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Isotope scattering of dispersive phonons in Ge
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With the use of a lattice-dynamical model which reproduces observed phonon dispersion
curves very accurately, the isotope scattering of near-zone-boundary acoustic phonons in Ge
is investigated theoretically. We show that the lattice dispersion which becomes appreciable
in the THz-frequency region leads to the phonon relaxation time that decreases more rapid-
ly than co . This deviation from the m dependence (the co behavior is predicted by the
continuum elasticity theory) amounts to about 20%%uo at 1 THz and is enhanced heavily at the
zone boundaries. Calculations are based on the lowest-order perturbation theory. Higher-
order corrections are estimated as well and shown to be negligibly small.

I. INTRODUCTION

Recently, a number of experiments on the propa-
gation of acoustic pQonons of THz frequencies have
been performed at low temperatures. ' The pri-
mary motivation for these works is to understand
transport properties of the phonons at thermal fre-
quencies, i.e., co =2irv & kit Tlfi and critical roles of
acoustic dispersion which become appreciable at fre-
quencies above about 1 THz. ' A few years ago,
Ulbrich et al. found in GaAs that transverse-
acoustic (TA) phonons of about 1-THz frequency
propagate in ballistic fashion over macroscopic dis-
tances and reveal several features characteristic to a
dispersive medium. Subsequently, Dietsche et al.
observed the ballistic flux patterns of such high-
frequency TA phonons in Ge. They found that
these patterns are markedly different from those ob-
tained for nondispersive phonons. It has been
currently understood that all these observations were
possible owing to the fact that the lifetime of high-
energy TA phonons satisfying fico »kit T against
anharmonic three-phonon interactions is anomalous-
ly long because the energy-momentum conservation
renders the processes very hard to occur.

In dielectric solids, the phonons are scattered as
well by several kinds of lattice imperfections. These
scatterings are, in general, highly frequency depen-
dent. ' " Hence, in isotopically impure crystals
such as Ge, the scatterings with naturally occurring
isotopes should act to limit the mean free path of
the phonons, provided that samples contain very low
concentrations of foreign impurities and other im-
perfections. Indeed due to the presence of this
scattering mechanism by the isotopes, Dietsche
et al. had to prepare thin Ge samples 0.5-mm thick
to observe sharp images of ballistic phonons higher
than 0.7 THz. Thus, the isotope scattering play

crucial roles in the transport of high-frequency pho-
nons.

So far, isotope effects on the phonons have been
investigated extensively in regard to the understand-
ing of low-temperature thermal conductivity in
dielectric solids. ' '" It has been predicted theoreti-
cally that the scattering rate depends on the frequen-
cy as co D(co), where D(to) is the phonon density of
states. Accordingly, as has been established experi-
mentally, the relaxation time proportional to co is
derived for the phonons in low-frequency nondisper-
sive region. At higher frequencies where the acous-
tic dispersion becomes appreciable, the scattering
rate is expected to depend on the frequency much
higher than co because D(to) grows more rapidly
than co, that is, the dispersion curves are convex up-
wards. However, no quantitative studies on this
subject taking the real vibrational spectrum of crys-
tals into account seem to be developed up to the
present.

The purpose of the present work is to investigate
theoretically the isotope scattering of the acoustic
phonons of THz frequencies. Especially, we shall
concentrate our attention on the phonons in Ge and
develop the study quantitatively based on the
dynamical matrix of the lattice which reproduces
very accurately the data for the phonon dispersion
curves obtained by neutron scattering. ' lt should
be noted that Ge is a prototype of highly dispersive
crystals being characterized by the marked flatten-
ing of TA-mode frequencies as the wave vector ap-
proaches the Brillouin-zone boundary especially in
the [100] and [111]directions.

