron ns (p)
=0

n )~ „=&le(p)—(n )(l)(i')

=0
Z,",,"' ' =N —(n) VMr

for (p} within the the muffin-tin sphere .
in region II

for (p) outside the muffin-tin sphere

TABLE II. The regrouping of the contributions to the charge density in the alloy.

(n) for p within the muffin-tin sphere (i)
in region I

for p outside the muffin-tin sphere (i)

for the whole space
at any site

(3)(i)(3) n electron

=(n"') —(n )
Z,'„"' = iZ"—Z) —(N,"—Nl+(n )(VMr" —VMr)

=0

for p within the muffin-tin radius
in the interstitial region at site (i) in region I

in region I
in region II
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(13)V(i)( ~) V(1)( ~)(i)+ V(2)( ~)(i) Z(3)(i)y
~

~
~

and in muffin-tin approximation it is given by (compare the analogous expression for the muffin-tin potential
for the case of an ordered system in Ref. 19)

2Z"' p &2 RMr(&)
V"(p)= — +8m f —p' n,"(p')dp'+8' f p'n,"(p')dp'+ V„,(n,"(p))

0 p

—V„,((n ) )+—(n )( Vws —VMr) for p within the muffin-tin sphere

=0 for p outside the muffin-tin sphere .

Here (i) is either an A or a 8 atom.
In (14), Vws is the volume of the average

Wigner-Seitz cell in the alloy, a is its lattice con-
stant, and C, the Madelung constant, is given by a
number which depends on the crystal structure
only. In the case of a fcc structure, e.g., its value
is 4.584 875 6. An average site-independent constant
interstitial potential is used in formulas (13) and
(14).

In the restricted case, described by formulas (13)
and (14), there is a simple connection between the
char~e densities n,"on the one side and n, , n,
(n'" ), and (n' ') on the other:

if region I is an A atom,
(15)

if region I is a 8 atom.

In the actual calculation the iteration process is ini-
tiated by gaining the charge densities of Table II via
the superposition of atomic charge densities. This
step is precisely defined by the equations (15). In
the simplest case, formula (13), evaluated for (i) be-

ing occupied both by an 3 and a 8 atom, provides us
with the potential. The solution of the correspond-
ing Schrodinger equation yields the single-site
scattering t matrices needed to run the CPA cycle,
which consists in solving Eqs. (5) and (6) self-
consistently. The output charge densities, n,' '"'~
and (n'"'""), are obtained by evaluating formulas
(3) and (7) and by performing the averages as de-
fined in Table I subsequently. The input charge
densities for the next iteration are gained by admix-
ing n""' to the input charge densities of the same
iteration. The admixture factors may be chosen as
large as 0.2 for systems with rather broad d reso-
nances. In the application described in this paper,
where extremely narrow d resonances come into
play, it has to be restricted to a few percent in the
first few iterations but may be raised to about 0.2 in
the subsequent ones without running out of conver-
gence. The number of iterations needed to achieve

(14)

1

self-consistency is comparable to that necessary in
ordered systems.

In the applications requiring an extension of re-

gion I, the next step consists in attaching the charge
densities n, and n, and the single-site scattering ma-

trices t„obtained in the computations described
above, to the sites of region II. Keeping these boun-

dary conditions fixed, Eqs. (7) and (8) have to be
solved self-consistently for all relevant configura-
tions in region I with both an A and a 8 atom in the
center. Self-consistency in this step means that the
potentials at the sites of region I, obtained with the
use of the scattering path operator T'"' of the nth
iteration yield single-site scattering matrices t&,

which are sufficiently close to those employed for
the calculation of T via Eq. (8). The starting values

of the charge densities for this kind of iteration pro-
cedure are of course those obtained in the above-
mentioned restricted iteration process. The physical
quantity in question is evaluated for each particular
configuration of region I separately and the configu-
rational average is taken at the end.

In spite of the far larger amount of expenditure
necessary, if the second step is required, it should be
manageable on the lines described above. Keeping
in mind the successes of the CPA schemes in its
simplest version, it is to be expected that the size of
region I can be held fairly small in the cases where
some amount of short-range order demands the per-
formance of the second step, too.