In the next section, we shall formulate the prob-
lem and give an expression for the scattering rate, or
the reciprocal of the relaxation time of the phonons
to be obtained in the lowest-order perturbation
theory. Applying the formula to the case of Ge, we

858 Q~1983 The American Physical Society



27 ISOTOPE SCATTERING OF DISPERSIVE PHONONS IN Ge 859

shall show in Sec. III the numerical results for the
frequency dependence of the relaxation time as well
as the frequency spectrum over the frequency range
of acoustic phonons in Ge. The frequency shift of
the phonons due to the isotopic disorder and the
higher-order corrections to the scattering beyond the
lowest-order calculations are described in Sec. IV.
Finally, in Sec. V we summarize the results and give
conclusions.

I=Ho+

where

Hp =
2 g m(cr)ul(lcr)+ V2

alo

HI ———, g [m (lcr) m—(cr)]u (lcr)
alo

= —, g b,m(lo)u (lcr) .
alo

(3)

II. FORMULATION

Let us consider a crystal with nonprimitive lattice
structure in which each unit cell consists of r atoms
possessing isotopes. In the harmonic approxima-
tion, we write the Hamiltonian for the crystal with
substitutional isotopic atoms but containing no other
lattice imperfections as

H = —, g m (lo )u (lcr)+ Vz, (1)
aol

where 1 is an integer which specifies the position of
a unit cell, o. distinguishes r atoms in the unit cell,
and V2 represents the harmonic potential which is
quadratic in the lattice displacement vector u. We
separate the Hamiltonian (1) in the form which is
appropriate to treat the isotope effects as follows:

In these equations m(cr) is the average mass of cr

atom defined by

m(o)= —g m(lcr)= g f;(o)m;(cr),
1

N

where N is the number of unit cells in the crystal
and f;(o ) is the fraction of 1th isotope of the o' atom
having mass m;. Here, we have assumed that inter-
atomic forces are unchanged when an atom is re-
placed by its isotope and regard Ho as an unper-
turbed Hamiltonian. This separation should be
valid because as we shall see in the following, the
modification of the phonon frequency due to HI is
very small even in the neighborhood of the zone
boundary.

Expanding the lattice displacement as

u~(lcr) = g
2%m (cr)coj ( q )

1/2

[aj(q)+aj( —q)]e (o
~

qj)e'q'"'"

Eq. (4) can be rewritten in the following form:

&(bM (Q) e(cr
~ qj ) e(o

~ q 'j')[aj( q)aj'( —q ')+ai ( —q )aj'( q ')], (7)

where coj(q) (j=1,2, . . . , 3r) is the angular fre-
quency of the phonons of mode j and wave vector q,
aJ and its Hermitian conjugate aJ are the annihila-
tion and creation operators of the phonons, e is the
polarization vector, and x(l) is the position vector of
the 1th unit cell. The quantity b, (q) vanishes unless

q is zero or a reciprocal-lattice vector, in which case
it equals unity, and hM is defined by

The frequency dispersion co=coj.(q) and the polari-
zation vector e = e(o

~ qj) of the lattice are obtained
as the solutions of the eigenvalue equations

g [c0 6 g G~p(crcr''
~
q)]e—(p'cr=)0,

Pcr

a =1,2, 3

a=1,2, . . . , r

where

bM(lo)=6m(lo. )/m(o) .

where Ga& is the so-called dynamical matrix ex-
pressed explicitly in terms of the harmonic potential
V2 as'4

G p(crcr''~ q)=[m(o)m(o')] ' g, , e
c)u~ 10' c)up 1 0'

Note that in deriving Eq. (7), we have omitted the terms ajaj' and aj aj' which do not conserve the energy.

(10)
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The second-order perturbation theory tells us that the scattering rate, or the reciprocal of the relaxation time
~ of the phonons due to single scattering by the isotopes is given by

2

r,. '(q, co) =—co,'(q) g 5[co c—o, (q. ')] g &M (Q)e'(cr
I q 'j'). e(cr

I qj)&(q —q '+Q)

where the use has been made of the convention e(o
I

—qj)=e (cr
I qj). ' After a httle algebra, Eq. (11) be-

comes

rj '(q, co)= co;(q) g 5[co coJ'(—q ')] ggp(cr)
I
e*(cr

I q 'j') e(0'
I qj) I

~ J
q J cr

where

gq(o )= g f;(o )[1—m;(o )/m (o )]

(12)

In the derivation of Eq. (12), we have assumed that the isotopes are distributed randomly on the lattice sites.
More explicitly, we have

Alii~(Q)AM~ (Q') = g EM(lcJ)EM(l'o'')e
a

2
(14)

Then, in Eq. (14) we shall take an average over the mass difference. For a random distribution of the isotopes,
we have

(bM(lcr)&If(l'0')), „=('[EM(lcr)] ),„505~~ =gg(cr)5@5

Accordingly, Eq. (14) is reduced to

hill (Q)EM (Q') =—gr(cr)5 b(Q —Q') .
(16)

The substitution of Eq. (16) into (11) yields Eq. (12).
In the following, we concentrate our discussion on

Ge of diamond structure which contains two atoms
in a unit cell, i.e., r =2. The value of g2 is comput-
ed in terms of the atomic mass m; of five isotopes to
be

5

gq ——g f;(1—m;Im) =5.87&&10

To advance further the calculation of Eq. (12), we
invoke a symmetry property of the polarization vec-

tor e. For Ge of cubic symmetry, it is straightfor-
ward to show that

52 f(qj)e'(cr
I
qj)ee(cr

I
qj)= Xf(qj)~ ~ 6

qJ qj (17)
0 =1,2

where f(qj) is an arbitrary function which depends
on q and j through col( q ). With the aid of Eq. (17),
we obtain

r, (q, co)= greco,'(q) g 5[co—co,'(q')] .
12N

J
(18)

Thus, we find that the scattering rate depends on the

'(co) = Vp greco D(co—),
6

(19)

where Vo is the volume per atom and the phonon
density of states D per unit volume is given by

1 dS (clj')
D(co)=

(Zm. ) l u (q)
(20)

In this equation dS„stands for an element of area
on the constant-frequency surface [defined by
co=coj(q)] in the wave-vector space and uj is the
group velocity of the phonons. It may be more con-
venient to rewrite Eq. (19) in the following form:

with

~0 CO4

gz
4m c'(co)

(21)

dQ(q)
(c (co)) ' ~ 4m

x
cj (q)uj(q) cos[gl(q)]

(22)

I

wave vector only through the frequency and then no
spatial anisotropy and the polarization dependence
take place. This consequence is just the same as that
for the isotope scattering in the Bravais crystal. '

Hence, deleting the suffix j and variable q, hereafter
we shall denote the relaxation time simply as r(co).

Now, Eq. (18) can be written as
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=3.67X 10 'v (23)

in units of sec ', which agrees well with
'=4.01)&10 'v sec ', ' deduced from the data

of thermal conductivity at low temperatures.
For the scattering of the phonons in the high-

frequency dispersive region, much stronger frequen-
cy dependence than the co one should be expected.
The reason may be easily understood, that is, due to
the flattening of the dispersion curves the phonon
density of states increases more rapidly than co2

when we move out toward the zone boundary. To
see further the detailed behaviors of the scattering
rate over the entire frequency range of the acoustic
phonons, the correct vibrational spectrum of the
crystal is needed. This requires extensive numerical
calculations and the results will be described in the
next section.

III. NUMERICAL RESULTS

In order to discuss quantitatively the behavior of
the scattering rate, or the relaxation time in the
dispersive region, we should initially construct the
dynamical matrix (10) so that it may reproduce as
accurate as possible the phonon dispersion relations
observed by the inelastic neutron scattering. ' We
made this in the framework of the lattice dynamics
according to Born —von Karman scheme' ' taking
the interatomic forces up to eighth neighbors into
account. Then, Eq. (9) is solved to obtain the fre-
quencies and the group velocities of the phonons of
three acoustic branches needed for the numerical
calculations of Eqs. (19)—(22).