III. THE APPLICATION OF THE CLUSTER
APPROACH TO THE SELF-CONSISTENCY

PROCEDURE

Much more numerical labor is involved in obtain-
ing the self-consistent electronic structure of a sub-

stitutionally disordered substance than for an or-
dered system along the lines traced in the last
chapter. The cause for this is that the self-
consistency requirements, which have to be met
simultaneously for both the single-site scattering
matrix t, of the effective medium and the alloy po-
tentials require running through the two interrelated
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to the exact results ob-differences in comparison to e
the KKR, the most marked differencetained with t e, e

structured.hat the first mentioned are more struc u
'

all no effect onTh' f ture however, has practica y
energy-integrated quantities like charge eensities.

h' '
that the cluster puts the pea s

increase of theon the right positions. By a further increase o t e
which is quite feasible, it would be pos-

sible to bring the cluster-densities o s a es
as a lance at Figs.still closer to those of the KKR, a g

here the results obtained for clusters
i h 43 and 79 sites, respectively, are isp aye .

The use of clusters containing ew
fficient at least for the alloys formed bysites is insu icien, a

se the DOS curvestransition-metal atoms, because t e
ained from t em, ex i

'
h h'bit too much structure andg

therefore prevent ethe iteration procedure from
th tbybecoming stable. Summing p,u one can state t a y

baseddoing a KKR-CPA band-structure calculation base

on the self-consistent potentials as obtained with our
cluster approac we arh are able to evaluate the self-

tructures of substitutionally
~ ~

consistent electronic s ruc
as that11 on the same level of accuracy as t arandom a oys on

which would be achieved by app ying e
KKR-CPA to each step involved in the procedure.
The computer time required for our approach is

bl d the calculations, discussed in this pa-
-3033 andper, have been performed both on an IBM-

a Cray.
~ ~ 4

Because t ea i i y oh b'1't t handle clusters consisting of
about 100 sites is the clue to the possibility o o-

self-consistency, it is worthwhile to show in
m utations isd '1 h the speeding up in these comp

u' d. Most important in this connection
'

ac ieve . Os

set of sin le-choice of the most appropriate basis se
'

g
cast the scatter-article wave functions necessary to cas e

tered around the different sites of the system are
chosen. They are given by

z' "'(,&)=ji(~&p)&~(p) .
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Here L stands for the angular-momentum quantum
numbers, ji is the spherical Bessel function, and YL

are the real spherical harmonics. The coordinate p
is counted from site (i).

In general the matrix elements of the scattering
path operator T' between any two of the functions
defined in (16) are different from zero. Solving Eq.
(4) in the representation (16) for T', therefore re-
quires the setting up and inversion of a full matrix
whose dimension D is given by

D(T') =N(l,„+1)' (17)

with N the number of sites in the cluster and l,„
the maximum angular momentum taken into ac-
count. This gives a severe limitation to the manage-
able cluster size, because the time spent for the in-
version goes roughly with the third power of D, and,
also, the setting up of the big matrix, element by ele-
ment, is rather time consuming.

Instead of (17) we use wave functions adapted to
the point symmetry of the system. As is well known
the matrix elements of T' between states belonging
to different representations of the point group, as

well as between different basis states of the same
representation, vanish. Using these basis states, the
matrix

T' =t, —go (18)
therefore is block-diagonal and T' can be construct-
ed by inverting those blocks separately.

The effect of this change of basis is best visual-
ized by taking the 79-site cluster employed in the
present calculations as an example: the effective
medium, mimicking the Ag„Pd~ „system, has fcc
structure and O~ point symmetry, possessing 10 ir-
reducible representations, M. Because the matrix
elements of T' are only needed at the central site
and it is quite sufficient to put lm, „equal to 2 we
have to care for the blocks connected with four rep-
resentations only. Their symbols and the dimen-
sions of the corresponding blocks are displayed in
Table III. In the nonsymmetrized treatment of the
problem, on the other hand, the dimension of the
matrix to be inverted would have been 711.