Here, we only mention that in our fitting pro-
cedure,

n

(
~

~v
~

/v &,.=—g ~

v;"—v;""
~
A,'""=0.74%

72 i=1

where cj is the phase velocity of the phonons, g~ is
the angle between q, and the group-velocity vector;
the integral should be performed over the solid angle
Q(q) in the wave-vector space under the constraint
coj(q)=co. In Eqs. (21) and (22), the effect on the
scattering of the dispersion is separated and is in-
volved exclusively in the factor (c (co) ) through the
velocities of the phonons. In the long-wavelength
limit, since both cj and vz ( =cj /cosgj ) are indepen-
dent of the magnitude of q, or the frequency, the re-
laxation time due to the isotope scattering exhibits a
co dependence.

For Ge, the relaxation time in the long wave-
length -limit is obtained by the numerical calcula-
tions of Eqs. (21) and (22) to be

~O ~4
'(co~0) = g2

~~p
C)
C$

~~08

0.4-

0.2-

" (z.'st oo3j0
r 0,2 0.6 0.8

q (2&/a)

FIG. 1. Calculated constant-frequency curves of the
lowest TA phonons, i.e., T1 mode, in the first quadrant
of the (110) plane of Ge. (Frequencies indicated are in
units of THz. ) Frequencies at zone-boundary points X, L,
and K are shown in parentheses, calculated value in the
upper row and experimental value in the lower row.

0.4 1.0

is obtained, where n =71 is the total number of fit-
ted frequencies selected (in both acoustic and optical
branches) along 5, A, and X directions in the Bril-
louin zone. ' This value is in accord with the es-
timated uncertainties of the measured phonon fre-
quencies ranging from 0.3% to 0.5% for optical and
0.3% to 1% for acoustic branches. '

For illustration we displayed in Fig. 1 the calcu-
lated constant-frequency curves of the lowest TA
branch in the (110) plane of Ge. (We refer to the
phonons of this branch and those of higher TA
branch as T 1 and T2 phonons, respectively. ) The
frequencies at the zone-boundary points X, L, and E
are given in the parentheses together with the exper-
imental values at the lower row. From this figure
we can understand a remarkable feature of the
acoustic dispersion, namely the noticeable flattening
of the TA modes as the wave vector approaches the
Brillouin-zone boundary in the (100) and (111)
directions. In the Born —von Karman model of the
lattice dynamics, the occurrence of such soft TA
branches are due to long-range interatomic forces
extending at least up to fifth-nearest neighbors. '

In Fig. 2, we have displayed up to 7.5 THz the
computer plot of the phonon density of states to-
gether with the contribution of each branch, which
covers the frequencies of all the acoustic phonons.
This figure is drawn by using a linear analytic
method devised by Gilat and Raubenheimer for
obtaining fine details of the frequency spectrum.
Comparing with the result for the density of states
by Nelin and Nilsson ' who employed the extended
sampling method with experimental data, Fig. 2 is
much more smooth and exhibits numerous critical
points more vividly.
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FIG. 2. Computer plot of the phonon densities of
states in Ge as a function of frequency up to 7.5 THz.
The dynamical matrix has been diagonalized at points q,
which form a uniform shifted mesh over the —irreduci-

48

ble section of the first Brillouin zone. The number of in-
tervals into which we divide the longest q„axis of the ir-
reducible section is 30. Frequency range is divided into
intervals dv of width of 1& 10 THz.

Now, somewhat complex behaviors of the density
of states given in Fig. 2 play crucial roles through
Eq. (19) in determining the frequency dependence of
the isotope scattering. At a glance, we recognize
that the frequency spectrum of the T 1 phonons has
a high peak at 2.4 THz and the mode conversion
into the phonons of this branch should contribute
predominantly to the scattering at frequencies below
2.5 THz. The longitudinal-acoustic (LA) phonons
are seen to become substantially important only at
frequencies higher than the maximum frequency
(-3.7 THz) of the TA branches. Note that the LA
phonons with frequencies larger than 6.23 THz can
be scattered into longitudinal-optical (LO) phonons
as well as the I.A phonons.

Figure 3 shows the details of the relaxation time
of the phonons versus frequency up to 1.9 THz, the
lowest zone-boundary frequency (in the [111]direc-
tion) of the T 1 branch. In this figure, the bold solid
curve represents the relaxation time evaluated by
Eqs. (19) and (20), or equivalently by Eqs. (21) and
(22). At frequencies higher than 1 THz this curve
deviates considerably from the dotted-dashed line
which indicates the co dependence being extrapo-
lated from the low-frequency limit. For instance,
the ratio of r(co) to the relaxation time (23) applied
to finite frequencies takes a value of 0.98 at 0.3
THz, while it decreases to 0.82 at 1.0 THz and is re-
duced only to 0.16 at 1.9 THz. As we have
described repeatedly hitherto, this rapid shortening
of the relaxation time in the THz region is evidently
a direct consequence of the acoustic dispersion with
dispersion curves convex upwards. In Fig. 3 we
have also displayed the contributions to the relaxa-

UJ
X
~10
C)
l-

UJ~10

0-9

0.3 0.5 1.0 1.5 1.9
FREQUENCY (THz}

FIG. 3. Frequency dependence of the relaxation time v.

up to 1.9 THz. Contributions to ~ of the scatterings into
three acoustic branches are shown with fine curves. Bold
dotted-dashed line indicates the v dependence extrapo-
lated from the low-frequency limit.

tion time from the scatterings into three acoustic
branches. As anticipated the predominant contribu-
tion to the relaxation time comes from the scattering
into the lowest TA mode which is enhanced heavily
near the zone boundary. On the other hand, the
scattering into LA phonons is suppressed signifi-
cantly, that is, the ratio of .the scatterings into three
acoustic modes r '(~T1):r '(~T2):r '(~LA)
is 54.1:36.3:9.6 in the low-frequency limit but it
amounts to 70.0:2S.3:1.7 at 1.9 THz. It should be
noted that the relaxation time of the acoustic pho-
nons at frequencies beyond 1.9 THz can be readily
inferred from the phonon density of states given in
Fig. 2 with the aid of Eq. (19).

IV. HIGHER-ORDER CONTRIBUTIONS

The derivation of the relaxation time developed in
Sec. II is based on the lowest-order perturbation
theory. Hence, it may be natural to ask the effects
of the higher-order contributions, namely the effects
of multiple scattering of the phonons by the same or
different isotope sites. For the isotope effects on the
low-temperature lattice thermal conduction, the
lowest-order calculations have been justified by the
success in explaining the experimental results
without taking higher-order processes into ac-
count. " However, unlike the case for the low-
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FIG. 4. Diagrammatic representations of the irreduci-
ble phonon self-energy up to fourth order in phonon-
isotope scattering. Solid lines represent phonons and
dashed lines denote the interactions with the marked iso-
topes. External phonon lines which are attached for con-
venience to specify the momentum and polarization
should be amputated.

energy phonons, this is not necessarily valid for the
phonons in dispersive region. In this section, we
shall estimate the higher-order terms to the scatter-
ing rate and conclude that they are still negligible
even when we approach close to the cutoff frequen-
cy of the acoustic branches.

As a start, we note that the correct relaxation
time denoted by 7 is related to the diagonal part of
the irreducible self-energy function II of the pho-
nons according to

[rj ( q, co)] ' =2 ImHJJ. ( q, co —ie)/A', (24)

should be assigned. Accordingly, the diagrams of
Figs. 4(a), 4(c), 4(e), and 4(f) make no contribution
since g ~

——0 holds identically by the definition of the
average mass m. Straightforward calculations based
on a standard Green's-function technique reveal that
the contributions of Figs. 4(d) and 4(g) to the self-
energy are suppressed in comparison with that of
Fig. 4(b} by the amount of g3I (co)/g2 and

g4I (co)/g2, respectively, where

where e is an infinitesimal positive number. The
terms in the perturbation series for II can be
represented graphically by bringing together at a
single cross all scatterings from the same isotope.
Some terms in this graphical expansion up to the
fourth order are shown in Fig. 4. The contribution
to 7. of the second-order diagram, Fig. 4(b), is just
the relaxation time ~ being calculated in Sec. II.