The symmetry-adapted states used in our calcula-
tions are constructed in the following way (compare
Ref. 21 and Fig. 1). The atoms are grouped into
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sesh ll surrounding the point-sym ymmetr center of the
The positions of the atoms in g'a iven shelsystem. e

t o erations.1 ted to each other by symmetry pare rea e
of a linear com-Each s mmetrized state consists o a

bination of single-site states, inv
'

g

ac sym
'

volvin the sites of a
be written asparticular shell s only, and may e w

'

(19)
l
Mvhr &

= g C„; l
A)Lh, i & .

its

Here lMva & is a asis s a ej b
'

tate v of the irreducible rep-
M is a further label necessary to ac-resentation M. ~ is a u

count or t e mu
'f h ltiplicity of the basis states. pi

at site i andis an unsymmmmetrized state centere at si e i
I

characterize y
'

ed b the two quantum numbers and p.
1 r s mmetrizedTh ~A,

'&'s contained in a particular symme
state a carry11 r the same quantum num er

s mmetry,~A, i &, employed in the cases of Os sym
are the cubic harmonics. By app ying
orthogonalization procedure to, hthe Mvz, the ex-

fficients C are constructed in such a waypansion coe icien s
ditionalas to satis y o o

' f rth gonality relations. For addi
'

details we refer to Ref. 1.
A further acceleratmg measure is

'
dis introduced into

the calculations for the step which sets up the sym-
T' . It mainly consistsmetrized representation o

of the ree-in calculating the matrix elements
particle Green's function go. They are given by

(20)

(21)

M&Mv& lgo IMv~'&= g g C„; &&pi lgo la'p, 'i' C„;
its i'Es'

p
~ ~ C's are determine yd b the structure of the systemin formula (20), hncludhng t e

' 'i' ma be written as.10 i Rf. 21o h h &A, i
l

lA, falone. By comparison of (20) to formula (4.10 in e . one

&~s lgo I

~'v" &= z. s
—Z &A, i

l l
A, 'IJ, 'i'&Ihh'+'(v e lR;,'l )vg

I
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Symbols of the
representations

Dimension of the corresponding
block in the T matrix

l Ag
2 TIQ

3 E~
4 T2g

r,
I is

Iiz
r,',

24
52
38
45

TABLE III. The dimensions of the blocks in the sym-
metrized representation of the scattering-path operator
for a six-shell cluster.

In our computations the energy- and lattice-
constant-independent, merely structural, quantities
are calculated once and then stored permanently.
This short description of the way the cluster method
is used in our computations should be sufficient to
give a feeling why it is capable to deal with clusters
consisting of more than 100 sites. In terms of the
symmetrized states (19) the matrix equation (4) for
the scattering path operator T' reads

cM M ~ M M cM+ Z tc&&8 p&& &&&' (23)

with h& a spherical Hankel function, e the energy,
(+)

and ~R;;
~

the distance between the sites i and i'
The sum over l is restricted to a few terms for any
combination of occurring quantum numbers A, and
)(,'. The first factor in (21) is again merely structur-
al. A further simplification comes into play by no-
ticing that the sum over the sites i of shell s in for-
mula (20) may be omitted by multiplying (20) with
the number of sites in shell s, summing over v, the
label of the basis states of M, and dividing by the di-
mension of M. i in Eq. (20) may be replaced by any
site i p in shell s. In this way the number of Hankel
functions with different arguments to be calculated
is considerably reduced. By inserting Eq. (21) into
Eq. (20) the matrix elements of go may be written in
the following way:

(M&&
~ gp ~

M&&') = g &„„(&&')

The labeling of the quantities setting up Eq. (23) is
devised in such a manner as to exhibit the symmetry
relations between their matrix elements as pointed
out above.

The cluster approach is also very suitable for at-
taining self-consistency in the CPA cycle by apply-
ing the Newton-Ralphson procedure to Eq. (6), in

er to obtain a new guess ~al~~ r,
'"' for the r, em

ployed in the nth iteration, out of the input value
t,'" ", to the (n —1)th iteration, on the one hand,
and the value T'" "of the scattering path opera-
tor as obtained in the (n —1)th iteration on the oth-
er. To that purpose we write t,'"' as

(24)

l,i'Gs'

&(v e „'+'(v e
~
R,, ~

) .

(22)

ht, is chosen such that t,'"' satisfies the CPA condi-
tion Eq. (6) up to the first order in ht, This lead. s
to the relation

c
Tc( —)(r( —) r

—)
) (r(n —))

r
—1)Tc(n —1) gr —) g (r "

r
—

) (r(n —))—1

cA, BA, tcA, cA,
A,

' Otcg
tgg )——1

T la'Tir')
5tca'(~')

(26)

In (26) the T(„are symmetrized matrix elements of

In Eq. (25) the matrix elements of the involved
quantities are to be taken with respect to the states
~Api ) as introduced in Eq. (9) and i there is the cen-
tral site. In the case of 0), symmetry and l,„=2,
which, for the sake of simplicity, is assumed in
deriving (25), these matrix elements are diagonal in
A, and independent of p. At the central site the
states ~Mva) are identical to the states ~k)ul) in
this case.

The solution of (25) requires the calculation of the
functional derivative of T' with respect to t, . By a
functional derivation of Eq. (4) with respect to t, we
obtain

T' as defined in Eq. (23). a= 1 is the label for the
involved states at the central site and the ~'s only
run over those states which are a linear combination
of single-site states with quantum number A, '. The
summation over the sites of the cluster involved in
(26) is effected with negligible expenditure of time,
and Eq. (25) is solved for b,t, by inverting the small
matrix on the lhs. Self-consistency with respect to
the CPA cycle is attained after fewer than four
iterations for most of the energy points. The full,
energy-dependent, matrix elements gp of course,
have to be set up only once per CPA cycle.

IV. RESULTS FOR THE SILVER-PALLADIUM
ALLOY SYSTEM

We present the results of self-consistent
electronic-structure calculations for the composi-
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tions Agp zPdp s, Agp 5Pdp 5, and Agp sPdp q, which
have been performed by following the lines of Secs.
II and III. In these computations we restrict our-
selves to the CPA approximation; that is to say, re-
gion I consists of only one site. We applied the
self-consistency procedure to clusters of both 43 (4
shells of atoms) and 79 (6 shells of atoms) sites in
the Agp zpdp s case and to 79-site clusters in the oth-
ers. The maximum angular momentum taken into
account was l=2 for each site. f scattering could
easily be included if necessary. We constructed our
potentials according to Eq. (14) and used the von
Barth —Hedin expression for the exchange-
correlation part V„,. The experience gained for
V„, is the same as for ordered systems: one of the
merits of the self-consistency is that reasonable re-
sults can be obtained by utilizing physically well-
founded exchange-correlation potentials, which con-
tain no adjustable parameter. The non-self-
consistent calculations of Ref. 6 on the other hand,
which are based on Mattheiss prescription poten-
tials, use the a=1 Slater exchange in order to get
better agreement with experiment.

For comparison we reproduce these results by us-
ing the same ad hoc potentials and refer to them as
non-self-consistent calculations in the following.
Furthermore, the number of iterations necessary to
obtain convergence in the self-consistency procedure
can be minimized by using these potentials as start-
ing quantities. In the first four iterations we gained
the input potentials to the ith iteration by mixing
the input and output potentials of the (i —1)th itera-
tion. We found that convergence can be speeded up
by switching to the mixture of charge densities in
the subsequent iterations. %e also observed that the
converged potentials of the Agp qPdp s system lead to
rapid convergence when used as input quantities to
the computations for different concentrations. By
comparing our results obtained with these two dif-
ferent kinds of starting potentials we conclude that
they are independent of the initial guess, provided
self-consistency has been achieved. Although the
positions of the extremely narrow d resonances at
the silver sites are very sensitive to the details of the
charge distributions, admixture factors as large as
0.2 could be used in the third and the subsequent
iterations and we attained self-consistency after typi-
cally eight to ten iterations. Self-consistency has
been considered achieved as soon as the rms differ-
ence between the output potentials of two subse-
quent iterations fell below 10 Ry. This amounts
to a shift in the silver d resonances, which are the
most sensitive quantities, of less than 0.001 Ry.

In the first iteration the average t-matrix approxi-
mation (ATA) to the single-site t matrices t, of the
effective medium was taken as an input guess to the
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FIG. 6. The d phase shifts for the Ag„Pd& „alloys:
dot-dashed curve, Agp2Pdps, ' dashed curve, AgpgPdp5,
solid curve, Agp. 8Pdp 2. The non-self-consistent results are
displayed in {a) and {b), the self-consistent results in {c)
and {d).