Now, it may be easily seen that for a cross to
which n dashed lines (which represent the interac-
tions} are attached, the factor

g„—:g f;(1—m;/m)"

I

6 7
I I I I

0 1 2 3 4, 5
FREQUENCY ( THz)

FIG. 5. Computer plot of the frequency shift Aco/co up
to 7.25 THz. Each contribution of six branches to hco/co
is also displayed by fine curve. This plot is obtained by
dividing the irreducible section of the first Brillouin zone
into meshes by the same manner as in obtaining the pho-
non density of states (Fig. 2), but by dividing the frequen-
cy range into intervals d v of width 0.01 THz.

I (co)= 1 coj.(q)
(25)

6& -. co' co'(q—) ic—
The explicit expressions for these diagrams are given
in the Appendix. Note that

2co (q)/[co —co.(q)]

is the momentum representation for the free-phonon
propagator. The knowledge on the magnitude of the
imaginary part of I (co) can be extracted from the re-
sults of Sec. II, because in terms of I(co), Eq. (18) is
expressed as r '=greco Im[I(co)]. For the real part
of I(co) we estimated the magnitude by direct com-
putations taking the contributions of the optical as
well as acoustic branches into account. It may be
worthwhile to remark that Re[I(co)] is related to the
frequency shift b,co/co of the phonons due to the
presence of the isotopes as

bco/co=g2 Re[I(co)]/2 .

In Fig. 5, Ace/co versus frequency is plotted.
Since we are interested in the effect of the isotopes
upon the acoustic phonons, the frequency shift up to
7.25 THz (the maximum frequency of the LA pho-
nons is 7.22 THz by our calculations and 7.21+0.01
THz by the experiments' ) is given. In addition, the
contributions to b,co/co of six branches are shown
herewith to understand the origin of numerous
structures being observed. This figure has also been
constructed by applying the linear analytic method
extended ingeniously for the calculations of the real
part of various spectra. Besides the existence of
several critical points, we observe that hen/co takes a
finite value, i.e., —g2/2 in the low-frequency limit.
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one isotope site. The diagram of Fig. 4(h) seems to
contain singular components, but the perturbation
series whose first two terms are Figs. 4(b) and 4(h) is
formally summed. [The next term would have an
insertion of two dashed lines and a cross in the line
labeled q "j" in Fig. 4(h).] The effect of summing
this series is to replace the 5 function in Eq. (18) by
a peaked function with a spread in co of 1/~. More
explicitly, if we retain only diagonal parts of the
self-energy function, i.e., j"'=j' portions of Fig.
4(h), this amounts to the replacement in Eq. (18) of

(26)

Now, with the aid of Fig. 5,
~

Re[I(co)]
~

&1 ts
deduced as far as the frequency range of the acous-
tic phonons is concerned. Similarly, 1m[I(co)] & 1 is
obtained, too. Combining these results, we find that
both g3 ~

I(co)
~
/g2 and g4 ~

l(co)
~

/g2 are of the or-
der of 10 or less, where g3 and g4 are 7.10& 10
and 7.57 p 10, respectively. Therefore, the correc-
tions due to a series of the diagrams like Figs. 4(d)
and 4(g) are safely neglected.

The remaining contributions, i.e., Figs. 4(h) and
4(i) correspond to multiple scatterings by more than

2~J~(q ')/r, '(q ', co)
vr5 co —coj( ') ~

[c0 coj ( q—') —2coj ( q ') ReIIJ 1' ( q ', co) /fico] + [co& ( q ') /corj ( q ',z) ]2

However, as we have seen, both (cor) ' and

ReII' '/fico=gz Re[I(co))/2

are of an order of magnitude smaller than 10
Hence, this modification is also small in the fre-
quency range of interest to us and may be neglected
as well.

The last diagram Fig. 4(i) differs in an important
way from that of Fig. 4(h). In Fig. 4(h), two of
three internal phonon lines always carry the same
momenta, whereas all three momenta differ from
each other in Fig. 4(i) and the resulting contribution
is finite. Therefore, unless the contribution to the
sum over q'and q" of the factor

2co' (q '")/[co —co -(q "') is]—
with q

'"= q —q '+ q
" [cf. (A4)] becomes unex-

pectedly large for some range of q
' and q ", this di-

agram is again suppressed at least by an amount of
gq ~

I(co)
~

& 10 as compared with the lowest-order
diagram, Fig. 4(b).