CPA cycle. In the subsequent iterations the self-
consistent t, 's of the previous iteration have been
used for this purpose. Convergence with respect to
the CPA cycle has been attained after typically four
iterations for each energy point in the first few itera-
tions and this number has even been reduced for
most of the energy points in the subsequent itera-
tions, when the potentials were approaching their
self-consistent values. Self-consistency with respect
to the CPA cycles have been considered achieved as
soon as the correction to the t, 's suggested by the
Newton-Ralphson equation (25) fell below 0.01% of
the computed values for any matrix element of t, .

In order to stabilize the procedure the scattering
path operator for about 180 energy points had to be
determined. In this way the cluster approach not
only provides self-consistent charge densities, poten-
tials, and single-site scattering matrices but also par-
tial and total densities of states. However, we
should like to stress here again that only the single-
site quantities as obtained by the cluster approach
are really used in the determination of the electronic
structure; quantities like the densities of states or,
more generally, the one-particle Green's functions
are obtained by the application of the full KKR-
CPA to which the self-consistent potentials are the
input quantities. The validity of our approach only
depends on how near the charge densities as deter-
mined in our cluster approach are to those obtained
by using the full KKR-CPA. This can easily be
controlled and has been controlled in our calcula-
tions. The comparison of the four-shell-cluster to
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' - hell-cluster charge densities (Figs.. 2—5)—t e six-s e -c

at the clus-which are practically the same—tell us tha e
ters we are dealing with are big enough for the pur-

h used for. Furthermore, we compare
the output charge densities of the KKR-C ca
lations to t ose o eh f th cluster calculations both in

the first iteration and in an additional final iteration
a ter ef th convergence criterion a been met. The

is la ed in1 f these comparisons are also disp yresu ts o
that ourFigs. 2—5 and corroborate the claun

method is practically equivalent to a procedure
which would apply the full KKR-CPA to any step.
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FIG. 8. TotaI DOS for Ago ~Pdo 8 based on the non-self-consistent potentials: 0, silver site; 5, pa11adium site; 0, total
DOS. The charge densities of Fig. 2, which are constructed from the quantities displayed in Figs. 7 and 8 coincide in spite
of marked differences in the DOS.

These findings are confirmed by the observations
made in calculations dealing with other systems too,
which will be published elsewhere. The practical
identity between the cluster and KKR-CPA charge
densities therefore is not fortuitous and limited to
the alloy series considered in this paper, but is a gen-
eral feature. The cause of this is that we are able to
treat large clusters whose sizes could still be extend-
ed, if necessary. The densities of states of smaller
clusters consisting of say 19 sites (3 shells of atoms)
is so spiky in the case of the Ag„Pd~ „alloys and
similar systems that it would be hard to stabilize the
convergence procedure when using them. Further-
more, previous calculations trying to increase the
manageable cluster sizes by suppressing s and p

scattering in the Ag„Pd~ „and similar systexns,
where d scattering is predominant, failed to produce
reasonable results.

The details of the full KKR-CPA calculations
have been given in a host of pubHcations, e.g., in
Ref. 6. For the technicalities concermng the KKR-
CPA runs we refer the reader to that publication.

As Figs. 3—5 show, the charge densities both at
the silver and palladium sites vary smoothly
throughout the concentration range. This is true for
both the self-consistent and the non-self-consistent
results. %ith increasing Ag concentration the main
peaks of the valence charge densities at the silver
and palladium sites are slightly shifted towards the
ion cores, whereby their peak heights show a small
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increase. This effect is accompanied by a shift of
the d resonances to lower energies as one approaches
the Ag-rich side in the concentration range (Fig. 6).
The aforementioned considerations show that it is
unnecessary to repeat the iterations for arbitrary
concentrations. All the single-site input quantities
required for a KKR-CPA run may be gained by in-
terpolation from those of the thrm concentrations
for which our calculations have been done.

The difference between the self-consistent and the
non-self-consistent results can also be seen from Fig.
6. The non-self-consistent phase shifts are identical

to those of Ref. 6, whereas our self-consistent phase
shifts at the silver sites are shifted up in energy. Be-
cause the Pd 1 phase shifts hardly move, this
amounts to a reduction in the Ag-Pd d band split-
tings. In Ago 2Pdo 8, e.g., its value is reduced from
5.9 eV for the non-self-consistent case to 5.4 eV for
the self-consistent one (compare Figs. g and 10).
Also reduced are the peak heights of the single-site d
DOS at the silver sites in accordance with a slight
broadening of the Ag d resonances. In Ag02Pdo s,
e.g., this effect is quite pronounced and might be
important in the interpretation of XPS spectra, etc.
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In Figs. 9—15 we present, as examples for
electronic-structure quantities self-consistent partial
and total DOS for the three compositions and in
Figs. 7 and 8 those based on the non-self-consistent
potentials for Agp 2Pdp s. In these figures we com-
pare the four- and six- shell-cluster results to those
of the full KKR-CPA calculation. One observes
that the results of the bigger clusters are nearer to
those of the KKR-CPA. The main difference is
that the cluster DOS are more spiky than the
KKR-CPA results in the d-resonance ranges of the
sort of atoms which have the higher concentration
in the alloy. The cluster results are nearest to the
KKR-CPA results in the Agp 5Pdp 5 case. The
scattering at the distant sites tend to wash out the
structure in the d DOS which may be seen by corn-
paring the four-shell-cluster to the six-shell-cluster
results. The full KKR-CPA DOS only show. a
small indication of the spikes obtained with the clus-
ters. The cluster results, however, agree with the

KKR-CPA results in the feature that they place the
silver and the palladium d resonances at the right
positions. Furthermore the d band widths of the
six-shell clusters agree with those of the KKR-CPA.
While with the four-shell cluster the silver d band-
widths come out correctly; the Pd d band widths are
slightly too small. On the whole, however, the clus-
ters are good enough to give the correct charge den-
sities (compare Figs. 3—5). The same conclusion
holds for the results based on the non-self-consistent
potentials, which are displayed for Agp 2Pdp s in Fig.
2 as an example.

In the whole concentration range the silver d
peaks are well separated from the Pd d peaks. The
tails of the d DOS of one component extend into the
d-resonance range of the other. In the case of the
self-consistent results this leads to a vanishing or at
least a reduction of the dips between the d reso-
nances for all concentrations. The most pronounced
effect occurs in the Pd-rich alloys: In the Agp gpdp s
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system, e.g. , the low-DOS region of the non-self-
consistent calculation vanishes in the self-consistent
case. This effect is quantified in column 3 of Table
IV, where it may also be seen that the agreement in
the positions of the d bands between theory and ex-
periment is improved by the self-consistent results.

We are now in the position to calculate all the
quantities of interest connected to the self-consistent
electronic structure, like electron bands, the shape of
the Fermi surface, etc., and compare them to the
non-self-consistent results of Ref. 6, which are iden-
tical to those recalculated by us. As an example we
make this comparison for the Bloch spectral func-
tions A (k,e). A (k,e) with k the momentum vector
within the Brillouin zone and e the electron energy
has been defined and discussed, e.g., in Ref. 6. In
the case of an ordered crystal, when considered as a
function of energy at constant k, its 5-function

spikes trace the positions of the elytron bands. In
the alloy systems we are interested in, these spikes
are broadened, signalizing the finite lifetimes of the
one-particle states in those systems. As an example
we display the Bloch spectral functions based on the
self-consistent potentials (Figs. 16—18) for five k
points in the (1,0,0) directions. They might be con-
trasted with those based on the Mattheiss prescrip-
tion potentials as displayed in Ref. 6. An overall
comparison between those two groups of results
shows marked differences. For example, whereas
the non-self-consistent results exhibit gaps between
the low-energy structures caused by the silver bands
on the one hand and the higher-energy structures
due to the palladium bands on the other, the self-
consistent results do not. Furthermore in the
silver-rich alloys the unstructured peak indicating
the Pd-impurity band is narrower and more pro-
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nounced in the self-consistent case. The self-
consistent results show more structures for the

Agp 5Pdp 5 alloy than the non-self-consistent ones.
Furthermore, self-consistency almost obliterates the
features found near the gaps of the non-self-
consistent results. In addition we observe slight
shifts in the positions of the peaks. The examples
cited above clearly show that self-consistency causes
changes in the broadened bands, which could be
probed by performing angle-resolved photoemission
experiments.