These analyses make it plausible that the calcula-
tions of the isotope scattering developed in the pre-
vious sections are valid and the corrections to the
lowest-order results are negligibly small as far as we
consider the acoustic phonons.

V. CONCLUDING REMARKS

Based on an elaborate Born —von Kirman model
of lattice dynamics which reproduces the phonon
dispersion relations very accurately, we studied the
isotope scattering of the acoustic phonons of THz
frequencies in Ge. %ith increasing the frequency,
the phonon relaxation time against the interaction
with naturally occurring isotopes is found to become
shortened much faster than ~, the frequency
dependence being established for the low-frequency
nondispersive phonons. Owing to the presence of
the acoustic dispersion conspicuous in the TA

I

branches, this deviation from the co behavior is
discernible above about I THz and is enhanced re-
markably in the vicinity of zone-boundary frequen-
cies.

In deriving thes results, we have employed the
lowest-order perturbation theory in the phonon-
isotope interaction. As far as the frequencies of the
acoustic phonons are concerned, our calculations are
justified because the higher-order contributions are
shown to be negligibly small.

The results obtained in the present work may play
a fundamental role in interpreting the transport
properties of nonequilibrium phonons in crystals
with isotopic disorder. In particular, when com-
bined with the focusing properties of dispersive pho-
nons, they will provide a key to analyze observed in-
tensities in the propagation experiments of THz
acoustic phonons at low crystal temperatures.

Another interesting subject related to this work
may be the effects of the acoustic dispersion on
anharmonic phonon interactions. Recent experi-
ments on CaF2 have demonstrated that the spon-
taneous decay rate via three-phonon processes of
high-frequency LA phonons of above 1.5 THz obeys
co dependence as predicted theoretically for non-
dispersive, isotropic solids. However, unlike the
case of CaF2, the phonons in Ge are highly disper-
sive and anisotropic at THz frequencies. It has been
suggested that there exists a possibility that an incre-
ment of the density of available states for the decay
phonons due to the dispersion may lead to a drastic
change of the lifetime of such the high-frequency
phonons. But no quantitative analysis on this prob-
lem taking into account the real vibrational spec-
trum of highly dispersive and anisotropic crystals
has yet been reported.
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We give expressions for nonvanishing phonon self-energy functions corresponding to Figs. 4(b), 4(d), and
4(g)—4(i). For Fig. 4(b),

II~&~'(q, co)=— coj(q) g H(co;q'j') .
~r

q J

For Fig. 4(d),

(Al)

II~~'(q, co) =——
2 coj(q) g g H(co;q 'q "jj'") .Jl ~

g (6~)2 1
q'q "JJ

For Fig. 4(g),

(A2)

II's'(q, co)=,co,(q) g g H(co;q 'q "q '"j'j"j'") .
16 (6N) q'q "q"'JJ J

For Figs. 4(h) and 4(i),

IIJJ '( q, co) + IIJJ"(q, co)

g2
co,(q) g g H(co', q 'q "q "'j'j"j"')

~ r~ rr~ rrrjj J

(A3)

&( g [e(cr
~

qj)* e(0
~

q'j')][e(o''~ q'j')*.e(cr'~ q "j")]
rr

X[e(cr"
I q "j")'«c "I q"'j'")][«0"'Iq"'j"')'«'c"

I qj)]

X t5 -5 ~ -h(q' —q"')+5 -5 ~ -h(q —q'+q" —q"')I .

2coj ( q ') 2coJ' ( q ")
H(~ q'q". q"i'i'" . i"')=

co —co'(q') co —co'(q")J J

The terms involving b,(q' —q"') and b,(q —q'+q" —q"')
and II", respectively.

(A4)

(A5)
2coj~"( q '")
2 2 + &&&

co —co' (q )J

in the curly bracket of (A4) correspond to II'"'
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