One might attempt to find a connection between
the structures of the Bloch spectral functions and
the band structure of the pure system, as Pindor
et al. did for the non-self-consistent case. This can
be achieved nicely for the silver-rich alloy Agp 8Pdp 2

by comparing Fig. 18, to the band structure of the
hypothetical Ag metal with the lattice constant of
AgosPdo2 as displayed in Ref. 6 for the (1,0,0)
direction: the two lowest peaks on the energy scale
at the I point [k=(0,0,0)] are due to Ag I'25 and
I'&2. bands, respectively, whereas the I'~ band is still
below the muffin-tin zero arid is not contained in

Fig. 18. The broad peak between 0.32 and 0.48 Ry
corresponds to the Pd-impurity band. At
k =(0.25,0,0) the b,

~
band has just come above the

muffin-tin zero and the structure between 0.15 and
0.30 Ry is connected with the 4~, 42, 55, 4~, and hz
bands of pure silver, respectively. The two peaks at
k =(0.5,0,0) correspond to the h„and b2 bands on
the one hand and the 55, 6~, and b 2 bands on the
other. The k=(0.75,0,0) graph exhibits a small

splitting between the 6~ and A2 bands in the
lowest-energy feature, whereas the 62 and 65 peaks
are still lumped together. The h~ peak now has split
off and moved above the Pd-impurity band. At the
zone boundary k = (1,0,0) the x ~

—x3 splitting is still
more pronounced and the fact that pure Ag has
near-neighbor x2 and x 5 bands is indicated by a
shoulder exhibited by the higher peak in Fig. 18.
The 4& peak has moved to higher energies and is not
contained in our figure.

The self-consistent Bloch spectral function of the
palladium-rich alloy Ago zPdo s (Fig. 16) may be in-
terpreted with the help of Fig. 9 in Ref. 6, where the
band structure of pure palladium for the Ago gPdo s
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FIG. 13. The self-consistent partial DOS for Ago SPdo z. The symbols are the same as in Fig. 9.

lattice constant is drawn in the (1,0,0) direction: at
the I point the peaks at 0.35 and 0.47 Ry, respec-
tively, refiect the I q5 and the I )2 bands of the pure
systems, whereas the sharp peak at 0.06 Ry above
the muffin-tin zero may be connected with the com-
mon I ~ band. Farther out in the Brillouin zone, at
k=(0.2S,O,O) the 6) peak is still very narrow,
whereas the palladium features between 0.27 and
0.51 Ry show broadening. The lower peak of this
structure together with its shoulder corresponds to
the slightly split h2 and 55 bands of Pd, whereas the
double peak at higher energies might be associated
with the hz and h~ bands of pure Pd. At

k=(O.S,O,O) the low-energy peaks are smeared out,
whereas the higher-energy peaks, reflecting the b,5,
62, and b, ~ bands of the pure system, sharpen. At
k=(0.7S,O,O) we still encounter the same situation,
and at the X point we find extremely narrow peaks,
which may be interpreted as the X~ and X3 states in
the low-energy range on the one side and the X2 and
X5 states at the aforementioned concentration
ranges being more tightly connected with the
features of the pure systems than the non-self-
consistent results are.

In concluding this section we come back to a
point already mentioned above: The differences be-
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FIG. 14. The self-consistent partial DOS for Ago SPdo 2. The symbols are the same as in Fig. 9.

tween our results and those of Ref. 6 are combined
self-consistency and exchange-correlation effects. In
order to shed some light on their relative signifi-
cance we constructed the Mattheiss prescription po-

tentials for the Agp 2Pdp s system in addition, using
the von Barth —Hedin expression for exchange and
correlation. The resulting positions of the d reso-
nances with respect to the muffin-tin zero are 0.391

TABLE IV. Some results of the self-consistent calculations versus those based on the non-self-consistent potentials. A

detailed comparison with the experiments of Ref. 23 requires the inclusion of matrix-element effects.

Lattice
constant

Composition (a.u.)

Fermi energy (Ry)
Non-self- Self-
consistent consistent

Positions of the d bands (eV)

Non-self-consistent Self-consistent Experiment

Ag site Pd site Ag site Pd site Ag site Pd site

Ago. 2Pdo. 8

Ago. sPdo. s

Ago. sPdo. z

7.415
7.518
7.630

0.577
0.544
0.542

0.571
0.552
0.554

5.9
5.5

2.4
1.9
1.7

5.5
5.4
5.4

2.2
1.9
1.9

54
54
5.5

22
2.0
1.9

Composition

Valence charge in the muffin-tin sphere
Non-self-consistent Self-consistent

Ag site Pd site Ag site Pd site

Valence charge in the %igner Seitz cell

Non-self-consistent Self-consistent

Ag site Pd site Ag site Pd site

Ag0. 2Pdo. 8

Ago 5Pdo 5

Ago. BPdo 2

10.394
10.397
10.49

9.206
9.284
9.393

10.222
10.224
10.278

9.230
9.308
9.416

11.097
11.015
10.998

9.983
9.985
10.01

10.926
10.943
10.962

10.017
10.057
10.151
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FIG. 15. The self-consistent total DOS for Ago 8pdo 2. The symbols are the same as in Fig. 10. The charge distributions
of Fig. 5 are obtained from the DOS displayed in this figure.

Ry for the Ag and 0.592 Ry for the Pd site. The
corresponding numbers of our self-consistent calcu-
lations are 0.215 and 0.372 Ry and those of Ref. 6,
0.165 and 0.388 Ry, respectively. We see that both
effects are of the same order of magnitude and have
different signs in this example. This partial cancel-
lation is the reason why, in the case considered, the
a=1 Slater exchange leads to better results than the
von Barth —Hedin formula when used in a non-self-
consistent calculation.

V. SUMMARY

In the present paper we presented a detailed for-
malism devised for the self-consistent calculation of
the electronic structures of substitutionally random
alloys in the frame of the KKR-CPA. We demon-
strated both the feasibility and the accuracy of our
approach by applying it to the Ag„Pd~ „alloy
series and performing the necessary numerical com-
putations with the use of both the IBM 3033's at the
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tials.

FIG. 18. The Bloch spectral function of Agp SPdp 2 for
k points in the (1,0,0) direction. The results are based on
our self-consistent potentials.
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FIG. 17. The Bloch spectral function of Agp 5Pdp 5 for
k points in the (1,0,0) direction. The results are based on

our self-consistent potentials.

Kerforschungszentrum Karla ruhe and the Oak
Ridge National Laboratory on the one hand and the
Cray at the Science and Engineering Research
Council in Daresbury (England) on the other. These
experiences lead to the conclusion that our method
is able to treat substitutionally random alloys with
an amount of expenditure comparable to that re-
quired for ordered solids. In addition we pointed
out how to include some deviation from complete
randomness in our formalism. In spite of the fact
that there are a lot of substances for which self-

consistency is more important than for the example
discussed in the present paper we chose the
Ag~Pd) „system, on account of the availability of
the detailed non-self-consistent calculations of Ref.
6 against which our results may be contrasted. Ow-

ing to its sensitive and narrow d resonances the
Ag Pd) „system is a genuine test case for the ap-
plicability of our method in any case. This state-
ment is also corroborated by the results we obtained

by the application of our method to other systems
and which will be published elsewhere. Furthermore
the experience of others who are using our programs
for activities such as those indicated in the Introduc-
tion also back our statement above. In addition to
their principal character our self-consistent calcula-
tions for the Ag, Pd, ) system also bear some phys-
ical relevance because they lead to perceptible and
measurable modifications of the non-self-consistent
results. Whereas the comparison of the positions of
the d resonances as found in our calculations and

displayed in Table IV with the non-self-consistent
results of Ref. 6 (Table II in their publication) and
with the XPS experiments of Ref. 23 shows im-
provement of the self-consistent results over the
non-self-consistent ones, a detailed discussion of
those experiments in terms of our results requires
the inclusion of matrix-element effects in our calcu-
lations. These computations, which are currently
being made and will be published elsewhere show,
e.g., that the matrix elements at the silver sites are
larger than those at the palladium sites. As a conse-
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quence, dips between the Ag and the Pd d reso-
nances occur in the calculated XPS curves even if
they are not present or only slightly indicated in the
total DOS curves. This feature together with the
improvement in the position of the d resonances
leads us to the expectation that our findings com-
pare favorably to the experiments of Ref. 23. The
most useful test of course would consist in a detailed
investigation of the band structure, or more precise-

ly the Bloch spectral functions, by angular-resolved
photoemission experiments.
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